ISSN печатной версии 1683-3414   •   ISSN он-лайн версии 1814-0807
    Войти
 

Контакты

Адрес: Россия, 362025, Владикавказ,
ул. Ватутина, 53
Тел.: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

Яндекс.Метрика

Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.
DOI: 10.23671/VNC.2018.3.17981

Бинарные соответствия и обратная задача химической кинетики

Гутман А. Е.  , Кононенко Л. И.
Владикавказский математический журнал. 2018. Том 20. Выпуск 3.С.37-47.
Аннотация:
Показано, как бинарные соответствия могут быть использованы для простой формализации понятия задачи, определения основных компонентов задач, их свойств и конструкций. В частности, предложена формализация следующих понятий: условие, данные, искомые и решения задачи, разрешимость и однозначная разрешимость, обратная задача, композиция и ограничение задач, изоморфизм между задачами. Рассмотрены топологические задачи и связанные с ними понятия устойчивости и корректности. Указана связь между устойчивостью и непрерывностью однозначно разрешимой топологической задачи. Дано определение параметризации множества. Введены понятия параметризованной задачи, задачи восстановления объекта по значениям параметров, а также понятия локально свободного набора параметров и устойчивости относительно набора параметров. В качестве иллюстрации рассмотрена сингулярно возмущенная система обыкновенных дифференциальных уравнений, описывающая процесс химической кинетики и горения. Для такой системы сформулированы прямая и обратная задача. Изучаемый класс задач расширен за счет рассмотрения многочленов произвольной степени в качестве правых частей дифференциальных уравнений. Показано, как обратная задача химической кинетики может быть скорректирована и приближена к практике посредством композиции с простой вспомогательной задачей, реализующей связь между функциями и конечными наборами измеряемых числовых характеристик. Приведены формулы решения и указаны условия однозначной разрешимости скорректированной обратной задачи. В рамках исследования разрешимости получен критерий линейной независимости вещественных функций в терминах конечных наборов их значений. С помощью установленного критерия уточнена реализуемость условия однозначной разрешимости обратной задачи химической кинетики.
Ключевые слова: бинарное соответствие, обратная задача, разрешимость, композиция, устойчивость, корректность, дифференциальное уравнение, химическая кинетика, линейная независимость.
Язык статьи: Английский Загрузить полный текст  
Образец цитирования: Gutman A. E., Kononenko L. I. Binary correspondences and the inverse problem of chemical kinetics // Владикавк. мат. журн. 2018. Том 20, вып. 3. С. 37-47. DOI 10.23671/VNC.2018.3.17981
+ Список литературы


← Содержание выпуска
 
  | Главная | Редколлегия | Публикационная этика | Рецензирование | Свежий номер | Архив | Правила для авторов | Работа с электронной редакцией | Подать статью |  
© 1999-2023 Южный математический институт