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934 Fran�cois Dahmani

The aim of this paper is to explain how to amalgamate geometrically �nite
convergence groups, or in another formulation, relatively hyperbolic groups,
and to deduce the relative hyperbolicity of Sela’s limit groups.

A group acts as a convergence group on a compact space M if it acts properly
discontinuously on the space of distinct triples of M (see the works of F Gehring,
G Martin, A Beardon, B Maskit, B Bowditch, and P Tukia [12], [1], [6], [30]).
The convergence action is uniform if M consists only of conical limit points;
the action is geometrically �nite (see [1], [5]) if M consists only of conical
limit points and of bounded parabolic points. The de�nition of conical limit
points is a dynamical formulation of the so called points of approximation, in
the language of Kleinian groups. A point of M is "bounded parabolic" is its
stabilizer acts properly discontinuously and cocompactly on its complement in
M , as it is the case for parabolic points of geometrically �nite Kleinian groups
acting on their limit sets (see [1], [5]). See De�nitions 1.1{1.3 below.

Let Γ be a group acting properly discontinuously by isometries on a proper
Gromov-hyperbolic space �. Then Γ naturally acts by homeomorphisms on
the boundary @�. If it is a uniform convergence action, Γ is hyperbolic in the
sense of Gromov, and if the action is geometrically �nite, following B Bowditch
[8] we say that Γ is hyperbolic relative to the family G of the maximal parabolic
subgroups, provided that these subgroups are �nitely generated. In such a case,
the pair (Γ;G) constitutes a relatively hyperbolic group in the sense of Gromov
and Bowditch. Moreover, in [8], Bowditch explains that the compact space @�
is canonically associated to (Γ;G): it does not depend on the choice of the
space �. For this reason, we call it the Bowditch boundary of the relatively
hyperbolic group.

The de�nitions of relative hyperbolicity in [8] (including the one mentionned
above) are equivalent to Farb’s relative hyperbolicity with the property BCP,
de�ned in [11] (see [29], [8], and the appendix of [10]).

Another theorem of Bowditch [7] states that the uniform convergence groups
on perfect compact spaces are exactly the hyperbolic groups acting on their
Gromov boundaries. A Yaman [32] proved the relative version of this theorem:
geometrically �nite convergence groups on perfect compact spaces with �nitely
generated maximal parabolic subgroups are exactly the relatively hyperbolic
groups acting on their Bowditch boundaries (stated below as Theorem 1.5).

We are going to formulate a de�nition of quasi-convexity (De�nition 1.6), gen-
eralizing an idea of Bowditch described in [6]. A subgroup H of a geometrically
�nite convergence group on a compact space M is fully quasi-convex if it is geo-
metrically �nite on its limit set �H �M , and if only �nitely many translates of
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Combination of convergence groups 935

�H can intersect non trivially together. We also use the notion of acylindrical
amalgamation, formulated by Sela [23], which means that there is a number k
such that the stabilizer of any segment of length k in the Serre tree, is �nite.

Theorem 0.1 (Combination theorem)

(1) Let Γ be the fundamental group of an acylindrical �nite graph of relatively
hyperbolic groups, whose edge groups are fully quasi-convex subgroups of the
adjacent vertices groups. Let G be the family of the images of the maximal
parabolic subgroups of the vertices groups, and their conjugates in Γ. Then,
(Γ;G) is a relatively hyperbolic group.

(2) Let G be a group which is hyperbolic relative to a family of subgroups G ,
and let P be a group in G . Let A be a �nitely generated group in which P
embeds as a subgroup. Then, Γ = A �P G is hyperbolic relative to the family
(H [ A), where H is the set of the conjugates of the images of elements of G
not conjugated to P in G, and where A is the set of the conjugates of A in Γ.

(3) Let G1 and G2 be relatively hyperbolic groups, and let P be a maximal
parabolic subgroup of G1 , which is isomorphic to a parabolic (not necessarly
maximal) subgroup of G2 . Let Γ = G1 �P G2 . Then Γ is hyperbolic relative to
the family of the conjugates of the maximal parabolic subgroups of G1 , except
P , and of the conjugates of the maximal parabolic subgroups of G2 .

