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ON CDy(K)-SPACES

V. G. Troitsky

Dedicated to the memory
of Yuri Abramovich

We present an elementary proof of the (known) fact that a C'Do(K)-space is a Banach lattice and is
lattice isometrically isomorphic to a particular C(K) for some compact space K.

CDy(K)-spaces were introduced by Yu. A. Abramovich and A. W. Wickstead in [2, 4]
and further investigated in [1, 3, 5]. It is known [1, 4] that a C Dy (K )-space is a Banach lattice
and a unital AM-space. In [5] it was shown that CDg(K) is lattice isometrically isomorphic
to C’(K x {0, 1}) with K x {0,1} equipped with a compact Hausdorff topology. In this note
we present elementary proofs of these facts.

Throughout these notes, K stands for a compact Hausdorff topological space without
isolated points. For z € K, let A, be a base of open neighborhoods of = in K. As usually,
for a real-valued function f on K and xg € K we write mlggg f(x) =rif for every e > 0 there

exists V' € N, such that |f(z) — r| < e for all z € V' \ {z}. Note that this notation is not
vacuous for every g € K because K has no isolated points.

We denote by C(K) the Banach lattice of all continuous functions on K, equipped with
sup-norm and point-wise ordering. Denote by ¢o(K) the set of all real-valued functions f on
K such that the set {|f| > ¢} = {z € K: ‘f(:v)‘ > ¢} is finite for every e > 0. Clearly,
¢o(K) is a vector subspace of o (K), the space of all bounded functions on K equipped with
sup-norm.

Lemma 1. f € ¢o(K) iff lim f(z) =0 for every zg € K.
T—TQ
< Suppose that f € ¢o(K). Fix ¢ > 0. The set {|f| > ¢} is finite; since K is Hausdorff

there exists V' € Ny, such that V doesn’t contain any points of this set with the possible
exception of zg itself. Thus, | f(z)| < e for all z € V'\ {xo}. Therefore, lim f(z) = 0.
T—IQ

Suppose now that lim f(z) = 0 for every zo € K and assume that the set {|f| > ¢} is
T—TQ

infinite for some ¢ > 0. Since K is compact, this set must have an accumulation point zq,
which contradicts lim f(z)=0. >
T—T0

Lemma 2. ¢y(K) is a closed subspace of £ (K).

< Suppose that a sequence of functions (f,,) in ¢g(K) converges in sup-norm to f € £oo(K).
Fix e > 0, then || f, — f| < &/2 for some n. It follows that {|f| > e} C {|fn| > 5}, hence is
finite. >

It follows that ¢o(K) equipped with the sup-norm is a Banach space. Define the space
CDy(K) as follows: f € CDo(K) if f = g + h for some g € C(K) and h € ¢o(K). Equipped
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with the sup-norm, C'Dy(K) is a normed space, a subspace of £, (K). We also equip CDy(K)
with the pointwise order. We will see that C'Dg(K) is a Banach lattice, and, moreover, an
AM-space.

Lemma 3. If f € CDy(K), namely, f = g+ h for some g € C(K) and h € ¢y(K), then
g(zg) = Ilgélg f(z) for all zy € K.

< By Lemma 1, lim f(z) = lim g(z) + lim h(z) = g(z¢) for every 2o € K. >
T—T0 T—T0 T—T0

It follows that every f in CDy(K) has a unique decomposition into a continuous and a
discrete part. Indeed, suppose that f = g+ h = ¢’ + h' where g,¢' € C(K) and h,h' € ¢o(K),
then for every zyp € K Lemma 3 implies g(z¢) = lim f(z) = ¢'(z¢). Hence, g = ¢’ and,

T—TQ

therefore, h = h'. In the rest of the paper, for f € CDy(K) we will write f,. for the continuous
component of f and f; for the discrete component. The uniqueness of the decomposition
also implies that (f + ¢)c = fe + 9 and (f + g)a = fa + ga for f,g € CDy(K) because
fHrg="fet fi+ge+ga= (fe+gc) + (fa+ ga), and fc+ g € C(K) while fy+ ga € co(K).

Proposition 1. If IILIEO f(z) exists for every zy € K then f € CDy(K). In this case

fela) = Jim f(x).
< For every g € K, put g(zg) = lim f(z), and let h = f —g. Then lim h(z) = 0 for
T—To T—T0

every zg € K, so that h € ¢o(K) by Lemma 1. It remains to show that g € C(K). Fix zg € K
and € > 0, there exists V € N, such that |f(z) — g(z)| < € for all z € V' \ {zo}. It follows
that for every y € V we have

l9(y) = g(w0)| = |lim f(z) = g(z0)| <e. ©

Combining Lemma 3 and Proposition 1 we get the following result.
Corollary 1. f € CDy(K) if and only if lim f(x) exists for every zy € K.
T—TQ

Lemma 4. For every f € CDy(K) we have || f|| < IfIl < |Ifell + || fall-

< The first inequality follows from Proposition 1 while the second inequality is just the
triangle inequality. >

Corollary 2. CDy(K) is a Banach space.

