ISSN печатной версии 1683-3414 • ISSN он-лайн версии 1814-0807 | |||
Войти |
Главная Редколлегия Публикационная этика Рецензирование Свежий номер Архив Правила для авторов Работа с электронной редакцией Подать статью КонтактыАдрес: Россия, 362025, Владикавказ,
|
Уважаемые авторы, просим обратить внимание! Подача статьи осуществляется только через личный кабинет электронной редакции. DOI: 10.23671/VNC.2014.3.10232 Решения дифференциального неравенства с нуль-лагранжианом: повышающаяся интегрируемость и устранимость особенностей. I
Егоров А. А.
Владикавказский математический журнал. 2014. Том 16. Выпуск 3.С.22-37.
Аннотация:
Целью настоящей статьи является установление свойства самоулучшающейся интегрируемости производных решений дифференциального неравенства с нуль-лагранжианом. Более точно, мы доказываем, что решение класса Соболева с показателем суммирумости, немного меньшим естественно определенного структурными предположениями на нуль-лагранжиан показателя, фактически принадлежит пространству Соболева с показателем суммируемости, немного большим естественного показателя. Мы также применяем это свойство, чтобы улучшить теоремы о гёльдеровой регулярности и об устойчивости из статьи [19].
Ключевые слова: нуль-лагранжиан, повышающаяся интегрирумость, самоулучшающаяся регулярность, г\"ельдерова регулярность, устойчивость классов отображений
Язык статьи: Английский
Загрузить полный текст
Образец цитирования: Егоров А. А. Решения дифференциального неравенства с нуль-лагранжианом: повышающаяся интегрируемость и устранимость особенностей. I // Владикавк. мат. журн. 2014. Том 16. Выпуск 3. С.22-37. DOI 10.23671/VNC.2014.3.10232
+ Список литературы
1. Astala K. Area distortion of quasiconformal mappings // Acta Math.---1994.---Vol. 173, № 1.---P. 37--60. 2. Astala K., Iwaniec T., Martin G. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane.---Princeton: Princeton Univ. Press, 2009.---xvi+677 p.---(Princeton Mathematical Series. Vol. 48.). 3. Ball J. M. Convexity conditions and existence theorems in nonlinear elasticity // Arch. Ration. Mech. Anal.---1977.---Vol. 63.---P. 337--403. 4. Ball J. M. Constitutive inequalities and existence theorems in nonlinear elastostatics // Nonlinear Analysis and Mechanics: Heriot--Watt Symposium (Edinburgh, 1976).---London: Pitman, 1977.---Vol. 1.---P. 187--241. 5. Ball J. M., Currie J. C., Olver P. J. Null Lagrangians, weak continuity, and variational problems of arbitrary order // J. Funct. Anal.---1981.---Vol. 41.---P. 135--174. 6. Belinskii P. P. General Properties of Quasiconformal Mappings.---Novosibirsk: Nauka, 1974.---[Russian]. 7. Bezrukova O. L., Dairbekov N. S., Kopylov A. P. On mappings which are close in the \(C\)-norm to classes of solutions of linear elliptic partial differential equations // Tr. Inst. Math.---1987.---Vol. 7.---P. 19--30.---[Russian]. 8. Bojarski B. Homeomorphic solutions of Beltrami systems // Dokl. Akad. Nauk SSSR.---1955.---Vol. 102.---P. 661--664.---[Russian]. 9. Bojarski B. Generalized solutions of a system of first-order differential equations of elliptic type with discontinuous coefficients // Math. Sb.---1957.---Vol. 43 (85), № 4.---P. 451--503.---[Russian]. 10. Bojarski B., Gutlyanskii V., Martio O., Ryazanov V. Infinitesimal Geometry of Quasiconformal and bi-Lipschitz Mappings in the Plane.---Zurich: European Math. Soc., 2013.---ix+205 p. 11. Dairbekov N. S. Stability in the $C$-Norm of Classes of Solutions of Linear Elliptic Partial Differential Equations. Candidate's dissertation.