УДК 517.98

ON THE WEAK CONVERGENCE OF OPERATORS ITERATIONS IN VON NEUMANN ALGEBRAS

A. A. Katz

Equivalent conditions are obtained for the weak convergence of iterations of the positive contractions in the pre-conjugate spaces of von Neumann algebras.

1. Introduction

This paper is devoted to ergodic type properties of the weak convergence of operators iterations in von Neumann algebras.

The first results in the field of non-commutative ergodic theory were obtained by Sinai and Anshelevich [18] and Lance [14]. Developments of the subject are reflected in the monographs of Jajte [9] and Krengel [13] (see also [4]–[7], [10], [11], [16]).

We will use facts and the terminology from the general theory of von Neumann algebras ([1], [2], [15], [17], [19]).

Let M be a von Neumann algebra, acting on a separable Hilbert space H, M_* is a preconjugate space of M, which always exists according to the Sakai theorem [17].

Recall some standard terminology ([4], [5], [6], [10], [11], [13]).

DEFINITION 1. A linear mapping T from M_* in itself is called a *contraction* if its norm is not greater then one.

Definition 2. A contraction T is said to be positive if $TM_{*+} \subset M_{*+}$.

We will consider two topologies on the space M_* : the weak topology, or the $\sigma(M_*, M)$ topology, and the strong topology of the M_* -space norm convergence.

DEFINITION 3. A matrix $(a_{n,i})$, i, n = 1, 2, ... of real numbers is called *uniformly regular*, if:

$$\sup_{n} \sum_{i=1}^{\infty} |a_{n,i}| \leqslant C < \infty, \quad \lim_{n \to \infty} \sup_{i} |a_{n,i}| = 0, \quad \lim_{n \to \infty} \sum_{i} a_{n,i} = 1.$$

2. Main Result

The following theorem is valid:

Theorem 1. The following conditions for a positive contraction T in the pre-conjugate space of a von Neumann algebras M are equivalent:

(i) The sequence $\{T^i\}_{i=1,2,...}$ converges weakly;

^{© 2003} Katz A. A

Author is thankful to Professor Michael S. Goldstein (University of Toronto, Canada) for helpful discussions.

A. A. Katz

(ii) For each strictly increasing sequence of natural numbers $\{k_i\}_{i=1,2,...}$

$$n^{-1} \sum_{i < n} T^{k_i},$$

converges strongly;

(iii) For any uniformly regular matrix $(a_{n,i})$, the sequence $\{A_n(T)\}_{n=1,2,...}$,

$$A_n(T) = \sum_i a_{n,i}(T^i),$$

converges strongly.

 \triangleleft We first prove the following lemma:

Lemma 1. Let there exists a uniformly regular matrix $(a_{n,i})$ such that for each strictly increasing sequence $\{k_i\}_{i=1,2,...}$ of natural numbers,

$$B_n = \sum_i a_{n,i} T^{k_i},\tag{1}$$

converges strongly. Then the sequence $\{T^i\}_{i=1,2,...}$ converges weakly

 \triangleleft Let $(a_{n,i})$ be a matrix with the aforementioned properties. Then the limit B_n is not dependent upon the choice of the sequence $\{k_i\}_{i=1,2,...}$ In fact, let $\{k_i\}_{i=1,2,...}$ and $\{l_i\}_{i=1,2,...}$ be the sequences for which the limits B_n are different. This means that for $x \in M_*$,

$$\sum_{i} a_{n,i} T^{k_i} x \to x_1,$$

and

$$\sum_{i} a_{n,i} T^{l_i} x \to x_2,$$

as $n \to \infty$. For a matrix $(a_{n,i})$ let us build increasing sequences $\{i_j\}_{j=1,2,...}$ and $\{n_j\}_{j=1,2,...}$ such that

$$\lim_{j \to \infty} \left[\sum_{i < i_{j-1}} |a_{n_j,i}| + \sum_{i > i_j} |a_{n_j,i}| \right] = 0.$$

Let

$$m_i = k_i$$
 for $i \in [i_{2j-1}, i_{2j})$ and $m_i = l_i$ for $i \in [i_{2j}, i_{2j+1}), j = 1, 2, ...$