(30) Let G be a relatively hyperbolic group and let P be a maximal parabolic
subgroup of G isomorphic to a subgroup of another parabolic subgroup P 0

not conjugated to P . Let Γ = G�P according to the two images. Then Γ is
hyperbolic relative to the family of the conjugates of the maximal parabolic
subgroups of G, except P (but including the parabolic group P 0 ).

Up to our knowledge, the assumption of �nite generation of the maximal
parabolic subgroups is useful for a proof of the equivalence of di�erent de�-
nitions of relative hyperbolicity. For the present work, it is not essential, and
without major change, one can state a combination theorem for groups act-
ing as geometrically �nite convergence groups on metrisable compact spaces in
general.

A �rst example of application of the main theorem is already known as a con-
sequence of Bestvina and Feighn Combination Theorem [3], [4], where there
are no parabolic group: acylindrical amalgamations of hyperbolic groups over
quasi-convex subgroups satisfy the �rst case of the theorem (see Proposition
1.11). Another important example is the amalgamation of relatively hyperbolic
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936 Fran�cois Dahmani

groups over a parabolic subgroup, which is stated as the third and fourth case.
They are in fact consequences of the two �rst cases.

Instead of choosing the point of view of Bestvina and Feighn [3], [4], and con-
structing a hyperbolic space on which the group acts in an adequate way (see
also the works of R Gitik, O Kharlampovich, A Myasnikov, and I Kapovich,
[13], [21], [18]), we adopt a dynamical point of view: from the actions of the ver-
tex groups on their Bowditch’s boundaries, we construct a metrizable compact
space on which Γ acts naturally, and we check (in section 3) that this action is
of convergence and geometrically �nite. At the end of the third part, we prove
the Theorem 0.1 using Bowditch{Yaman’s Theorem 1.5.

In other words, we construct directly the boundary of the group Γ. This is
done by gluing together the boundaries of the stabilizers of vertices in the Bass{
Serre tree, along the limit sets of the stabilizers of the edges. This does not
give a compact space, but the boundary of the Bass{Serre tree itself naturally
compacti�es it. This construction is explained in detail in section 2.

Thus, we have a good description of the boundary of the amalgamation. In
particular:

Theorem 0.2 (Dimension of the boundary)

Under the hypothesis of Theorem 0.1, let @Γ be the boundary of the relatively
hyperbolic group Γ. If the topological dimensions of the boundaries of the
vertex groups (resp. of the edge groups) are smaller than r (resp. than s),
then dim(@Γ) � Maxfr; s + 1g.

The application we have in mind is the study of Sela’s limit groups, or equiva-
lently !{residually free groups [24], [22]. In part 4, we answer the �rst question
of Sela’s list of problems [25].

Theorem 0.3 Limit groups are hyperbolic relative to their maximal abelian
non-cyclic subgroups.

This allows us to get some corollaries.

Corollary 0.4 Every limit group satis�es the Howson property: the intersec-
tion of two �nitely generated subgroups of a limit group is �nitely generated.

Corollary 0.5 Every limit group admits a Z {structure in the sense of Bestv-
ina ([2], [9]).
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The �rst corollary was previously proved by I Kapovich in [19], for hyperbolic
limit groups (see also [20]).

I am grateful to T Delzant, for his interest, and advices, and to Z Sela who sug-
gested the problem about limit groups to me. I also want to thank B Bowditch,
I Kapovich, G Swarup, and F Paulin for their comments and questions. Finally
I am deeply grateful to the referee for his/her remarks.

1 Geometrically �nite convergence groups, and rel-
ative hyperbolicity

1.1 De�nitions

We recall the de�nitions of [1], [6] and [30].

De�nition 1.1 (Convergence groups)

A group Γ acting on a metrizable compact space M is a convergence group on
M if it acts properly discontinuously on the space of distinct triples of M .

If the compact space M has more than two points, this is equivalent to say
that the action is of convergence if, for any sequence (γn)n2N of elements of Γ,
there exists two points � and � in M , and a subsequence (γ�(n))n2N , such that
for any compact subspace K �M n f�g, the sequence (γ�(n)K)n2N , uniformly
converges to � .

