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UPPER SEMILATTICES OF FINITE-DIMENSIONAL GAUGES

S. S. Kutateladze

In Memory of Alex Rubinov (1940–2006)

This is a brief overview of some applications of the ideas of abstract convexity to the upper semilattices

of gauges in finite dimensions.

1. Introduction

Duality in convexity is a simile of reversal in positivity. The ghosts of this similarity
underlay the research on abstract convexity we were engrossed in with Alex Rubinov in the
early 1970s. Our efforts led to the survey [1] and its expansion in the namesake book [2]. We
always cherished a hope to revisit this area and shed light on a few obscurities. However, the
fate was against us.

Inspecting the archive of our drafts of these years, I encountered several items on the cones
of Minkowski functionals or, equivalently, gauges. The results on the Minkowski duality in
finite dimensions are practically unavailable in full form, whereas they rest on the technique
that is still uncommon and unpopular but definitely profitable. The theorems on gauges
appeared mostly in some mimeographed local sources that had disappeared two decades ago.
We hoped and planned to expatiate on these matters when time will come.

Alex Rubinov was my friend up to his terminal day. He shared his inspiration and impetus
with me. So does and will do his memory...

An abstract convex function is the upper envelope of a family of simple functions [1–3].
The cone of abstract convex elements is an upper semilattice. We describe the bipolar of such
a semilattice through majorization generated by its polar. Polyhedral approximation simplifies
the generators of the polar in finite dimensions to discrete measures. Decomposition reduces
the matter to Jensen-type inequalities, which opens a possibility of linear programming and
we are done. These ideas characterize our approach.

This article is organized as follows: Section 1 is a short discussion of majorization and
decomposition in the spaces of continuous functions. Section 2 addresses the space of convex
sets in finite dimensions and the influence of polyhedral approximation on the structure of
dual cones. Section 3 illustrates the use of linear programming for revealing continuous linear
selections over convex figures. Section 4 collects some dual representations for the members
of upper semilattices of gauges. In Section 5 we deal with some upper lattices of gauges that
are closed under intersection.

c© 2006 Kutateladze S. S.
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2. Majorization and Decomposition

It was long ago in 1954 that Reshetnyak suggested in his unpublished thesis [4] to compare
(positive) measures on the Euclidean unit sphere SN−1 as follows:

2.1. A measure µ (linearly) majorizes or dominates a measure ν provided that to each
decomposition of SN−1 into finitely many disjoint Borel sets U1, . . . , Um there are measures
µ1, . . . , µm with sum µ such that every difference µk−ν|Uk

annihilates all restrictions to SN−1
of linear functionals over

� N . In symbols, we write µÀ � Nν.
Reshetnyak proved that ∫

SN−1

p dµ >

∫

SN−1

p dν

for every sublinear functional p on
� N if µÀ � Nν. This gave an important trick for generating

positive linear functionals over various classes of convex surfaces and functions.

2.2. A similar idea was suggested by Loomis [5] in 1962 within Choquet theory. A measure
µ affinely majorizes a measure ν, both given on a compact convex subset Q of a locally
convex space X, provided that to each decomposition of ν into finitely many summands
ν1, . . . , νm there are measures µ1, . . . , µm with µ such that every difference µk−νk annihilates
all restrictions to Q of the affine functions over X. In symbols, µÀ Aff(Q)ν. Many applications
of affine majorization are set forth in [6].

Cartier, Fell, and Meyer proved in [7] that
∫

Q

f dµ >

∫

Q

f dν

for every continuous convex function f on Q if and only if µÀ Aff(Q)ν.
An analogous necessity part for linear majorization was published in [8]. In applications

we use a more detailed version of majorization [9]:

2.3. Decomposition Theorem. Assume that H1, . . . , Hn are cones in a vector lattice X.

Assume further that f and g are positive linear functionals on X. The inequality

f(h1 ∨ · · · ∨ hn) > g(h1 ∨ · · · ∨ hn)

holds for all hk ∈ Hk (k := 1, . . . , n) if and only if to each decomposition of g into a sum of n
positive terms g = g1 + · · ·+ gN there is a decomposition of f into a sum of n positive terms

f = f1 + · · ·+ fn such that

fk(hk) > gk(hk) (hk ∈ Hk; k := 1, . . . , n).

