УДК 517.98

NON-UNIQUENESS OF CERTAIN HAHN-BANACH EXTENSIONS

E. Beckenstein and L. Narici

Dedicated to the memory of Professor Yuri A. Abramovich

Let f be a continuous linear functional defined on a subspace M of a normed space X. If X is real or complex, there are results that characterize uniqueness of continuous extensions F of f to X for every subspace M and those that apply just to M. If X is defined over a non-Archimedean valued field K and the norm also satisfies the strong triangle inequality, the Hahn-Banach theorem holds for all subspaces M of X if and only if K is spherically complete and it is well-known that Hahn-Banach extensions are never unique in this context. We give a different proof of non-uniqueness here that is interesting for its own sake and may point a direction in which further investigation would be fruitful.

1. Introduction

Suppose that K denotes a non-Archimedean, nontrivially valued field, i. e., a field with an absolute value $|\cdot|$ that satisfies the *strong triangle inequality:* for all $a,b\in K$, $|a+b|\leqslant \max(|a|,|b|)$. Let X be a normed space over K in which the norm also satisfies the strong triangle inequality and X' denotes its continuous dual. We refer to X as a non-Archimedean normed space. For a subspace M of X, $M^{\perp} = \{f \in X' : f(x) = 0, x \in M\}$, the orthogonal of M; the orthogonal of $M \subset X'$ is given by $M^{\perp} = \{x \in X : f(x) = 0, f \in M\}$.

DEFINITION 1. If each nested sequence $B_1 \supset B_2 \supset \cdots \supset B_n \supset \cdots$ of balls in K has nonempty intersection, K is called *spherically complete*.

Note the absence of any requirement that the diameters shrink to 0 in this stronger version of completeness. If f is a continuous linear functional defined on M, an extension of f to $F \in X'$ of the same norm is called a Hahn-Banach extension. In the context of non-Archimedean normed spaces the Hahn-Banach theorem can fail — there exist spaces X and continuous linear functionals defined on a subspace M of X that have no Hahn-Banach extension. If K is spherically complete, however, then any continuous linear functional f defined on any subspace M of X has a Hahn-Banach extension (see [4; p. 78] or [5; p. 102]).

When are Hahn–Banach extensions unique? There are two principal, classical results, one (the Taylor-Foguel theorem) for any subspace M of X and another (Phelps's theorem) that deals with one subspace at a time:

Theorem 1 (Taylor–Foguel). If E is a normed space over \mathbb{R} or \mathbb{C} then the following conditions are equivalent:

(a) For any subspace M of E and any $f \in M'$, f has a unique Hahn-Banach extension;

^{© 2004} Beckenstein E. and Narici L.

(b) E' is strictly convex (equivalently «strictly normed») in the sense that for any two unit vectors f and g and any $t \in (0,1)$, ||tf + (1-t)g|| < 1.

Theorem 2 (Phelps). If M is a subspace of the normed space E over \mathbb{R} or \mathbb{C} then the following conditions are equivalent:

- (a) For any $f \in M'$, f has a unique Hahn-Banach extension;
- (b) M^{\perp} has a unique best approximation in E' in the sense that given any $f \in E'$ there exists a unique $m \in M^{\perp}$ such that $||f m|| = \inf\{||f g|| : g \in M^{\perp}\} = d(f, M^{\perp})$.

What can be said about uniqueness in the non-Archimedean case. After proving a certain lemma ([5; Lemma 4.4, p. 100] van Rooij observes (p. 103) that Hahn-Banach extensions are unique if and only if the subspace M is dense in X or f=0. We prove the non-uniqueness by different means in the next section.

2. Unique Hahn-Banach Extensions

We obtain a version (Th. 5) of Phelps's theorem concerning uniqueness of Hahn–Banach extensions on a subspace M of X and uniqueness of best approximations from M^{\perp} . We then show that the conditions for uniqueness are never satisfied in non-Archimedean spaces.

A subspace M of X is proximinal if for all $x \in X$ there exists a «best approximation» $m \in M$ to x, i. e., $m \in M$ with ||x - m|| = d(x, M). We denote the set of all best approximations of x from M by

$$P_M(x) = \{ m \in M : ||x - m|| = d(x, M) \}.$$

If $P_M(x)$ is a singleton for every $x \in X$ then M is called *Chebychev*. It is easy to verify that $P_M(x)$ is closed.

As in the real or complex case, for spherically compete K, conventional orthogonal facts are valid as well as orthogonals are proximinal.

Theorem 3. Let K be spherically complete and let $\sigma(X', X)$ denotes the weak-* topology on X'. Then

- (a) [3; p. 211] For $M \subset X'$, $M^{\perp \perp} = \operatorname{cl}_{\sigma(X',X)} M$. Thus, if M is $\sigma(X',X)$ -closed, $M = M^{\perp \perp}$.
- (b) [3; p. 215] For $M \subset X$, (X/M)' is algebraically isomorphic to M^{\perp} and M' is algebraically isomorphic to X'/M^{\perp} .

