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THE STIELTJES MOMENT PROBLEM IN VECTOR LATTICES

A. G. Kusraev and S. A. Malyugin

1. Introduction

The following problem for the first time was posed in the famous memoir by Thomas
Stieltjes [1] devoted to continued fractions: given a real sequence (sj)g2, find a nonde-
creasing function ¢ on a positive half-line R, such that

/tkda(t):sk (k:=0,1,...).
0

He had called it the moment problem having in mind an obvious mechanical interpretation.
Since then the moment problem has been developed in different directions as one of the
most attractive and important areas of modern analysis. The extended moment problem is
posed analogously on the whole real line and called the Hamburger moment problem, while
the moment problem posed on a line segment is called the Hausdorff moment problem.

The whole history of the moment problem is quite well known and there is no need in
recalling. It should be only noted that several authors explored vector-valued statements of
the moment problem, see [2-5]. In the present short talk we will briefly outline the Stieltjes
moment problem in vector lattices.

2. Two examples

First of all we consider two examples justifying the statement of the moment problem
in vector lattices

2.1. The first example concerns a stochastic setting of the moment problem. Suppose
that the moment sequence depends on a measurable parameter. More precisely, let (2, 3, v)
be a measure space and s,, : {2 = R be a measurable function for each n € N. Assume that
the sequence is positive in the Stieltjes sense, i.e. the inequalities

n n
Z akalskﬂ(w) >0, Z 0k018k+l+1(w) >0 ((Uk)zo:(] C Rn; n:=0,1,.. )
k,1=0 k,1=0

hold almost everywhere in ). Then, as is well-known, for almost every w € € the Stieltjes
moment problem has a solution j,,. Now a new question arises: is the function p.)(4) :
w +— 1, (A) measurable for each A € ¥ or not? This new problem is actually the old one
but set in the space of measurable functions L°(v) := L%(£2, %, v). Indeed, if we define a
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vector measure by assigning A + pu(y(A) (A € X) then the problem is to find a vector
measure p : ¥ — L%(v) such that

sk(+) :/tkdm(t) (k:=0,1,...).

2.2. The second example concerns the spectral resolution of a self adjoint operator.
Consider a positive self-adjoint operator A in a Hilbert space and suppose that (ey)xer is
its spectral resolution. Then

I:/de)\, A:/)\de)\.
0 0

Denote by B a Boolean algebra, of orthogonal projections in Hilbert space under considera-
tion and (B) the space of all self-adjoint (not necessarily bounded) operators whose spectral
resolutions take values in B. Now we can set the following natural question:

Given a sequence (A )ren of pairwise commuting positive self-adjoint operators in (B)
with Ay = I, find a spectral resolution or a spectral measure p : B(R;) — B such that

o0

A’“:/Akdu(k) (k:=0,1,...).

0

3. Vector lattices

We recall the basic notion from the theory of vector lattice (= Riesz spaces), see [6, 7].

3.1. An ordered vector space over is a pair (E, <), where E is a real vector space and
< is an order relation in £ with the following conditions being fulfilled:

WV z<y&u<v—zc+u<Ly+o (r,y,0,u € E);

2)z<y—> <y (z,ye B;0<AeR

Thus, inequalities in an ordered vector spaces can be summed and multiplied by positive
reals.

3.2. Vector lattice is an ordered vector space which is a lattice. Thus, in any vector

lattice E there exist least upper bound sup{z,...,z,} :=x1 V---Vz, and greatest lower
bound inf{zy,...,z,} := x; A--- Az, for an arbitrary finite subset {z,...,z,} C E.
In particular, every element x € E has the positive part z+ := z V 0, the negative part

z” = (—xz)* := —z A0, and the module | = |:= z V (—x).

3.3. Disjointness L in a vector lattice E is introduced by
Li={(z,y) e EXE:|z|AN|y|=0}.
A band in E is a set of the form

Mt :={zeE:(Vye Mz Ly},
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where M C E. The set of all bands ordered by inclusion is a complete Boolean algebra
B(F) with the following Boolean operations:

LAK:=LNK, LVK =(LUK)*, L*:=L* (L,K € B(E)).

The Boolean algebra ®B(E) is called the basis of E.

3.4. An element 1 € E is said to be (weak) order unit if {1}1t1 = E, i.e. if there is
no nonzero element in F disjoint to 1. A positive element e € E is called a fragment or a
component of the unit if e A (1 —e) = 0. The set of all fragments of 1, denoted by B (1), is
a Boolean algebra with lattice operations being induced from E. Moreover, ¢* :=1 — e is
the Boolean complement of e.

3.5. A vector lattice E is said to be Dedekind o-complete if each order bounded
countable set in E has supremum and infimum. In this case B(1), is a o-complete Boolean
algebra. A Dedekind o-complete vector lattice E can be represented as a direct sum {e}* @
{e}*+ for every e € E. The corresponding projection P, onto the band {e}++ (parallel to
{e}?) is called a band projection and can be calculated by

P,z =sup{z A (ne):n €N} (z € E™).