3. The Space of Convex Figures

We will proceed in the Euclidean space
� N .

3.1. A convex figure is a compact convex set. A convex body is a solid convex figure.
The Minkowski duality identifies a convex figure S in

� N with its support function S(z) :=
sup{(x, z) | x ∈ S} for z ∈ � N . Considering the members of

� N as singletons, we assume
that

� N lies in the set VN of all compact convex subsets of
� N .

3.2. The Minkowski duality makes VN into a cone in the space C(SN−1) of continuous
functions on the Euclidean unit sphere SN−1, the boundary of the unit ball zN . This yields



4–60 S. S. Kutateladze

is the so-called Minkowski structure on VN . Addition of the support functions of convex
figures amounts to taking their algebraic sum, also called the Minkowski addition. It is worth
observing that the linear span [VN ] of VN is dense in C(SN−1), bears a natural structure of
a vector lattice and is usually referred to as the space of convex sets. The study of this space
stems from the pioneering breakthrough of Alexandrov [10] in 1937 and the further insights
of Radström [11] and Hörmander [12].

3.3. A gauge p is a positive sublinear functional on a real vector space X viewed as the
Minkowski functional of the conic segment Sp := {p 6 1} := {x ∈ X | p(x) 6 1}. The latter
is also referred to as a gauge or caliber. A gauge p is a norm provided that its ball Sp is
symmetric and absorbing. Recall that the subdifferential or support set ∂p of p is the dual ball
or polar of Sp. The polar of a ball S is denoted by S◦ and the dual norm of ‖ · ‖S is ‖ · ‖S◦ .
The “donkey bridge” of functional analysis consists in the duality rules:

‖ · ‖S = S◦(·), ‖ · ‖S◦ = S(·).

We will restrict exposition to the norms and balls of
� N by way of tradition.

3.4. Approximation Lemma. If H is a subcone of VN then the signed measures with

finite support are sequentially weakly* closed in the dual cone H∗.

C Let µ ∈ H∗. The mappings

z 7→ µ+(z); z 7→ µ−(z),

with z ∈ � N , are linear functionals on
� N . Therefore, there are u, v ∈ � N such that µ+(z) =

(u, z) and µ−(z) = (v, z). Put

µ1; = µ+ + mes + |u|ε−u/|u|;
µ2 := µ− + mes + |v|ε−v/|v|;

µ1 := µ1 + |v|ε−v/|v|; µ2 := µ2 + |u|ε−u/|u|.

As usual, εz is the Dirac measure at z ∈ � N , while | · | is the Euclidean norm on
� N , and

mes is the Lebesgue measure on SN−1: i. e. the surface area function of the Euclidean ball
zN := {x ∈ � N | |x| 6 1}. Note that µ = µ1 − µ2. Moreover, the measures µ1 and µ2 are
nondegenerate and translation-invariant. Indeed, check that so is µ1. This signed measure
is clearly positive and not supported by any great hypersphere. We are left with validating
translation-invariance. If k := 1, . . . , N then

∫

SN−1

ej dµ1 =

∫

SN−1

ej dµ+ +

∫

SN−1

ej dµ(zN )− (u, ek) = (u, ek)− (u, ek) = 0.

Consider a convex figure x whose surface area function µ(x) equals µ1. The existence of this
figure is guaranteed by the celebrated Alexandrov Theorem [10, p. 108].