Theorem 4. Let K be spherically complete, M be a subspace of X and $f \in X'$. If F is any extension of $f|_M$ of the same norm, then F-f is a best approximation to f from M^{\perp} and $d(f, M^{\perp}) = ||f|_M||$, i. e., M^{\perp} is proximal.

 \triangleleft Let $f \in X'$. Then for every $m' \in M^{\perp}$,

$$||f|_{M}|| = \sup \left\{ |f(x)| : x \in U \cap M \right\} = \sup \left\{ |f(x) - m'(x)| : x \in U \cap M \right\}$$

$$\leq \sup \left\{ |f(x) - m'(x)| : x \in U \right\} = ||f - m'||.$$

Since $m' \in M^{\perp}$ is arbitrary, it follows that $||f|_M|| \leq d(f, M^{\perp})$. To obtain the reverse inequality, consider an extension $F \in X'$ of $f|_M$ with $||F|| = ||f|_M||$. Since $f - F \in M^{\perp}$,

$$||f|_M|| = ||F|| = ||f - (f - F)|| \ge d(f, M^{\perp}).$$

In other words, f - F is a best approximation to f from M^{\perp} and $||f|_{M}|| = d(f, M^{\perp})$. \triangleright Using a technique of Herrero's [1], we now obtain a version of Phelps's theorem that a subspace M of X has unique Hahn–Banach extensions if and only if M^{\perp} is Chebysev.

Theorem 5. For $M \subset X$ over a spherically complete field K, the following assertions are equivalent:

- (a) each $f \in M'$ has a unique Hahn-Banach extension;
- (b) M^{\perp} is Chebychev.
- \triangleleft (a) \Longrightarrow (b): Let $f \in X'$. By Theorem 4, M^{\perp} is proximinal, so it only remains to prove uniqueness of best approximations. If $g, h \in P_{M^{\perp}}(f)$, then f g and f h are extensions of $f|_{M}$; since $g, h \in P_{M^{\perp}}(f)$,

$$||f - g|| = ||f - h|| = d(f, M^{\perp}).$$

Since extensions of $f|_M$ of the same norm are unique, f-g=f-h which implies g=h.

(b) \Longrightarrow (a): Suppose $f \in M'$ has extensions $g, h \in X'$ of the same norm as f. Then h is an extension of $g|_M$ to h of the same norm. Therefore, by Theorem 4, g-h is a best approximation to g from M^{\perp} . Since ||h|| = ||g|| = ||f|| and

$$||g|| = ||g - 0|| = ||h|| = ||g - (g - h)|| = d(g, M^{\perp})$$

it follows that $0 \in P_M(g)$ as well. By the uniqueness of best approximation, g - h = 0. \triangleright Since a weak-* closed subspace M of X' is the orthogonal of M^{\perp} , it follows that:

Corollary 1. A weak-* closed subspace M of X' is Chebychev if and only if each bounded linear map $f: M^{\perp} \to K$ has a unique extension $F \in X'$ of the same norm.

The following result establishes that non-Archimedean spaces are never Chebychev.

Theorem 6 (cf. [2]). Suppose $M \subset X$ is a closed subspace and $x \notin M$. If $m \in P_M(x)$ and $m' \in M$ is such that $\|m' - m\| < \|x - m\|$, then $m' \in P_M(x)$.

 \triangleleft Since $x \notin M$ and $m' \in M$, it follows that ||x - m'|| > 0. By the strong triangle inequality, ||x - m'|| = ||x - m||. \triangleright

It follows from Corolary 1 and Theorem 6 that Hahn-Banach extensions are never unique.

References

- 1. Herrero P. El teorema de Hahn-Banach: historia, versiones analíticas, geometría y aplicaciones. La propiedad de extensión, Universidad de Murcia.—Spain: Murcia, 2003.
- 2. Monna A. F. Remarks on some problems in linear topological spaces over fields with non-Archimedean valuation // Indag. Math.—1968.—V. 30.—P. 484-496.
- 3. Narici L., Beckenstein E. Topological vector spaces.—New York: Dekker, 1985.
- 4. Narici L., Beckenstein E. and Bachman G. Functional analysis and valuation theory.—New York: Dekker, 1971.
- 5. van Rooij A. Non-Archimedean functional analysis.—New York: Dekker, 1978.

Received by the editors March 24, 2004.

Prof. Edward Beckenstein Mathematics Department St. John's University Staten Island, NY 10301, USA E-mail: beckense@stjohns.edu

PROF. LAWRENCE NARICI Mathematics Department St. John's University Jamaica, NY 11439, USA E-mail: nariciL@stjohns.edu