Then

$$\lim_{j} \left\| \sum_{i} a_{n_{2j+1},i} T^{m_{i}} x - x_{1} \right\| = 0, \quad \lim_{j} \left\| \sum_{i} a_{n_{2j},i} T^{m_{i}} x - x_{2} \right\| = 0,$$

which contradicts (1), and therefore $x_1 = x_2$. Let now $y \in M$ is such that

$$(T^n x - x_1, y) \to 0,$$

when $n \to \infty$. Let us choose a subsequence $\{k_i\}$ such that

$$(T^{k_i}x - x_1, y) \rightarrow \gamma \neq 0,$$

where γ is a real number. Then, from the uniform regularity of the matrix $(a_{n,i})$ it follows that

$$\lim_{n} \left(\sum_{i} a_{n,i} T^{k_i} x - x_1, y \right) = \gamma,$$

which contradicts the choice of the matrix $(a_{n,i})$. \triangleright

[Proof of the Theorem 1 (cont.).] Because the implication (ii) \Longrightarrow (iii) is obvious, the implications (ii) \Longrightarrow (iii) \Longrightarrow (i) immediately follow from the lemma 1.

The implication (iii) \Longrightarrow (ii) is trivial, because the matrix $(a_{n,i})$, $a_{n,i} = \frac{1}{n} \sum_{i < n} \delta_{j,k_i}$ is uniformly regular.

Applying the above with lemma 1, $a_{n,i} = \frac{1}{n}$, $i \leq n$ and $a_{n,i} = 0$ for i > n, we get the implication (ii) \Longrightarrow (i).

To prove the implication (i) \Longrightarrow (ii), we would need the following lemma:

Lemma 2. Let Q be a contraction in the Hilbert space H. Then the weak convergence of Q^nx in H, where $x \in H$, implies the strong convergence of

$$\sum_{i} a_{n,i} Q^{n} x$$

for any uniformly regular matrix $(a_{n,i})$.

 \triangleleft If the weak limit $Q^n x$ exists and is equal to x_1 , then

$$Qx_1 = Q(\lim_{n \to \infty} Q^n x) = x_1,$$

where the limit is considered in the weak topology, i. e. x_1 is Q-invariant. Therefore

$$\left\| \sum_{i} a_{N,i} Q^{i} x \right\|^{2} \leqslant \sum_{i} \sum_{j} a_{N,i} a_{N,j} (Q^{i} x, Q^{j} x) \leqslant \sum_{i} \sum_{j} \left| a_{N,i} a_{N,j} (Q^{i} x, Q^{j} x) \right|.$$

Let us fix $\varepsilon > 0$. Because Q is a contraction, the limit $||Q^n x||$ does exist. Now, we can find K > 0, such that for k > K and $j \ge 0$,

$$\left\| Q^k x \right\| - \left\| Q^{k+j} x \right\| \leqslant \varepsilon^2$$

and

$$\left| (Q^k x, x) \right| \leqslant \varepsilon.$$

Then,

$$\begin{split} \left| (Q^k x, x) - (Q^{k+j} x, Q^j x) \right| &= \left| (Q^k x, x) - (Q^{*j} Q^{k+j} x, x) \right| \\ &\leqslant \left\| Q^k x - Q^{*j} Q^{k+j} x \right\| \cdot \|x\| = \left(\left\| Q^k x - Q^{*j} Q^{k+j} \right\|^2 \right)^{\frac{1}{2}} \cdot \|x\| \\ &= \left(\left\| Q^k x \right\|^2 - 2 \left\| Q^{k+j} x \right\|^2 + \left\| Q^{*j} Q^{k+j} x \right\|^2 \right)^{\frac{1}{2}} \\ &\leqslant \left(\left\| Q^k x \right\|^2 - \left\| Q^{k+j} x \right\|^2 \right) \cdot \|x\| \leqslant \varepsilon \cdot \|x\| \,, \end{split}$$

and therefore

$$\left| (Q^{k+j}x, Q^jx) \right| \leqslant \varepsilon \cdot (1 + ||x||)$$

for all k > K and $j \ge 0$, or for $|i - j| \ge k$ the inequality

$$\left| \left(Q^i x, Q^j x \right) \right| \leqslant \varepsilon \cdot (1 + \|x\|),$$