Let (xm) be a sequence of polyhedra including x and converging to x in the Hausdorff
metric on [VN ]which is induced by the Chebyshev norm on C(SN−1). Then the measures
µ1m = µ(xm) converge weakly* to µ1 and µ1m À � nµ1. Indeed, given a convex figure z, we have

∫

SN−1

z dµ1m =

∫

SN−1

z dµ(xm) = nV (z, xm, . . . , xm) > nV (z, x, . . . , x) =

∫

SN−1

z dµ(x) =

∫

SN−1

z dµ1
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by the inclusion monotonicity of the mixed volume V (·, . . . , ·) in every argument.. By analogy,
there is a sequence (µ2m), converging weakly* to µ2 and such that µ2m À � nµ2. Putting

µ1m := µ1m + |v|ε−v/|v|; µ2m := µ2m + |u|ε−u/|u|,

we see that µ1m − µ2m converges weakly* to µ. The proof is complete. B

4. Labels and Decompositions

The Approximation Lemma allows us to reduce consideration to signed measures with
finite support. These measures decompose easily. We will exhibit a typical application.

4.1. A family (µ1, . . . , µn) of regular Borel measures on the sphere SN−1 is a labeling on
� N provided that (µ1(x), . . . , µn(x)) ∈ x for all x ∈ VN . The vector (µ1(x), . . . , µn(x)) is a label
of x.

4.2. Proposition. A family (µ1, . . . , µn) is a labeling on
� N if and only if

εx −
n∑

k=1

xkµk ∈ V
∗
N .

for all x ∈ SN−1.
C The Minkowski duality is an isomorphism of the relevant structures. Hence, the

definition of labeling can be rephrased as follows:

n∑

k=1

xkµk(x) 6 x(x) (x ∈ � n, x ∈ VN ). B

4.3. Using linear majorization for describing V ∗N , we can write down some criteria for
labeling in terms of decompositions. For simplicity, we will argue in the planar case.

Consider the conditions:

(++) ε(M1,M2)+ M1 µ
−
1 + M2 µ

−
2 À� 2

M1 µ
+
1 + M2 µ

+
2 ;

(+−) ε(M1,−M2)+ M1 µ
−
1 + M2 µ

+
2 À� 2

M1 µ
+
1 + M2 µ

−
2 ;

(−+) ε(−M1,M2)+ M1 µ
+
1 + M2 µ

−
2 À� 2

M1 µ
−
1 + M2 µ

+
2 ;

(−−) ε(−M1,−M2)+ M1 µ
+
1 + M2 µ

+
2 À� 2

M1 µ
−
1 + M2 µ

−
2 ;

with (M1,M2) ∈ S1 ∩
� 2
+. Clearly, the requirement of 4.1 amounts to the four conditions

simultaneously. By way of example, we will elaborate the relevant criterion only in the case
of (+−).

4.4. Proposition. For (+−) to hold it is necessary and sufficient that to all (M1,M2)
in S1 ∩

� 2
+ and all decompositions {(µ+1 )1, . . . , (µ+1 )m} of µ+1 and al decompositions

{(µ−2 )1, . . . , (µ−2 )m} of µ−2 there exist a decomposition {(µ−1 )1, . . . , (µ−1 )m} of µ−1 ,
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a decomposition {(µ+2 )1, . . . , (µ+2 )m} of µ+2 , and reals α1, . . . , αm that make compatible the

simultaneous inequalities:

α1 > 0; . . . ;αm > 0;α1 + . . .+ αm = 1;

M1 (x(µ−1 )k
− x(µ+

1 )k
+ αke1) =M2 (x(µ−2 )k

− x(µ+
2 )k

+ αke2) (k := 1, . . . ,m),

where xµ is the representing point of µ; i. e., µ(u) = (u, xµ) for all u ∈ � 2.