---Novosibirsk, 1986.---[Russian]. 12. Dairbekov N. S. The concept of a quasiregular mapping of several \(n\)-dimensional variables // Dokl. Akad. Nauk, Ross. Akad. Nauk.---1992.---Vol. 324, № 3.---P. 511--514. [Russian]; Engl. transl.: Russ. Acad. Sci., Dokl., Math.---1992.---Vol. 45, № 3.---P. 578--582. 13. Dairbekov N. S. Quasiregular mappings of several \(n\)-dimensional variables // Sib. Mat. Zh.---1993.---Vol. 34, № 4.---P. 87--102.---[Russian]; Engl. transl.: Sib. Math. J.---1993.---Vol. 34, № 4.---P. 669--682. 14. Dairbekov N. S. Stability of Classes of Mappings, Beltrami Equations, and Quasiregular Mappings of Several Variables. Doctoral dissertation.---Novosibirsk, 1995.---[Russian]. 15. Edelen D. G. B. Non Local Variations and Local Invariance of Fields.---N.Y.: Elsivier, 1969.---(Modern Anal. and Comp. Methods in Sci. and Engineering. Vol. 19.). 16. Egorov A. A. Stability of classes of solutions to partial differential relations constructed by convex and quasiaffine functions // Proc. on geometry and analysis.---Novosibirsk: Izdatel'stvo Instituta Matematiki SO RAN, 2003.---P. 275--288.---[Russian]. 17. Egorov A. A. Stability of classes of solutions to partial differential relations constructed by quasiconvex functions and null Lagrangians // Equadiff 2003.---Hackensack: World Sci. Publ., 2005.---P. 1065--1067. 18. Egorov A. A. Stability of classes of mappings, quasiconvexity, and null Lagrangians // Dokl. Akad. Nauk, Ross. Akad. Nauk.---2007.---Vol. 415, № 6.---P. 730--733.---[Russian]; Engl. transl.: Dokl. Math. 2007.---Vol. 76, № 1.---P. 599--602. 19. Egorov A. A. Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings // Sib. Mat. Zh.---2008.---Vol. 49, № 4.---P. 796--812.---[Russian]; English transl.: Sib. Math. J.---2008.---Vol. 49, № 4.---P. 637--649. 20. Egorov A. A. Solutions of the Differential Inequality with a Null Lagrangian: Regularity and Removability of Singularities.---2010.---URL: http://arxiv.org/abs/1005.3459. 21. Egorov A. A. One integral inequality for solutions of the differential inequality with a null Lagrangian and its application // The collection of the scientific articles of the International school-seminar "Lomonosov's readings in Altai 2012" (Barnaul, 20--23 November, 2012).---Barnaul: ASPA, 2012.---Vol. 1.---P. 284--289. 22. Egorov A. A. Solutions of the Differential Inequality with a Null Lagrangian: Higher Integrability and Removability of Singularities. II.---(To appear.). 23. Faraco D., Zhong X. A short proof of the self-improving regularity of quasiregular mappings // Proc. Amer. Math. Soc.---2006.---Vol. 134, № 1.---P. 187--192. 24. Gao H. Regularity for weakly \((K_1,K_2)\)-quasiregular mappings // Science in China. Ser. A.---2003.---Vol. 46, № 4.---P. 499--505. 25. Gao H., Huang Q., Qian F. Regularity for weakly \((K_1,K_2(x))\)-quasiregular mappings of several \(n\)-dimensional variables // Front. Math. China.---2011.---Vol. 6, № 2.---P. 241--251. 26. Gao H., Li T. On degenerate weakly \((K_1,K_2)\)-quasiregular mappings // Acta Math. Sci. Ser. B.---2008.---Vol. 28, № 1.---P. 163--170. 27. Gao H., Zhou S., Meng Y. A new inequality for weakly \((K_1,K_2))\)-quasiregular mappings // Acta Math. Sin. Engl. Ser.---2007.---Vol. 23, № 12.---P. 2241--2246. 28. Gehring F. W. The \(L^p\)-integrability of the partial derivatives of a quasiconformal mapping // Bull. Am. Math. Soc.---1973.---Vol. 79.---P. 465--466. 