De�nition 1.2 (Conical limit point, bounded parabolic point)

Let Γ be a convergence group on a metrizable compact space M . A point
� 2M is a conical limit point if there exists a sequence in Γ, (γn)n2N , and two
points � 6= � , in M , such that γn� ! � and γn�

0 ! � for all �0 6= � .

A subgroup G of Γ is parabolic if it is in�nite, �xes a point � , and contains no
loxodromic element (a loxodromic element is an element of in�nite order �xing
exactly two points in the boundary). In this case, the �xed point of G is unique
and is referred to as a parabolic point. Such a point � 2M is bounded parabolic
if its stabilizer Stab(�) acts properly discontinuously co-compactly on M nf�g.

Note that the stabilizer of a parabolic point is a maximal parabolic subgroup
of Γ.
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938 Fran�cois Dahmani

De�nition 1.3 (Geometrically �nite groups)

A convergence group on a compact space M is geometrically �nite if M consists
only of conical limit points and bounded parabolic points.

Here is a geometrical counterpart (see [14], [8]).

De�nition 1.4 (Relatively hyperbolic groups)

We say that a group Γ is hyperbolic relative to a family of �nitely generated
subgroups G , if it acts properly discontinuously by isometries, on a proper
hyperbolic space �, such that the induced action on @� is of convergence,
geometrically �nite, and such that the maximal parabolic subgroups are exactly
the elements of G .

In this situation we also say that the pair (Γ;G) is a relatively hyperbolic group.

The boundary of � is canonical in this case (see [8]); we call it the boundary of
the relatively hyperbolic group (Γ;G), or the Bowditch boundary, and we write
it @Γ.

As recalled in the introduction, one has:

Theorem 1.5 (Yaman [32], Bowditch [7] for groups without parabolic sub-
groups)

Let Γ be a geometrically �nite convergence group on a perfect metrizable com-
pact space M , and let G be the family of its maximal parabolic subgroups.
Assume that each element of G is �nitely generated. Assume that there are
only �nitely many orbits of bounded parabolic points. Then (Γ;G) is relatively
hyperbolic, and M is equivariantly homeomorphic to @Γ.

In fact, by a result of Tukia ([31], Theorem 1B), the assumption of �niteness of
the set of orbits of parabolic points can be omitted. With this dictionary be-
tween geometrically �nite convergence groups, and relatively hyperbolic groups,
we will sometimes say that a group Γ is relatively hyperbolic with Bowditch
boundary @Γ, when we mean that the pair (Γ;G) is relatively hyperbolic, where
G is the family of maximal parabolic subgroups in the action on @Γ.
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1.2 Fully quasi-convex subgroups

Let Γ be a convergence group on M . According to [6], the limit set �H of
an in�nite non virtually cyclic subgroup H , is the unique minimal non-empty
closed H {invariant subset of M . The limit set of a virtually cyclic subgroup
of Γ is the set of its �xed points in M , and the limit set of a �nite group is
empty. We will use this for relatively hyperbolic groups acting on their Bowditch
boundaries.

De�nition 1.6 (Quasi-convex and fully quasi-convex subgroups)

Let Γ be a relatively hyperbolic group, with Bowditch boundary @Γ, and let
H be a group acting as a geometrically �nite convergence group on a compact
space @H . We assume that H embeds in Γ as a subgroup. We say that H is
quasi-convex in Γ if its limit set �H � @Γ is equivariantly homeomorphic to
@H .

It is fully quasi-convex if it is quasi-convex and if, for any in�nite sequence
(γn)n2N all in distinct left cosets of H , the intersection

T
n(γn�H) is empty.

Remark (i) If H is a subgroup of Γ, and if Γ acts as a convergence group on
a compact space M , every conical limit point for H acting on �H � M , is a
conical limit point for H acting in M , and therefore, even for Γ acting on M .
Therefore it is not a parabolic point (see the result of Tukia, described in [6]
Prop.3.2, see also [31]), and each parabolic point for H in �H is a parabolic
point for Γ in M , and its maximal parabolic subgroup in H is exactly the
intersection of its maximal parabolic subgroup in Γ with H .