4. The Freudenthal spectral theorem

The Freudenthal spectral theorem is one of the most powerful tools in the theory of
vector lattices, and can be interpreted as one of the first solutions to the moment problem
in vector lattices. In the next two sections F is a Dedekind o-complete vector lattice with a
weak order unit 1. The Boolean algebra of all components of 1 will be denoted by B = B(1).

4.1. A resolution of unity in B is a mapping e : R — B such that

(1) e(A) < e(p) for A < p;

(2) VAeRe(A) =1, /\,uGR e(n) =¥#;

(3) Vycreln) = e(A) (A €R).

To each z € E we assign a resolution of identity (e5)xer in B by setting e} := Py(y)1,
where ¢(\) = (A1 — z)*. This resolution of identity is called the spectral function of z.

4.2. Now, define the Stieltjes integral with respect to an arbitrary resolution of identity
e: R — B Let f: R — R be an uniformly continuous function. Take a partition of real
axis A :== (A\g)kezs

—0 A < <AL < A <A << A, = Ho

and compose the integral sum

+o00
Z f(tn)(e(Ans1) —e(Mn)),

where A, < t, < Apy1. It is clear that there exists an order limit for integral sums as
partitions are refined. This limit is called the Stieltjes integral of f with respect to a
resolution of identity e(-) and denoted by

+oo +oo
[0 = [ f0des = olim 3 7 (E0w) — eh)).
R — o0 -

§(A)—
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Soundness of the above definitions can be easily verified.

The Freudenthal spectral theorem (1936). For every x € E the integral repre-

sentation holds:
o0

T = / Adey.

— o0

4.3. A spectral measure is a o-continuous Boolean homomorphism p from B(R) to (E);
here o-continuity means that for any sequence of pairwise disjoint elements (A,) C B(R)

we have
% (U Ak) = \/ p(Ayg).
k=1

k=1

Theorem (J .D. M. Wright [8]). Fach spectral resolution (e%),er has a unique
extension to a spectral measure, i.e. there exists a unique spectral measure p,, : B(R) — (E)
such that e§ = p,(—o0,A) (A € R). Moreover,

[rovaes = [ 103 du.
R R

4.4. In FE one can introduce a unique partial multiplication so that 1 is a neutral

element. It can be easily seen that if x > 0 and all 2™ exist then the spectral measure p,, is
n

a solution to the Stieltjes moment problem in F for the sequence 1,z,22,...,2",..., ie.
o o
xk:/xkde§:/xkdu(x) (k:=0,1,...).
0 0

5. The main results

5.1. A sequence (s;)72, in F is said to be positive if

Z 0r018k+1 = 0 ((Ok)zozo CR n:=0,1,... ),
k,1=0

and positive in Stieltjes sense if

n n
E OkO|Sk+1 20, E OkO[Sk+1+1 20 ((O’k)zo:(]’rl:: 0,1,)
k,l=0 k,l1=0

5.2. Theorem. Given a sequence (s;)3>, C FE, there exists a positive measure fi :
B(R) — E which solves the Stieltjes moment problem if and only if the sequence is positive
in Stieltjes sense.

5.3. Theorem. For every positive in Stieltjes sense sequence (sj)?2, there exists a
sequence of pairwise disjoint principal band projections ()32, and a band projection my,
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with mpom, =0 (k:=0,1,...) and m, + Y _poo T = I for which the following statements
hold:

(1) for the sequence (mysi)5>, in moE the Stieltjes moment problem has a unique
solution;

(2) for the sequence (msy)32, in TE solution to the Stieltjes moment problem is not
unique for whatever nonzero band projection m < mp;

(3) for the sequence (m,sy)%e, in m, E the Stieltjes moment problem has a unique
solution which can be represented as a linear combination of n disjoint spectral measures,
whatever n € N.

5.4. The band projections in Theorem 5.3 can be described explicitly. Let P(R") be
the vector space of all polynomials defined on R*. We introduce a positive linear operator
U :P(R") — E defined by

n n

Ul(p) :== Zaksk, p(u) = Zakuk.

k=0 k=0

Fix an arbitrary complex number A € C\R™ and consider the function Ry(u) = R1/(u—\).
We define the following vector in E:

a:=inf{U(p—q):p.qg€ P(RY), ¢ < R\ < p}.

Then 7, coincides with the band projection onto the band {a}*+. For an arbitrary (o)7_,

in R we put
11

n
E(og,...,0n) = Z Sk410%0]
k,1=0
Let E, = ({E(0o,...,0n) : 02 +---+02 > 0}. Then 7y coincides with the projection onto
the band ﬂfﬁro E,, and 7, coincides with the projection onto the band E,,_; N Enl

5.5. Analogous results are true for the Hamburger and Hausdorff moment problems.
The main difficulty is to find an appropriate measure extension in vector lattices, see |9,
10].
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