УДК 517.98

ONE PROPERTY OF THE WEAK COVERGENCE OF OPERATORS ITERATIONS IN VON NEUMANN ALGEBRAS

A. A. Katz

Conditions are given for *-weak convergence of iterations for an ultraweak continuous fuctional in von Neumann algebra to imply norm convergence.

Let M be a von Neumann algebra [5], acting on a separable Hilbert space H. Let T be a contraction from M_* to M_* , so that $TM_{*+} \subset M_{*+}$. On the pre-conjugate to M space M_* there are two topologies selected: the weak, or the $\sigma(M_*, M)$ topology, and the strong topology of the convergence in the norm of the space M_* .

Let now $T = \alpha_*$, where α be an automorphism of the algebra M. We will say that T in M_* is *mixing*, if for all $x \in M_*^0$ and $A \in M$, the following condition is valid:

$$\lim_{n \to \infty} \langle T^n x, A \rangle = 0,$$

where

$$M_*^0 = \{ y \in M_* : y(\mathbf{1}) = 0 \}.$$

We will say that a positive contraction T in M_* is completely mixing, if for all $x \in M_*^o$ the following condition is valid:

$$\lim_{n \to \infty} \|T^n x\| = 0.$$

The following theorem is valid:

Theorem. Let T be a pre-conjugate operator to an automorphism α of a von Neumann algebra M for which there is no invariant normal state. Then, for $x \in M_*$, the weak convergence of $T^n x$ implies the strong convergence of $T^n x$. In particular, if T is mixing, then T is completely mixing.

 \triangleleft Let us denote by $|T^n x|$ the sum

$$(T^n x)_+ + (T^n x)_-$$
, where $T^n x = (T^n x)_+ - (T^n x)_-$

is the Hahn decomposition of the functional $T^n x$ [4]. The sequence $\{|T^n x|\}_{n=1}^{\infty}$ is $\sigma(M_*, M)$ pre-compact [4] and, therefore, the convex envelope of the set $\{|T^n x|\}_{n=1}^{\infty}$ is pre-compact as well. The sequence $\{A^n |x|\}_{n=1}^{\infty}$ is also pre-compact because it belongs to the convex envelope of the set $\{|T^n x|\}_{n=1}^{\infty}$.

Because T is pre-conjugate to an automorphism, then $|T^nx| = T^n |x|$. In fact, the support of $T(T^nx)_+$ is orthogonal to the support of $T(T^nx)_-$, $T(T^nx)_+ - T(T^nx)_- = T(T^nx) = T^{n+1}x$, and from the uniqueness of the Hahn decomposition [4] it follows that $|T^nx| = T^n |x|$.

Let \overline{x} be $\sigma(M_*, M)$ -limit point of the set $\{A^n | x|\}_{n=1}^{\infty}$. Then the functional \overline{x} will be T-invariant. In fact,

$$T\overline{x} = \lim_{n_{\gamma} \to \infty} \sum_{k=1}^{n_{\gamma}} \left\langle T^k x, y \right\rangle$$

$$= \lim_{n_{\gamma} \to \infty} \left[n_{\gamma}^{-1} \cdot \sum_{k=0}^{n_{\gamma}-1} \left\langle T^{k} x, y \right\rangle - n_{\gamma}^{-1} \cdot \left\langle x, y \right\rangle + n_{\gamma}^{-1} \cdot \left\langle T^{n_{\gamma}} x, y \right\rangle \right] = \overline{x}.$$

It is easy to see that $\overline{x} \ge 0$ and, therefore, from the conditions of the theorem it follows that $\overline{x} = 0$. Now we know that the only weakly limit point of the set $\{A^n |x|\}_{n=1}^{\infty}$ is the point $\overline{x} = 0$. Therefore

$$0 = \lim_{n \to \infty} \|A^n |x|\| = \lim_{n \to \infty} (A^n |x|)(\mathbf{1}) = \lim_{n \to \infty} (T^n |x|)(\mathbf{1}) = \lim_{n \to \infty} \|T^n |x|\|,$$

because $(T^n|x|)(1) = (T^m|x|)(1)$ for all $n, m \in \mathbb{N}$. The theorem is proven. \triangleright

References

- 1. Bratteli O., Robinson D. Operator Algebras and Quantum Statistical Mechanics.—New York—Heidelberg-Berlin: Springer-Verlag, 1979.—500 p.
- 2. Katz A. A. Ergodic Type Theorem in von Neumann Algebras.—Ph. D. Thesis.—Pretoria: University of South Africa, 2001.—84 p.
- 3. Pedersen G. K. C^* -algebras and their automorphism groups.—London–New York–San Francisco: Academic Press, 1979.— 416 p.
- 4. Sakai S. C^* -algebras and W^* -algebras.—Berlin: Springer-Verlag, 1971.—256 p.
- 5. Takesaki M. Theory of Operator Algebras. I.—Berlin: Springer-Verlag, 1979.—vii+415 p.

Статья поступила 11 апреля, 2003

ALEXANDER A. KATZ, Ph. D.

Department of Mathematics & CS, St. John's University, 300 Howard Ave.,

Staten Island, NY 10301, USA.

E-mail: katza@stjohns.edu