A. A. Katz

is valid. We will fix $\eta > 0$, and let N be such a natural number with $\max_i |a_{n,i}| < \eta$, for $n \ge N$. Then the expression (1) for $n \ge N$ could be estimated the following way:

$$\sum_{i} \sum_{j} |a_{N,i} a_{N,j} (Q^{i} x, Q^{j} x)| = \sum_{|i-j| \leq k} |a_{n,i} a_{n,j} (Q^{i} x, Q^{j} x)| + \sum_{|i-j| > k} |a_{n,i} a_{n,j} (Q^{i} x, Q^{j} x)|$$

$$\leq \sum_{i} |a_{n,i}| \cdot \eta \cdot ||x||^{2} \cdot (2k-1) + \sum_{i} \sum_{j} |a_{n,i} a_{n,j}| \cdot \varepsilon \cdot (1 + ||x||)$$

$$\leq C \cdot \eta \cdot ||x||^{2} \cdot (2k-1) + C^{2} \cdot \varepsilon \cdot (1 + ||x||).$$

From the arbitrarity of the values of ε and η it follows that the strong convergence is present and the lemma is proven. \triangleright

[Proof of the Theorem 1 (cont.).] Let us prove the implication (i) \Longrightarrow (iii). Let $x \in M_{*+}$ and the sequence $\{T^i x\}_{i=1,2,...}$ converges weakly. Without loss of generality we can consider $||x|| \leq 1$, and let

$$\overline{x} = \lim_{n \to \infty} T^n x,$$

where the limit is understood in the weak sense. Let us consider

$$y = \sum_{n=0}^{\infty} 2^{-n} T^n x.$$

The series that defines y is convergent in the norm of the space M_* . From the positivity of x and the properties of the operator T it follows that $Ty \leq 2y$, and, therefore, for all $k = 1, 2, \ldots, s(T^k y) \leq s(y)$, where by s(z) we denote the support of the normal functional z.

Lemma 3. Let $u \in M_{*+}$ and $s(u) \leqslant s(y)$. Then $s(\overline{u}) \leqslant s(\overline{x})$, where

$$\overline{u} = \lim_{n \to \infty} T^n u.$$

 \triangleleft Indeed, let us fix $\varepsilon > 0$. From the density of the set

$$\mathfrak{L} = \{ w \in M_{*+}, \ w \leqslant \lambda y, \text{ for some } \lambda > 0 \},$$

in the set

$$\mathfrak{S} = \{ w \in M_{*+}, \ s(w) \leqslant s(y) \},$$

in the norm of the space M_* it follows that there are $\lambda > 0$ and $w \in \mathfrak{L}$ such that

$$||w - u|| \leqslant \varepsilon \text{ and } w \leqslant \lambda y.$$

Let $\overline{w} = \lim_{n \to \infty} T^n w$. Then

$$\overline{w}(\mathbf{1} - s(\overline{x})) = \lim_{n \to \infty} (T^n(w))(\mathbf{1} - s(\overline{x})) \leqslant \lambda \cdot \lim_{n \to \infty} (T^n y)(\mathbf{1} - s(\overline{x}))$$

$$\leqslant \lambda \cdot \lim_{n \to \infty} \left(\sum_{k=0}^{\infty} 2^{-k} \cdot (T^{n+k} x)(\mathbf{1} - s(\overline{x})) \right)$$

$$= \lambda \cdot \sum_{k=0}^{\infty} 2^{-k} \lim_{n \to \infty} (T^{n+k} x)(\mathbf{1} - s(\overline{x})) = 0.$$

Because the operator T does not increase the norm of the functionals from M_* , we get that

$$\overline{u}(\mathbf{1}-s(\overline{x})) = \lim_{n \to \infty} (T^n u)(\mathbf{1}-s(\overline{x})) \leqslant \lim_{n \to \infty} (T^n w)(\mathbf{1}-s(\overline{x})) + \lim_{n \to \infty} ||T^n (w - u)|| \leqslant \varepsilon.$$