29. Gol'dshtein V. M. The behavior of mappings with bounded distortion when the coefficient of distortion is close to unity // Sib. Mat. Zh.---1971.---Vol. 17, № 6.---P. 1250--1258.---[Russian]; English transl.: Sib. Math. J.---1971.---Vol. 17, № 6.---P. 900--906. 30. Gol'dshtein V. M., Reshetnyak Yu. G. Introduction to the Theory of Functions with Generalized Derivatives, and Quasiconformal Mappings.---M.: Nauka, 1983.---285 p.---[Russian]. 31. Gol'dshtein V. M., Reshetnyak Yu. G. Quasiconformal Mappings and Sobolev Spaces.---Dordrecht etc.: Kluwer Acad. Publ., 1990.---xix+371 p.---(Math. and its Appl. Soviet Ser. Vol. 54.). 32. Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation. A Geometric Approach.---Berlin: Springer, 2012.---xiii+301 p.---(Developments in Math. Vol. 26.). 33. Iwaniec T. On \(L^p\)-integrability in PDE's and quasiregular mappings for large exponents // Ann. Acad. Sci. Fenn. Ser. AI.---1982.---Vol. 7.---P. 301--322. 34. Iwaniec T. \(p\)-Harmonic tensors and quasiregular mappings // Ann. Math.---1992.---Vol. 136.---P. 651--685. 35. Iwaniec T., Martin G. Quasiregular mappings in even dimensions // Acta Math.---1993.---Vol. 170.---P. 29--81. 36. Iwaniec T., Martin G. Geometric Function Theory and Non-Linear Analysis. Oxford Math. Monogr.---Oxford: Oxford Univ. Press, 2001. 37. Iwaniec T., Migliaccio L., Nania L., Sbordone C. Integrability and removability results for quasiregular mappings in high dimensions // Math. Scand.---1994.---Vol. 75, № 2.---P. 263--279. 38. Knops R. J., Stuart C. A. Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity // Arch. Ration. Mech. Anal.---1984.---Vol. 86, № 3.---P. 233--249. 39. Kopylov A. P. Stability of classes of multidimensional holomorphic mappings. III. Properties of mappings that are close to holomorphic mappings // Sib. Mat. Zh.---1983.---Vol. 24, № 3.---P. 70--91.---[Russian]; English transl.: Sib. Math. J.---1983.---Vol. 24, № 3.---P. 373--391. 40. Kopylov A. P. Stability of Classes of Multidimensional Holomorphic Mappings. Doctoral dissertation.---Novosibirsk, 1984.---[Russian]. 41. Kopylov A. P. Stability in the \(C\)-Norm of Classes of Mappings.---Novosibirsk: Nauka, 1990.---[Russian]. 42. Kopylov A. P. On stability of classes of conformal mappings. I // Sib. Mat. Zh.---1995.---Vol. 36, № 2.---P. 348--369.---[Russian]; English transl.: Sib. Math. J.---1995.---Vol. 36, № 2.---P. 305--323. 43. Kopylov A. P. On stability of classes of conformal mappings. III // Sib. Mat. Zh.---1997.---Vol. 38, № 4.---P. 825--842.---[Russian]; English transl.: Sib. Math. J.---1997.---Vol. 38, № 4.---P. 715--729. 44. Kristensen J. Finite functionals and Young measures generated by gradients of Sobolev functions. Math. Inst. Technical Univ. of Denmark Mat-Report № 1994--34.---Denmark: Lyngby, 1994.---58 p. 45. Krushkal' S. L. Quasiconformal Mappings and Riemann Surfaces.---Novosibirsk: Nauka, 1975.---195 p.---[Russian]. 46. Krushkal' S. L. Quasiconformal Mappings and Riemann Surfaces. Scripta Series in Math. A Halsted Press Book.---Washington: V. H. Winston & Sons, N.Y. etc.: John Wiley & Sons, 1979.---xii+319 p. 47. Landers A. W. Invariant multiple integrals in the calculus of variations // Contributions to the Calculus of Variations, 1938--1941.---Chicago: Univ. of Chicago Press, 1942.---P. 184--189. 48. Lehto O. Remarks on the integrability of the derivatives of quasiconformal mappings // Ann. Acad. Sci. Fenn. Ser. AI.---1965.---Vol. 371.---P. 1--8. 