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A PRIORI ESTIMATE RESULT FOR AN INVERSE PROBLEM
OF TRANSPORT THEORY

S. Lahrech

We establish a priori estimate result for an inverse problem of transport theory. We refer to [1], where
some existence and uniqueness result are proved.

1. Description of the problem

Consider the following problem :

((;—:: + (v, Va)u + X(z, v, t)u(z, v, t) = /J(ac, vt v)u(x, v t)dv + Fx,v,t), (1)
1%

(x,v,t) € D =GxV x(0,T), where u(x, v,t) characterize the distribution density of particles
in the phase space G x V at the moment ¢ €]0,T[. The absorption coefficient ¥(x,v,t),
the dissipation indicator J(z,v’,t,v) and the interior source function F(z,v,t) represent the
environment where this process moves in. Assume that G is a stricly convex, bounded domain
in R™ and assume also that the boundary 0G of G is of class C'. Put

V={veR":0<v <|v|<n},

where wvg,v; are two positive reals such that vy < wv1. Let Q@ = G x V, F(z,v,t) =
f(z,v)g(z,v,t)+h(x,v,t). According to [1], if we give all the characteristic of the environment
>, J, F as well as the out going flow, i.e.

u(z,v,t) = p(x,v,t), (x,v,t) e Ty =Ty x[0,T], (2)

where

YTy ={(z,v) €90G xV: (v,n;) > 0},

and n, is the exterior normal to the boundary 0G of domain G at the point x; moreover, if
the initial state

u(@,0,0) = p(,v), (2,0) €CTxV 3)

and the final state o
u(z,v,T) =0, (z,v) € GxV (4)
of process are given, then 3!(u, f) € C} (0.9) (D) x C(f2) such that (1)—(4) hold. In other words,

there exists a control f € C(€2) such that every initial state p(z,v) is controllable to the
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equilibrium state 0 along a trajectory of the system (1)-(2) on [0,7]. We first recall some
basic functional spaces which will be used later in order to study the continuous dependence
of the solution of the problem (1)—(4). So we use the following notations:

€l o) (D) = {u ce@): MeeD), @.Vaue c@)}

under the norm

ou
lulley o @ = lulle) + I 55 llem) + (W, Va)ullep

t,(v V)

Cl(D)={hec(D): 5 ec(D)}
under the norm
Mles 3y = ke + 1o ooy
Clooy (@) = {p €CQ): (v,V)p € CD)}
under the norm
||80Hc1 N© = llelle@) + 10, VIelewm:

O

Ci(T)={necCly): pn

ec(ry)}

under the norm

Ou
lellerryy = lullear,y + 11 a”c(m)-

Let
a(z,v) =max {t € [0,T]: z+vt € dG}, (z,v)€GxV.
Put
d= sup afz,v)
(z,0)EGXV

and assume that d < T'. Then, according to [1], a € C(lv v) () and (v, V)a = —

2. Continuous Dependence

We need first a very useful theorem:

Theorem 1. Let X be a Banach space, Y be a normed space. Let also A : X — X and B :
Y — X be two linear continuous operators. Assume that ||A|| < ¢ < 1. Then

(Vy e YV)(3'z € X) x = Az + By and |[|z|| < —HBHHyH
The problem is, then, that of controling the system (1)—(4), where
JeC/(DxV), peC(Ty), ¢ €Cl,v) (@), TeC/(D), heci(D), geci(D),

0 < go < g(z,0,0) (¥(z,v) € Q).

We now prove that there exists a unique solution which depends continuously on the form of
the right-hand side of the problem (1)-(3):
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Theorem 2. There is a > 0 such that if d < a and if the conditions
90(1'7’0) :M(:L'avao)a (IL‘,U) € T+)
o
E(m,v,T) = h(z,v,T), (z,v)€ Ty,

S 00,0) + (0,9 + S0, 0)p0) — [ I, 0,00 0N’ = i, v,0) =0,

v
(x,v) e Ty, plx,v,T)=0, (x,v)e Ty

holds, then there exists a unique solution (u, f) € C} (0.9) (D) x C(Q) of the problem (1)—(4).
Moreover, f/Y4 =0 and

16 Dl e < e (Il + Ieller, @ + Iblleym))

where ¢ > 0.