C ⇐=: Let (M1,M2) ∈ S1 ∩
� 2
+ and let {ν1, . . . , νm} be an arbitrary decomposition

of M1 µ+1 + M2 µ−2 . By the Riesz Decomposition Lemma there are a decomposition
{(µ+1 )1, . . . , (µ+1 )m} of µ+1 and a decomposition {(µ−2 )1, . . . , (µ−2 )m} of µ−2 such that M1
(µ+1 )k+ M2 (µ−2 )k = νk. Find some parameters satisfying the simultaneous inequalities and
put

µk :=M1 (µ
−
1 )k+ M2 (µ

+
2 )k + αkε(M1,−M2).

Clearly, µk > 0 and, moreover,

m∑

k=1

µk =M1 µ
−
1 + M2 µ

+
2 + ε(M1,−M2).

Furthermore,

xµk − xνk =M1 x(µ−1 )k
+ M2 x(µ+

2 )k
+ αk M1 e1 − αk M2 e2− M1 x(µ+

1 )k
− M2 x(µ−2 )k = 0,

and so µk − νk belongs to the polar of
� 2 in C(S1).

=⇒: Assume (+−) valid.

Given decompositions {(µ+1 )1, . . . , (µ+1 )m} and {(µ−2 )1, . . . , (µ−2 )m} there is a decom-
position {ν1, . . . , ν2m} of ε(M1,−M2)+ M1 µ

−
1 + M2 µ

+
2 such that

xνk = x(µ+
1 )k

; xνm+k
= x(µ−2 )k

(k := 1, . . . ,m).

We are left with appealing to the Riesz Decomposition Lemma and representing the
decomposition {ν1, . . . , ν2m} through the corresponding decompositions of ε(M1,−M2), M1 µ

−
1 ,

and M2 µ
+
2 . The proof is complete. B

4.5. If it is possible to chose decompositions in 3.4 independently of (M1,M2), then we
come to a sufficient condition for labeling. Let us illustrate this by exhibiting an example of
one of the simplest labelings.

We will seek a labeling of the form

µ1 := |µ+|εµ+/|µ+| − |µ−|εµ−/|µ−|;
µ2 := |ν+|εν+/|ν+| − |ν−|εν−/|ν−|,

with µ+, µ−, ν+, and ν− some points on the plane. The sufficient condition we have just
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suggested paraphrases as follows:

αk, βk, ak, bk, γk, ck > 0;

αk + ak = 1; βk + bk = 1; γk + ck = 1 (k := 1, . . . , 4);

µ+ = α1µ
− + γ1e1; β1ν

− + γ1e2 = 0;

ν+ = b1ν
− + c1e2; a1µ

− + c1e1 = 0;

µ− = α2µ
+ − γ2e1; β2ν

− + γ2e2 = 0;

ν+ = b2ν
− + c2e2; a2µ

+ − c2e1 = 0;

µ− = α3µ
+ − γ3e1; β3ν

+ − γ3e2 = 0;

ν− = b3ν
+ − c3e2; a3µ

+ − c3e1 = 0;

µ+ = α4µ− + γ4e1; β4ν
+ − γ4e2 = 0;

ν− = b4ν
+ − c4e2; a4µ

− + γ4e1 = 0.

The solution of the last system is given by the parameters:

αk = bk = 0; βk = ak = 1; γk = ck =
1

2
(k := 1, . . . , 4).

Moreover,

µ+ =
1

2
e1; ν+ =

1

2
e2; µ− = −1

2
e1; ν− = −1

2
e2.

Therefore, the simplest labeling of x is the point 1
2(x(e1)− x(−e1), x(e2)− x(−e2)). It is worth

emphasizing that the validation of the above conditions belongs to linear programming which
enables us to seek for arbitrary labelings by signed measures with finite support.

5. The Case of Joining Gauges

We now apply the above ideas to studying the classes of N -dimensional convex surfaces
which comprise upper semilattices in VN . To simplify notation we will discuss only balls,
denoting the set of balls in VN by V SN . It is convenient formally to add the apex to V SN . If
S ∈ VNS differs from the origin then we use the symbol ‖ · ‖S not only for the gauge of S but
also for the operator norm corresponding to S in the endomorphism space L (

� N ) of
� N . In

other words,
‖x‖S := inf{α > 0 | x/α ∈ S} (x ∈ � N );

‖A‖S := sup{‖Ax‖S | x ∈ S} (A ∈ L (
� N )).

