ISSN печатной версии 1683-3414   •   ISSN он-лайн версии 1814-0807
    Войти
 

Контакты

Адрес: Россия, 362025, Владикавказ,
ул. Ватутина, 53
Тел.: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

Яндекс.Метрика

Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.

A note on weakly \(\aleph_1\)-separable \(p\)-groups

Danchev P. V.
Владикавказский математический журнал. . Том 9. 2007 г.. Выпуск 1.
Аннотация:
It is well-known by Hill-Griffith that there exist \(\aleph_1\)-separable \(p\)-primary groups which are not direct sums of cycles. A problem of challenging interest, mainly due to Hill (Rocky Mount. J. Math., 1971), is under what extra circumstances on the group structure this holds untrue, that is every \(\aleph_1\)-separable \(p\)-group is a direct sum of cyclic groups. We prove here that any weakly \(\aleph_1\)-separable \(p\)-group of cardinality not exceeding \(\aleph_1\) is quasi-complete precisely when it is a bounded direct sum of cycles, thus partly answering the posed question in the affirmative.
Ключевые слова: weakly \(\aleph_1\)-separable groups, quasi-complete groups, torsion-complete groups, bounded groups.
Язык статьи: Английский Загрузить полный текст  


← Содержание выпуска
 
  | Главная | Редколлегия | Публикационная этика | Рецензирование | Свежий номер | Архив | Правила для авторов | Работа с электронной редакцией | Подать статью |  
© 1999-2023 Южный математический институт