The needed inequality follows, since ε is arbitrary. \triangleright

[Proof of the Theorem 1 (cont.).] Let now $\mu \in M_*$. We will denote by $\mu.E$, where E is a projection from the algebra M, the functional

$$(\mu.E)(A) = \mu(EAE),$$

where $A \in M$. Let us fix $\varepsilon > 0$. We will find a number N, such that

$$(T^n x)(\mathbf{1} - s(\overline{x})) < \varepsilon^2$$

for n > N. Thus,

$$||T^N x.s(\overline{x}) - T^N x|| = \sup_{\substack{A \in M \\ ||A||_{\infty} \leqslant 1}} |(T^N x)((\mathbf{1} - s(\overline{x}))A(\mathbf{1} - s(\overline{x})))$$

$$+ (T^N x)((s(\overline{x}))A(\mathbf{1} - s(\overline{x}))) + (T^N x)((\mathbf{1} - s(\overline{x}))A(s(\overline{x}))) \Big| \leqslant \varepsilon \cdot (\varepsilon + 2 \|x\|^{\frac{1}{2}}),$$

because

$$|\mu(AB)|^2 \leqslant \mu(A^*A) \cdot \mu(B^*B),$$

where $\mu \in M_{*+}$ and $A, B \in M$.

Let $w \in \mathfrak{L}$ is such that $w \leqslant \lambda \overline{x}$ for some $\lambda > 0$ and $||T^N x.s(\overline{x}) - w|| \leqslant \varepsilon$. Then, for n > N, the following is valid:

$$||T^{n}x - T^{n-N}w|| \leq ||T^{n-N}(T^{N}x - T^{N}x.s(\overline{x}))|| + ||T^{n-N}(T^{N}x.s(\overline{x}) - w)|| \leq 4 \cdot \varepsilon.$$
(2)

By taking the weak limit in the inequality (2) and because the unit ball of M_* is weakly closed, we will get $\|\overline{x} - \overline{w}\| \leq 4 \cdot \varepsilon$, where $\overline{w} = \lim_{n \to \infty} T^n w$.

Let us now consider the algebra $M_{s(x)}$. The functional \overline{x} is faithful on the algebra $M_{s(x)}$. We will consider the representation $\pi_{\overline{x}}$ of the algebra $M_{s(x)}$ constructed using the functional x [2]. Because the functional \overline{x} is faithful, we can conclude that the representation $\pi_{\overline{x}}$ is faithful on the algebra $M_{s(\overline{x})}$, and therefore $\pi_{\overline{x}}$ is an isomorphism of the algebra $M_{s(\overline{x})}$ and some algebra \mathfrak{A} . The algebra \mathfrak{A} is a von Neumann algebra, and its pre-conjugate space \mathfrak{A}_* is isomorphic to the space $M_*.s(\overline{x})$ ([17]). Let us note now that

$$TM_*.s(\overline{x}) \subset M_*.s(\overline{x})$$

In fact, $T\mathfrak{L} \subset \mathfrak{L}$, and therefore, by taking the norm closure we get $TS \subset S$; by taking now the linear span we will get

$$TM_*.s(\overline{x}) \subset M_*.s(\overline{x}).$$

Denote by \overline{T} the isomorphic image of the operator T, acting on the space \mathfrak{A}_* . Let $u \in \mathfrak{A}_{*+}$ and $u \leq \lambda \overline{x}$ for some $\lambda > 0$. Then there exists the operator $B \in \mathfrak{A}'$, where \mathfrak{A}' is a commutant of \mathfrak{A} , such that $(AB\Omega, \Omega) = u(A)$ for all $A \in \mathfrak{A}$. Note, that from the lemma 2

$$(\overline{T}u)(A) = u((\overline{T})^*A) = (((\overline{T})^*A)B\Omega, \Omega) = (A((\overline{T}^*)'B)\Omega, \Omega).$$

A. A. Katz

Also, from

$$\overline{T}\mathfrak{A}_{*+}\subset\mathfrak{A}_{*+}, \|\overline{T}u\|\leqslant \|u\|$$
 and $\overline{T}\overline{x}=\overline{x}$

it follows that

$$(\overline{T})^*\mathfrak{A}_+; (\overline{T}^*)\mathbf{1} \leqslant \mathbf{1}$$
 and $\|(\overline{T})^*A\|_{\infty} \leqslant \|A\|_{\infty}$

for all $A \in \mathfrak{A}$. Based on the lemma we now conclude that

$$\left\| (\overline{T}^*B) \right\|_{\infty} \leqslant \|B\|_{\infty}; \ \overline{T}^{*\prime}\mathfrak{A}'_{+} \subset \mathfrak{A}'_{+}; \ \overline{T}^{*\prime}\mathbf{1} \leqslant \mathbf{1}$$

for all $B \in \mathfrak{A}'$.