Remark (ii) if H is a quasiconvex subgroup of a relatively hyperbolic group
Γ, and if its maximal parabolic subgroups are �nitely generated, then it is
hyperbolic relative to these maximal parabolic subgroups (by Theorem 1.5),
hence it is �nitely generated. In particular, it is always the case when the
parabolic subgroups of Γ are �nitely generated abelian groups.

Remark (iii) If H � G � Γ are three relatively hyperbolic groups, such that
G is fully quasi-convex in Γ, and H is fully quasi-convex in G, then H is fully
quasi-convex in Γ. Indeed, the limit set of H in Γ is the image of the limit set
of H in G by the equivariant inclusion map @(G) ,! @(Γ).

Lemma 1.7 (‘Full’ intersection with parabolic subgroups)

Let Γ be a relatively hyperbolic group with boundary @Γ, and H be a fully
quasi-convex subgroup. Let P be a parabolic subgroup of Γ. Then P \H is
either �nite, or of �nite index in P .
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Let p 2 @Γ the parabolic point �xed by P . Assume P \H is not �nite, so that
p 2 �H . Then p is in every translate of �H by an element of P . The second
point of De�nition 1.6 shows that there are �nitely many such translates: P \H
is of �nite index in P .

Proposition 1.8 Let (Γ;G) be a relatively hyperbolic group, and @Γ its
Bowditch boundary. Let H be a quasi-convex subgroup of Γ, and �H be
its limit set in @Γ. Let (γn)n2N be a sequence of elements of Γ all in dis-
tinct left cosets of H . Then there is a subsequence (γ�(n)) such that γ�(n)�H
uniformly converges to a point.

Unfortunately I do not know any purely dynamical proof of this proposition,
that would only involve the geometrically �nite action on the boundary.

There is a proper hyperbolic geodesic space X , with boundary @Γ, on which Γ
acts properly discontinuously by isometries. We assume that �H contains two
points �1 and �2 , otherwise the result is a consequence of the compactness of
@Γ. Let B(�H) be the union of all the bi-in�nite geodesic between points of
�H in X , and p be a point in it. Note that B(�H) is quasi-convex in X , and
that H acts on it properly discontinuously by isometries. We prove that the
boundary @(B(�H)) of B(�H) is precisely �H . Indeed, if pn is a sequence
of points in B(�H) going to in�nity, there are bi-in�nite geodesics (�n; �n)
containing each pi , with �n and �n in �H . Let us extract a subsequence such
that (�n)n converges to a point � 2 @(Γ), and �n ! � 2 @(Γ). As �H is closed,
� and � are in it, and the sequence (pn)n must converge to one of these two
points (or both if they are equal).

By our de�nition of quasi-convexity, H acts on @(B�H) = �H as a geometri-
cally �nite convergence group.

To prove the proposition, it is enough to prove that a subsequence of the
sequence dist(γ−1

n p;B(�H)) tends to in�nity. Indeed, by quasi-convexity of
B(�H) in X , for all � and � in �H , the Gromov products (γn� � γn�)p are
greater than dist(γ−1

n p;B(�H))−K , where K depends only on � and on the
quasi-convexity constant of B(�H). Thus, we now want to prove that a sub-
sequence of dist(γ−1

n p;B(�H)) tends to in�nity.

For all n, let hn 2 H be such that dist(hnp; γ−1
n p) is minimal among the

distances dist(hp; γ−1
n p), h 2 H . We prove the lemma:

Lemma 1.9 The sequence (dist(hnp; γ−1
n p))n tends to in�nity.
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Indeed, if a subsequence was bounded by a number N , then for in�nitely many
indexes, the point h−1

n γ−1
n p is in the ball of X of center p and of radius N .

Therefore, there exists n and m 6= n such that h−1
n γ−1

n = h−1
m γ−1

m , which
contradicts our hypothesis that all the γn are in distinct left cosets of H .