Recall that
S◦ = {x ∈ � N | |(x, y)| 6 1 (y ∈ S)},

where (·, ·) is the standard inner product of
� N .

Observe that VNS is a lattice and simultaneously a cone. However, VNS is not closed
in VN . This circumstance notwithstanding, given a family (Sξ)ξ∈Ξ in VNS, sometimes we may
soundly speak of the upper hull π↑(Ξ), lower hull π↓(Ξ), and hull π(Ξ) of this family, implying
the least closed cones that lie in VNS, include Sξ for all ξ ∈ Ξ, and are closed under the join,
the meet, and both operations in the lattice of convex figures VN . An example is provided by
any instance of nondegenerate family. The latter is by definition any family of nonzero sets
(Sξ)ξ∈Ξ such that,

sup
ξ∈Ξ
‖A‖Sξ < +∞ (A ∈ L (

� N )).
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Indeed, put
A (Ξ) := {A ∈ L (

� N ) | ASξ ⊂ Sξ (ξ ∈ Ξ)},

and let M(Ξ) be the set of the symmetric elements of VN such that AS ⊂ S for all A ∈ A (Ξ).
Since (Sξ)ξ∈Ξ is nondegenerate, all members of M(Ξ) but the zero singleton are absorbing.
Moreover, M(Ξ) is clearly a closed sublattice of VN .

We will need the helpful property of a nondegenerate family: If y ∈ � N differs from the
zero of

� N then

Sy :=
∧

ξ∈Ξ

Sξ
Sξ(y)

is absorbing. Indeed, given z ∈ � N we infer that

sup
ξ∈Ξ

Sξ(y)S
◦
ξ (z) = sup

ξ∈Ξ
‖y‖S◦

ξ
‖z‖Sξ = sup

ξ∈Ξ
‖y ⊗ z‖Sξ < +∞,

where y⊗z : x 7→ (y, x)z for all x ∈ � N . Hence, the polar of Sy is compact, which implies that
Sy is absorbing. Without further specification, we will address only nondegenerate families of
balls in the sequel.

5.1. Theorem. A gauge S belongs to π↑(Ξ) if and only if

S
n∑

k=1

‖xk‖S◦
6
∨

ξ∈Ξ

Sξ
n∑

k=1

‖xk‖S◦
ξ

for any collection of the vectors x1, . . . , xp ∈
� N that are not all zero simultaneously.

C It is obvious that π↑(Ξ) is the closure of the upper semilattice of all H-convex functions
with H the conic hull of the family (Sξ)ξ∈Ξ. The polar of π↑(Ξ) may be approximated with
finitely supported signed measures by the Approximation Lemma. Using the Bipolar Theorem,
we see that S ∈ π↑(Ξ) if and only if

∑n
k=1 S(xk) > S(y) whenever y, x1, . . . , xn ∈

� N satisfy∑n
k=1 Sξ(xk) > Sξ(y) for all ξ ∈ Ξ. By duality, S ∈ π↑(Ξ) if and only if

∧

ξ∈Ξ

n∑

k=1

‖xk‖S◦
ξ
S◦ξ ⊂

n∑

k=1

‖xk‖S◦S◦.

Taking polars, we complete the proof of the theorem. B

5.2. Corollary. A nonzero gauge S belongs to π↑(Ξ) if and only if

(4.2.1) S =
∧

(x1,...,xn)

n∑

k=1

S(xk)
∨

ξ∈Ξ

Sξ
n∑

k=1

Sξ(xk)

,

where the intersection ranges over all nonzero tuples (x1, . . . , xn) ∈
� N .