< Suppose that a sequence (f,) is Cauchy in CDy(K). It follows from Lemma 4 that
the sequence of the continuous parts (f,). is Cauchy, and, therefore, the sequence of discrete
parts (f)q is Cauchy. Since C(K) and ¢o(K) are complete, (f,). converges to some g € C(K)
and (fpn)q converges to some h € c¢o(K). Hence (fy) converges to g + h, which belongs to
CD(](K) >

Next, we show that for this topology C'Dy(K) is order isometric to C(K x {0, 1}), if the
topology on K x {0,1} is defined as follows. We put discrete topology on K x {1}, that is,
we put Nz 1) = {(z,1)} for each z € K. Then all the points of K x {1} are isolated points of
K x {0,1}. For a point (7,0) in K x {0} we take the basic open neighborhoods to be of the
form V = (V x {0,1}) \ {(z,1)}, where V € A,. One can easily verify that these sets indeed
form a base of a Hausdorff topology. From now on we consider K x {0, 1} equipped with this
topology.

One can easily see that K x {0} is a closed subspace of K x {0,1}, and the map z + (z,0)
is a homeomorphism between K and K x {0}. Further we will often identify K x {0} and K.

Lemma 5. K x {0,1} is compact.
< Consider an open cover of K x {0,1}. By replacing each set in the cover by a union of
basic open neighborhoods of all the points in the set, we can assume that the cover is formed
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by basic open neighborhoods. Hence, the cover is of the form

(e}, U

where 2, € K and V,, € N, for some ., € K. Tt is easy to see that {V, },cr is an open cover

of K, so that there is a finite sub-cover Vi,...,V,. But then V; U--- UV, only misses finitely
many points of K x {0,1}, so that if we add the corresponding open sets from the original
cover then we obtain a finite cover of the entire K x {0,1}. >

Theorem 1. CDy(K) is lattice isometrically isomorphic to C(K x {0, 1}) In particular,
CDy(K) is an AM-space.

< Define T: CDy(K) = C(K x {0,1}) via (T'f)(z,7) = fe(z) + rfa(z). In other words,
Tf agrees with f on K x {1} and with f. on K x {0}. It follows immediately that 7" is an
isometry. It is obvious that T'f > 0 implies f > 0. On the other hand, if f > 0 then f. > 0
by Proposition 1.

Observe that T'f is indeed a continuous function. Clearly, T'f is continuous on K x {1}, as
the later set consists of isolated points. Finally, it is left to show that lim (Tf)(z,7r) =

(z,r)— (20,0
(T f)(x0,0) for every zo € K. Observe that (z,r) — (z¢,0) in K x {0, 1} implies that z — =z
in K, so that f.(z) = fc(zo) and fg(z) — 0 by Lemma 1. It follows that (Tf)(z,r) =
felz) +rfa(@) = fe(zo) = (T'f)(20,0).

Show that T is onto. Let F' € C(K x {0,1}). For every z € K define f(z) = F(z,1). Fix
zo € K and e > 0, there exists V' € Ny, such that ‘F(m,r) - F(:vo,O)‘ < e forall (z,r) €V,
In particular, for every z € V' \ {z¢} we have ‘f(x) — F(xo, 0)‘ = ‘F(m, 1) — F(mg,())‘ <€, 80
that xll)rgof(x) = F(x0,0). It follows from Lemma 1, that f € CDy(K) and f.(z) = F(z,0)

forall z € K, so that F =Tf. >

References

1. Alpay S., Ercan Z. CDo(K,E) and CD.(K, E)-spaces as Banach lattices // Positivity.—2000.—
V. 4(3).—P. 213-225.—(Positivity and its applications (Ankara, 1998)).

2. Abramovich Y. A., Wickstead A. W. Regular operators from and into a small Riesz space // Indag.
Math. N.S.—1991.—V. 2(3).—P. 257-274.

3. Abramovich Y. A.;, Wickstead A. W. The regularity of order bounded operators into C(K). II // Quart.
J. Math. Oxford Ser. 2.—1993.—V. 44 (175).—P. 257-270.

4. Abramovich Y. A., Wickstead A. W. Remarkable classes of unital AM-spaces // J. Math. Anal. Appl.—
1993.—V. 180 (2).—P. 398-411.

5. Ercan Z. A concrete descreption of C Do (K )-spaces as C(X)-spaces and its applications // Proc. Amer.
Math. Soc.—2004.—V. 132—P. 1761-1763.

Received by the editors 6 January 2004.

TROITSKY VLADIMIR GEORGIEVICH, Ph.D.

Department of Mathematical and Statistical Sciences,
University of Alberta, Edmonton, AB, T6G 2G1. Canada.
E-mail:vtroitsky@math.ualberta.ca