49. Lehto O., Virtanen K. I. Quasiconformal Mappings in the Plane. 2nd ed. Grundlehren der Math. Wissenschaften. Vol. 126.---Berlin--Heidelberg--N.Y.: Springer-Verlag, 1973.---viii+258 p. 50. Martio O., Rickman S., Vaisala J. Topological and metric properties of quasiregular mappings // Ann. Acad. Sci. Fenn. Ser. AI.---1971.---Vol. 488.---31 p. 51. Martio O. On the integrability of the derivative of a quasiregular mapping // Math. Scand.---1974.---Vol. 35.---P. 43--48. 52. Martio O. Modern Tools in the Theory of Quasiconformal Maps. Textos de Matematica. Serie B. Vol. 27.---Coimbra: Universidade de Coimbra, Departamento de Matematica, 2000.---43 p. 53. Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in Modern Mapping Theory.---N. Y.: Springer, 2009.---xii+367 p. 54. Meyers N. G., Elcrat A. Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions // Duke Math. J.---1975.---Vol. 42.---P. 121--136. 55. Morrey Ch. B. Multiple Integrals in the Calculus of Variations. Grundlehren der Math, Wiss. Vol. 130.---Berlin etc.: Springer-Verlag, 1966. 56. Muller S. Variational models for microstructure and phase transitions Calculus of variations and geometric evolution problems // Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME), Cetraro, Italy, June 15--22, 1996.---Berlin: Springer, 1999.---P. 85--210.---(Lect. Notes Math. Vol. 1713). 57. Reshetnyak Yu. G. Stability estimates in Liouville's theorem and \(L_p\)-integrability of the derivatives of quasiconformal mappings // Sib. Mat. Zh.---1976.---Vol. 17, № 4.---P. 868--896.---[Russian]; English transl.: Sib.Math. J.---1976.---Vol. 17, № 4.---P. 653--674. 58. Reshetnyak Yu. G. Space Mappings with Bounded Distortion.---Novosibirsk: Nauka, 1982.---288 p.---[Russian]. 59. Reshetnyak Yu. G. Stability Theorems in Geometry and Analysis.---Novosibirsk: Nauka, 1982.---232 p.---[Russian]. 60. Reshetnyak Yu. G. Space Mappings with Bounded Distortion.---Providence (R.I.): Amer. Math. Soc., 1989.---362 p.---(Transl. of Math. Monogr. Vol. 73.). 61. Reshetnyak Yu. G. Stability Theorems in Geometry and Analysis.---Dordrecht: Kluwer Acad. Publ., 1994.---xi+394 p.---(Math. and its Appl. Vol. 304.). 62. Reshetnyak Yu. G. Stability Theorems in Geometry and Analysis. 2nd rev. ed.---Novosibirsk: Izdatel'stvo Instituta Matematiki SO RAN, 1996.---424 p.---[Russian]. 63. Rickman S. Quasiregular Mappings.---Berlin: Springer-Verlag, 1993.---x+213 p.---(Results in Math. and Related Areas (3). Vol. 26.). 64. Sokolova T. V. Behavior of nearly homothetic mappings // Mat. Zametki.---1991.---Vol. 50, № 4.---P. 154--156.---[Russian]; English transl.: Math. Notes.---1991.---Vol. 50, № 4.---P. 1089--1090. 65. Sokolova T. V. Stability in the Space \(W^1_p\) of Homothety Transformations. Candidate's dissertation.---Novosibirsk, 1991.---[Russian]. 66. Sychev M. Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands // Ann. Inst. H. Poincare Anal. Non Lineaire.---1998.---Vol. 15.---P. 755--782. 67. Tong Y., Gu J. Li Y. A new inequality for weakly \((K_1,K_2)\)-quasiregular mappings // J. Inequal. Pure Appl. Math.---2007.---Vol. 8, № 3, Paper № 91.---4 p. 68. Vaisala J. Lectures on \(n\)-Dimensional Quasiconformal Mappings.---Berlin--Heidelberg--N.\,Y.: Springer-Verlag, 1971.---xiv+144 p. 69. Vuorinen M. Conformal Geometry and Quasiregular Mappings.---Berlin etc.: Springer-Verlag, 1988.---xix+209 p.---(Lect. Notes Math. Vol. 1319.). ← Содержание выпуска |
| |
|||
© 1999-2023 Южный математический институт | |||