C Clearly, (4.2.1) guarantees the inclusion of 4.1 and so S ∈ π↑(Ξ). The last containment
in turn implies the simple representation:

(4.2.2) S =
∧

x6=0

S(x)
∨

ξ∈Ξ

Sξ
Sξ(x)

.
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Indeed, denote by S̃ the right-hand side of (4.2.2). By 4.1, S 6 S̃. If z ∈ � n then

S̃(z) =

( ∧

x6=0

S(x)
∨

ξ∈Ξ

Sξ
Sξ(x)

)
(z) 6 S(z)

( ∨

ξ∈Ξ

Sξ
Sξ(z)

)
(z) = S(z)

∨

ξ∈Ξ

Sξ(z)

Sξ(z)
= S(z).

By the Minkowski duality S̃ 6 S. Denote by
≈
S the right-hand side of (4.2.1). Since S 6

≈
S 6

S̃ 6 S; therefore, S =
≈
S and we are done. B

5.3. From 4.2 it follows that if each closed subset of VnS is a cone provided that it contains
the convex hull and intersection of any pair of its elements as well as the dilation αx, with
α > 0, of its every member x.

5.4. The proof of Theorem 4.1 shows that a positively homogeneous continuous function f
on

� N is the support function of a member of π↑(Ξ) if and only if
∑n

k=1 f(xk) > f(y) provided
that

∑n
k=1 Sξ(xk) > Sξ(y) for all ξ ∈ Ξ. Observe that we may restrict the range of the index

to n = 1 only on condition that the balls Sξ are dilations of one another. Indeed, in this event
the polar π↑(Ξ) is the weakly* closed conic hull of two-points relations and so the functions
of the form x 7→ αSξ1(x) ∧ βSξ2(x) turn out sublinear for positive α and β.

6. The Case of Meeting Gauges

We now address some properties of gauges which are tied with intersection. This operation
involves some peculiarities since the intersection of balls differs in general from the pointwise
infimum of their support functions. However, the idea of decomposition applies partially to
this case.

6.1. Theorem. Let H be a cone in VNS and H = π↓(H). Assume given a nonzero vector

y in
� N such that

Sy :=
∨

S∈H;S 6={0}

S

S(y)

is absorbing. Take x1, . . . , xn in
� N . The inequality

n∑

k=1

S(xk) > S(y)

holds for every gauge S ∈ H if and only if there are vectors z1, . . . , zn in
� N such that∑n

k=1 zk = y and, moreover, S(xk) > S(zk) for all S ∈ H.

C ⇐=: Since S is a gauge, the support function of S is a sublinear functional and

n∑

k=1

S(xk) >
n∑

k=1

S(zk) > S

( n∑

k=1

zk

)
= S(y).

=⇒: For simplicity we restrict exposition to the case when Sy is absorbing for every nonzero
y ∈ � N . Put

K := sup
x∈S◦y

|x|.
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By hypotheses, K < +∞. We further put

U :=
{
(ν1, ν2) ∈ C ′(SN−1)× C ′(SN−1) | ν1 > 0, ν2 > 0;

‖ν1‖ ∨ ‖ν2‖ 6 K;

∫

SN−1

(l, ·)d(ν1 + ν2) = (l, y) (l ∈ � N )
}
;

Ũ := U +H∗ ×H∗;

µ1 := |x1|εx1/|x1|; µ2 :=
n∑

k=2

|xk|εxk/|xk|.

As usual, we agree that the symbol |0|ε0/|0|0 stands for the zero vector.

Assume that the pair (µ1, µ2) does not belong to Ũ . Since U is a weakly* compact convex
set; therefore, Ũ is weakly* closed and convex. By the Separation Theorem there are nonzero
functions S ′1 and S′2 in H such that

(5.1.1) µ1(S
′
1) + µ2(S

′
2) < ν1(S

′
1) + ν2(S

′
2)

for all (ν1, ν2) ∈ U . Put

S1 :=
S′1

S′1 ∧ S′2(y)
; S2 :=

S′2
S′1 ∧ S′2(y)

.