The space \mathfrak{A}'_{sa} is a pre-Hilbert space of the self adjoint operators from \mathfrak{A}' with the scalar product $(B,C)_{\overline{x}}=(CB\Omega,\Omega)$, and, using the Kadison inequality [1] we have

$$((\overline{T}^{*\prime}B)(\overline{T}^{*\prime}B)\Omega,\Omega) \leqslant (\overline{T}^{*\prime}(B^2)\Omega,\Omega) \leqslant (B\Omega,B\Omega),$$

i. e. the operator $\overline{T}^{*\prime}$ is a contraction in the pre-Hilbert space $(\mathfrak{A}'_{sa}, (\cdot, \cdot)_{\overline{x}})$.

We will identify $M_*.s(\overline{x})$ and \mathfrak{A}_* . Because $w \in \mathfrak{L}$, i. e. $w \leqslant \lambda \overline{x}$ for some $\lambda > 0$, then $\overline{w} \leqslant \lambda \overline{x}$ as well. Let

$$w(A) = (BA\Omega, \Omega) \text{ and } \overline{w}(A) = (\overline{B}A\Omega, \Omega)$$

for all $A \in \mathfrak{A}$, where $B, \overline{B} \in \mathfrak{A}'$.

Let now $(a_{n,i})$ be a uniformly regular matrix. Using lemma 2 we will find $k \in \mathbb{N}$ so that

$$\begin{split} \left\| \sum_{i} a'_{k,i} T^{i} w - \overline{w} \right\| &= \sup_{\substack{A \in \mathfrak{A} \\ \|A\|_{\infty} = 1}} \left| \left(\sum_{i=1}^{\infty} a'_{k,i} (\overline{T}^{*\prime})^{i} (A - \overline{B}) A \Omega, \Omega \right) \right| \\ &\leqslant \left(\sum_{i=1}^{\infty} a'_{k,i} (\overline{T}^{*\prime})^{i} (B - \overline{B}) \Omega \sum_{i=1}^{\infty} a'_{k,i} (\overline{T}^{*\prime})^{i} (B - \overline{B}) \right)^{\frac{1}{2}} \cdot \sup_{\substack{A \in \mathfrak{A} \\ \|A\|_{\infty} \leqslant 1}} (A\Omega, A\Omega)^{\frac{1}{2}} \\ &\leqslant (\overline{x}(\mathbf{1}))^{\frac{1}{2}} \cdot \left\| \sum_{i=1}^{\infty} a'_{k,i} (\overline{T}^{*\prime})^{i} (B - \overline{B}) \right\|_{(\dots)_{\overline{x}}} < \varepsilon \end{split}$$

for k > K, where by $(a'_{n,i})$ we will denote a matrix with the elements

$$a'_{n,i} = \left(\sum_{i>N} a_{n,j}\right)^{-1} a_{n,j+N}.$$

It is easy to see that the matrix $(a'_{n,i})$ will be uniformly regular as well.

Then, for a big enough k > K we will have

$$\begin{split} \left\| \sum_{i} a_{k,i} T^i x - \overline{x} \right\| &\leqslant \sum_{i \leqslant N} |a_{k,i}| \left\| T^i x - \overline{x} \right\| + \sum_{i > N} |a_{k,i}| \left\| T^i x - T^{i-N} w \right\| \\ &+ \sum_{i > N} \left| a_{k,i} \right| \cdot \left| 1 - \left(\sum_{i > N} a_{k,i} \right)^{-1} \right| \left\| T^{i-N} w \right\| + \left\| \sum_{j=1}^{\infty} a_{k,j+N} \cdot \left(\sum_{i > N} a_{k,i} \right)^{-1} T^j w - \overline{w} \right\| \\ &+ \left\| \left(\sum_{i \leqslant N} a_{k,i} \right) \cdot \overline{w} \right\| + \left| \sum_{i > N} a_{k,i} \right| \left\| \overline{w} - \overline{x} \right\| \end{split}$$

$$\leq \sum_{i \leq N} 2 \cdot \frac{\varepsilon}{N} + \sum_{i > N} |a_{k,i}| \cdot 4\varepsilon + \sum_{i > N} |a_{k,i}| \left(1 - (1+\varepsilon)^{-1}\right) \cdot 2 + \sum_{i \leq N} 2 \cdot \frac{\varepsilon}{N} + (1+\varepsilon) \cdot 4\varepsilon$$

$$\leq 2\varepsilon + (1+\varepsilon) \cdot 4\varepsilon + \varepsilon \cdot 2 \cdot (1+\varepsilon) + \varepsilon + 2\varepsilon + (1+\varepsilon) \cdot 4\varepsilon \leq 25\varepsilon.$$

The arbitrarity of ε proves the needed statement. The proof of the theorem is now completed. \triangleright

REMARK. Extention of the discussed properties of iterations to non-commutative L_p -spaces will be separately presented in the forthcoming paper [12].

