ISSN печатной версии 1683-3414   •   ISSN он-лайн версии 1814-0807
    Войти
 

Контакты

Адрес: Россия, 362025, Владикавказ,
ул. Ватутина, 53
Тел.: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

Яндекс.Метрика

Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.
DOI: 10.23671/VNC.2019.3.36460

Операторные интегралы Лапласа и устойчивость открытых течений идеальной несжимаемой жидкости

Ильин К. И. , Моргулис А. Б.
Владикавказский математический журнал. 2019. Том 21. Выпуск 3.С.31-49. .
Аннотация:
Изучаются спектры краевых задач возникающих при линеаризации уравнений Эйлера идеальной несжимаемой жидкости на стационарных решениях, описывающих течения, в которых жидкость поступает в область течения и выводится из нее через определенные части границы. Такие течения естественно называть открытыми. Спектры таких течений относительно мало изучены, по сравнению со случаем полностью непроницаемых границ или условий периодичности. В этой статье мы указываем класс открытых течений, спектры которых состоят из "нулей" некоторой целой операторнозначной функции, представленной операторным интегралом Лапласа. Вопрос о расположении спектра таких течений сводится, следовательно, к своего рода операторнозначной проблеме Рауса - Гурвица для этого интеграла. В ряде интересных частных случаев эту операторную функцию удается выразить как мультипликаторное преобразование рядов Фурье, и тогда проблема Рауса - Гурвица становится скалярной, и более того, ее удается решить с помощью теоремы Пойа о нулях интегралов Лапласа. На этой основе мы доказываем принадлежность открытой левой полуплоскости спектров ряда конкретных течений, для которых такие доказательства не были известны.
Ключевые слова: уравнение Эйлера, идеальная несжимаемая жидкость, устойчивость, спектр, целые функции, проблема Раус - Гурвица.
Язык статьи: Русский Загрузить полный текст  
Образец цитирования: Ильин К. И.,  Моргулис А. Б., Черныш А. С. Проблема Рауса - Гурвица для оператор-функций и устойчивость открытых течений идеальной несжимаемой жидкости // Владикавк. мат. журн. 2019. Т. 21, вып. 3. С. 31-49. DOI: 10.23671/VNC.2019.3.36460. DOI 10.23671/VNC.2019.3.36460
+ Список литературы


← Содержание выпуска
 
  | Главная | Редколлегия | Публикационная этика | Рецензирование | Свежий номер | Архив | Правила для авторов | Работа с электронной редакцией | Подать статью |  
© 1999-2023 Южный математический институт