Note that S1, S2 ∈ H. Consequently, the meet S1 ∧ S2 belongs to H. Moreover,

‖y‖S◦1∨S◦2 = (S◦1 ∨ S◦2)◦(y) = S1 ∧ S2(y) =
S′1 ∧ S′2

S′1 ∧ S′2(y)
(y) = 1.

Since S1 ∧ S2 ⊃ Sy; therefore, S◦1 ∨ S◦2 ⊂ S◦y . In particular,

(5.1.2) sup
x∈S◦1∨S

◦
2

|x| 6 K

Let V be a face of S◦1 ∨ S◦2 that contains y; i. e., the intersection of S◦1 ∨ S◦2 with some
supporting hyperplane to S◦1 ∨ S◦2 at y. Denote by ext(V ) the set of extreme points of V . By
the Choquet Theorem there is a probability measure ν with support ext(V ) and barycenter y.
Put V1 := ext(V ) ∩ S◦1 and V2 := ext(V ) \ V1. The set V2 lies in S◦2 . Let ν1 := ν|V1 and
ν2 := ν|V2 . Then ν = ν1 + ν2.

We will treat a continuous function f on SN−1 as the restriction to SN−1 of the unique
positively homogeneous namesake function on

� N and put

ν1 : f 7→
∫

V1

fdν1;

ν2 : f 7→
∫

V2

fdν2 (f ∈ C(SN−1));

ν := ν1 + ν2.

Using (5.1.2) and the estimate ν1( � ) 6 ν( � ) = 1, with � the identically one function; we see
that

‖ν1‖ = ν1( � ) =
∫

V1

| · |dν1 6 sup
x∈S◦1∨S

◦
2

|x| < K.
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By analogy ‖ν2‖ 6 K. Moreover,

ν(l) =

∫

V1

(l, ·)dν1 +
∫

V2

(l, ·)dν2 =
∫

ext(V )

(l, ·)dν = (l, y)

for all l ∈ R
N . Hence, (ν1, ν2) belongs to U and

ν1(S1) + ν2(S2) =

∫

V1

S1dν1 +

∫

V2

S2dν2

=

∫

V1

‖ · ‖S◦1dν1 +
∫

V2

‖ · ‖S◦2dν2 = ν(1) = 1 = S1 ∧ S2(y).

By (5.1.1)
p∑

k=1

S1 ∧ S2(xk) 6 µ1(S1) + µ2(S2) < ν1(S1) + ν2(S2)

= S1 ∧ S2(y) 6
p∑

k=1

S1 ∧ S2(xk).

We arrive at a contradiction, which means that (µ1, µ2) lies in Ũ ; i. e. there are measures ν1,
ν2 such that µ1 − ν1 ∈ H∗, µ2 − ν2 ∈ H∗, and (ν1, ν2) ∈ U . Consider the representing points

u1 : z 7→ ν1(z); u2 : z 7→ ν2(z) (z ∈ � N ).

Then u1 + u2 = y, and for S ∈ H we have

µ1(S) > ν1(S) > S(u1); µ2(S) > ν2(S) > S(u2).

Proceed by induction and apply the above process to the measure µ2 and the nonzero point u2
(it is exactly the place where we invoke the simplification of the beginning of the proof). We
thus come to what was desired. In case u2 = 0, the sought decomposition may be composed
of the copies of the zero vectors. The proof is complete. B

By way of illustration of Theorem 5.1 we will provide a description for π(Ξ).