References

- Bratteli O., Robinson D. Operator Algebras and Quantum Statistical Mechanics. V. I / Texts and Monographs in Physics.—New York — Heidelberg: Springer-Verlag, 1979.—500 p.
- 2. Dixmier J. Von Neumann Algebras / North-Holland Mathematical Library. V. 27.—Amsterdam New York: North-Holland Publishing Co., 1981.—437 p.
- 3. Dunford N., Schwartz J. T. Linear Operators I / Pure and Applied Mathematics. V. 7.—New York: Interscience Publishers, Inc.; London: Interscience Publishers, Ltd., 1958.—858 p.
- 4. Goldstein M. S. Theorems of Almost Everywhere Convergence in von Neumann Algebras // J. Oper. Theory.—1981.—V. 6.—P. 233-311. [Russian]
- Goldstein M. S., Grabarnik G. Y. Almost Sure Convergence Theorems in von Neumann Algebras // Israel J. Math.—1991.—V. 76, № 1–2.—P. 161–182.
- Grabarnik G. Y., Katz A. A. Ergodic Type Theorems for Finite von Neumann Algebras // Israel J. Math.—1995.—V. 90, № 1–3.—P. 403–422.
- 7. Grabarnik G. Y., Katz A. A. On Neveu Decomposition and Ergodic Type Theorems for Semi-Finite von Neumann Algebras // Vladikavkaz Mathematical Journal.—2003.—V. 5, № 2.—P. 5–9.
- 8. Grabarnik G. Y., Katz A. A. On Multiparametric Superadditive Stochastic Ergodic Theorem for Semifinite von Neumann Algebras. [In preparation]
- 9. Jajte R. Strong limit theorems in noncommutative probability // Lecture Notes in Mathematics. V. 1110.—Berlin: Springer-Verlag, 1985.—152 p.
- 10. Katz A. A. Ergodic Type Theorem in von Neumann Algebras // Ph. D. Thesis. University of South Africa, Pretoria.—2001.—83 p.
- 11. Katz A. A. One Property of the Weak Convergence of Operators Iterations in von Neumann Algebras // Vladikavkaz Mathematical Journal.—2003.—V. 5, № 2.—P. 34–35.
- 12. Katz A. A. Operators Iterations in non-commutative L_p -spaces. [In preparation]
- 13. Krengel U. Ergodic Theorems / de Gruyter Studies in Mathematics. V. 6, Berlin: Walter de Gruyter & Co., 1985.—357 p.
- 14. Lance E. C. Ergodic theorems for convex sets and operator algebras // Invent. Math.—1976.—V. 37, N = 3.—P. 201–214.
- Pedersen G. K. C*-algebras and their automorphism groups / London Mathematical Society Monographs. V. 14.—London-New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], 1979.—416 p.
- 16. Petz D. Ergodic theorems in von Neumann algebras // Acta Sci. Math. (Szeged).—1983.—V. 46, № 1–4.—P. 329–343.
- 17. Sakai S. C*-algebras and W*-algebras // Ergebnisse der Mathematik und ihrer Grenzgebiete. V. 60.— New York Heidelberg: Springer-Verlag, 1971.—253 p.
- 18. Sinai Ja. G., Anshelevich V. V. Some questions on noncommutative ergodic theory // Uspehi Mat. Nauk.—1976.—V. 31, № 4 (190).—P. 151–167. [Russian]
- 19. Takesaki M. Theory of Operator Algebras, I.—New York Heidelberg: Springer-Verlag, 1979, 415 p.

Статья поступила 14 июля 2003 г.

Prof. Alexander A. Katz, Ph.D.

Department of Mathematics and Computer Science,

St. John's University, NY 10301, USA

E-mail: katza@stjohns.edu