A Put V ={(u, f) € C}(D) x C(Q) : u(z,v,T)=0, (z,v) € GxV, f/T4 =0}

Note that V' is a Banach space under the norm [|(u, f)[v = [lullcy ) + | fll¢m)- According
to [1], the problem (1)—(4) is equivalent to fixed point problem A(u, f) = (u, f), where A is

an operator from V' into V' defined by A(u, f) = (Ai(u, f), Aa(u, f)), and where A; et Az are
defined as follows:

p(x+av,v,t+a) = [(Pu+t fg+h)(z+v(a—7),0,t+a—T7)dr,
0
ift+a<T,
[Ax(u, )z, 0,t) = o
- [ (Pu+ fg+h)(z+v(la—71),vt+a—T)dr,
a+t—=T
ift+a=>T;

(z,v) = #[—/f($+(OC—T)’U,’U)%(ZL‘—F(CK—T)U,U,Oé—T)dT
0

_/W(awr(a—T)v,v,a—T)dT+9(x7”)]’
0

where

Olay0) = (0, V)+ G (a-+v,0,0) ~ i, ,0) +E(,0,0) (. 0)— [ a,!,0,0)p (. )0
%4

(Pu)(z,v,t) = =3(z, v, t)u(z,v,t) + / J(z, v t,v)u(z, v, t)dv'.
%4

By [1], there is @ > 0 such that if d < a, then A? is a contracting operator on V. So
3(u, f) € V such that A%(u, f) = (u, f) and thus, A(u, f) = (u, f).
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We now show that (u, f) depends continuously of u, ¢ and h. For this, consider

_ — ou
~{irmo cd® xaiwn o @: U -nenn)

z,v,0) + (v, V) + 3(z,v,0)p(z,v)

ou
w(z,v,0) = p(z,v), p(z,0,T) =0, ot (

- / J(z,v',0,v)p(z,v")dv" — h(z,v,0) =0, (V(z,v) e T+)}

1%

under the norm
Iy sy = lallepey + ey ) + Iler, @

Let us remark that A(u,f) can be written as A(u,f) = o(u,f) + B(h,u, ), where
(h,p,0) € Y, (u, f) € V and p, ( are such that

Q(“?f) = <91<u7f>792(u7 f))?

B(h, p, 0) = (Br(h, i, p), Ba(h, 11, ),
with 01, 02, (1, (2 are defined by:

fPu—l—fg Nz +v(a—7),0,t+a—T1)dT, ift+a<T,
[Ql(uuf)](x7vvt): 0 a
- f (Pu—l-fg)(l'—F’U(Oé—T),’U,t—i-Oé—T)dT, ’ift—i—()é}T,
a+t=T
i 9
[o2(u, f)](z,v) = —m /f(aH— (a—r)v,v)a—i(:c—i-(a—r)v,v,a—r)dT

0

T op
+/6atu(x+( v, v, — 7)dT | |
0

wlx+av,v,t+a)— [hz+v(a—71),v,t+a—71)dr, ift+a<T,
[/Bl(hmuv Q)](ZL‘,’U,t) = a 0
— [ hz+ovla—71),v,t+a—T1)dr, ift+a>T,
a+t=T
1 I oh
[52(}1‘7”7 Q)](‘Tav) - _m ot (x+( T)U,U,Ck-T)dT—e(x,'l))

0

We remark clearly that o(u, f) € V and B(h, u, ) € V. Note that ¢ is a linear bounded
operator from V into V and f is a linear bounded operator from Y into V. On the other
hand, reasoning as in [1], we may conclude that if d < a, then

el <1
and consequently,

W(ug, fo) € V : (uo, fo) = 0°(uo, fo) + (08 + B)(h, i, )



A priori estimate result for an inverse problem of transport theory 1-57

d
an 1
o, o)l < gy lB + 81 [z + 2l o @y + elleyzy] -

Since the solution (u, f) of the problem (1)-(4) satisfies the condition
(u, f) = &*(u, f) + (08 + B)(h, u, ) and (u, f) €V,

then (u, f) = (uo, fo). This completes the proof. >
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