6.2. Theorem. Let H be a cone in VN and H = π↓(H). Assume that

Sy :=
∧

S∈H;S 6={0}

S

S(y)

is absorbing for every nonzero y ∈ � N . Then π↑(H) is closed with respect to ∧. Moreover,

and a nonzero S in VN belongs to π↑(H) if and only if

(5.2.1) S =
∧

x6=0

S(x)
∨

S0∈H

S0
S0(x)

C We have already demonstrated that each S ∈ π↑(H) may be written as in (5.2.1)
(cp. (4.2.2)). Assume in turn that S has the shape (5.2.1). By Theorem 4.1 we have to
validate the implication

n∑

k=1

S0(xk) > S0(y) for all S0 ∈ H =⇒
n∑

k=1

S(xk) > S(y).
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Since H = π↑(H), by Theorem 4.1 there are vectors z1, . . . , zn such that

n∑

k=1

zk = y;

S0(xk) > S0(zk) (S0 ∈ H)

Since S is represented as (5.2.1), S(xk) > S(zk). Hence,

n∑

k=1

S(xk) >
n∑

k=1

S(zk) > S

( n∑

k=1

zk

)
= S(y).

Thus, S ∈π↑ (H).
We are left with checking that π↑(H) is closed under ∧. By above, S ∈ π↑(H) if and only

if S(x) > S(y) for all x, y ∈ � N satisfying S0(x) > S0(y) for all S0 ∈ H.
So, take S1, S2 ∈ π↑(H) and assume that S0(x) > S0(y) for all S0 ∈ H.
We are to compute S1 ∧ S2(x). Arguing as in Theorem 5.1 and replacing the reference

to the Choquet Theorem to the Carathéodory Theorem, find vectors x1, . . . , xn such that∑n
k=1 xk = x and

S1 ∧ S2(x) =
t∑

k=1

S1(xk) +
n∑

k=t+1

S2(xk).

If S0 ∈ H then
n∑

k=1

S0(xk) > S0

( p∑

k=1

xk

)
= S0(x) > S0(y).

Hence, by Theorem 5.1 there are vectors z1, . . . , zn ∈
� N such that

∑n
k=1 zk = y and S0(xk) >

S0(zk) for all S0 ∈ H and k := 1, . . . , n. Thus, S1(xk) > S1(zk) and S2(xk) > S2(zk).
Consequently,

S1 ∧ S2(x) =
t∑

k=1

S1(xk) +

n∑

k=t+1

S2(xk) >

t∑

k=1

S1(zk) +

n∑

k=t+1

S2(zk)

>

n∑

k=1

S1 ∧ S2(zk) > S1 ∧ S2
( n∑

k=1

zk

)
= S1 ∧ S2(y).

Therefore, S1 ∧ S2 belongs to π↑(H), which completes the proof. B

6.3. Corollary. Let (Sξ)ξ∈Ξ be a nondegenerate family of balls. Then

π(Ξ) = π↑(π↓(Ξ)).

In this event a nonzero gauge S belongs to π(Ξ) if and only if

S =
∧

x6=0

S(x)
∨

S0∈π↓(Ξ)

S0
S0(x)

.

C Obviously, π↑(π↓(Ξ)) lies in π(Ξ). Note now that

Sy :=
∧

S0∈π↓(Ξ);S0 6={0}

S0
S0(y)

⊃
∧

S0∈M(Ξ);S0 6={0}

S0
S0(y)
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The family M(Ξ) is nondegenerate since so is (Sξ)ξ∈Ξ. Hence, Sy is absorbing. By Theorem
5.2 π↑(π↓(Ξ)) is closed under ∧, thus serving as a superset of π(Ξ). B

6.4. In study of the properties of gauges with are related to intersection, we have actually
used the accompanying representation

(5.4.1)

∫

SN−1

S1 ∧ S2dµ = inf
µ1+µ2 À

� N
µ

( ∫

SN−1

S1dµ1 +

∫

SN−1

S2dµ2

)
,

which generalizes the standard formula for the infimal convolution ¤, a routine operation of
convex analysis:

S1 ∧ S2 = S1¤S2.

It is an easy matter to see the lattice-theoretic provenance of (5.4.1). Some slightly annoying
subtlety of the general case which was obviated by finite dimensionality is connected with the
fact the infimum of abstract convex elements in the lattice of these elements is just a partial
superlinear operator.
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