Let us resume the proof of Proposition 1.8. For all n, let now qn be a point
in B(�H) such that dist(γ−1

n p;B(�H)) = dist(γ−1
n p; qn). By the triangular

inequality, dist(qn; γ−1
n p) � dist(hnp; γ−1

n p) − dist(hnp; qn). If (dist(hnp; qn))n
does not tend to in�nity, then a subsequence of (dist(qn; γ−1

n p))n tends to in�n-
ity and we are done. Assume now that (dist(hnp; qn))n tends to in�nity. After
translation by h−1

n , the sequence (dist(p; h−1
n qn))n tends to in�nity. Recall an

usual result (Proposition 6.7 in [8]): given a Γ{invariant system of horofunctions
(��)�2� , for the set � of bounded parabolic points in @Γ, for all t, there exists
only �nitely many horofunctions ��1 : : : ��k such that ��i(p) � t. As there are
�nitely many orbits of bounded parabolic points in �H , it is possible to choose
t such that for every � 2 �\�H , there exists h 2 H such that ��(hp) � t+ 1.
The group H , as a geometrically �nite group, acts co-compactly in the comple-
ment of a system of horoballs in B(�H) (Proposition 6.13 in [8]). By de�nition
of the elements hn , for all h 2 H , one has dist(hp; h−1

n qn) � dist(p; h−1
n qn),

and the latter tends to in�nity. Therefore the sequence h−1
n qn leaves the com-

plement of any system of horoballs. In other words, for all M > 0, there exists
n0 such that for all n � n0 , there is i 2 f1; : : : ; kg such that ��i(h

−1
n qn) �M .

Therefore, one can extract a subsequence such that for some horofunction �
associated to a bounded parabolic point in �H , �(h−1

n qn) tends to in�nity.
If dist(h−1

n qn; h
−1
n γ−1

n p) remains bounded, then �(h−1
n γ−1

n p) tends to in�nity,
which is in contradiction with Lemma 6.6 of [8], because h−1

n γ−1
n p is in the

Γ-orbit of p. Therefore a subsequence of dist(h−1
n qn; h

−1
n γ−1

n p) tends to in-
�nity, and after translation by hn , this gives the result: a subsequence of
dist(B(�H); γ−1

n p) tends to in�nity.

The following statement appears in [15] and also in [26], for hyperbolic groups.
Note that this is no longer true for (non fully) quasi-convex subgroups.

Proposition 1.10 (Intersection of fully quasi-convex subgroups)

Let Γ be a relatively hyperbolic group with boundary @Γ. If H1 and H2 are
fully quasi-convex subgroups of Γ, then H1\H2 is fully quasi-convex, moreover
�(H1 \H2) = �H1 \ �H2 .

As, for i = 1 and 2, Hi is a convergence group on �Hi , and as any sequence of
distinct translates of �Hi has empty intersection, the same is true for H1 \H2

on �H1 \ �H2 .

Geometry & Topology, Volume 7 (2003)



942 Fran�cois Dahmani

Let p 2 (�H1\�H2) a parabolic point for Γ, and P < Γ its stabilizer. For i = 1
and 2, the group Hi\P is maximal parabolic in Hi , hence in�nite. By Lemma
1.7, they are both of �nite index in P , and therefore so is their intersection.
Hence p is a bounded parabolic point for H1 \H2 in (�H1 \ �H2).

Let � 2 (�H1 \�H2) be a conical limit point for Γ. Then, by the �rst remark
after the de�nition of quasi-convexity, it is a conical limit point for each of the
Hi .

According to the de�nition of conical limit points, let (γn)n2N be a sequence of
elements in Γ such that there exists � and � two distinct points in @Γ, with
γn� ! � , and γn�

0 ! � for all other �0 . There exists a subsequence of (γn)n2N
staying in a same left coset of H1 : if not, the fact that two sequences (γn�)n2N
and (γn�0)n2N , for �0 2 �H1 n f�g converge to two di�erent points contradicts
the Proposition 1.8. By the same argument, there exists a subsequence of the
previous subsequence that remains in a same left coset of H1 , and in a same
left coset of H2 . Therefore it stays in a same left coset of H1 \ H2 ; we can
assume that we chose the sequence (γn)n2N such that there exists γ 2 Γ and
(hn)n2N a sequence of elements of H1 \H2 , such that 8n; γn = γhn .

Therefore hn� ! γ−1� , and hn�
0 ! γ−1� for all other �0 . This means that

� 2 �(H1 \H2) is a conical limit point for the action of (H1 \H2). This ends
the proof of Proposition 1.10.

We emphasize the case of hyperbolic groups, studied by Bowditch in [6].

Proposition 1.11 (Case of hyperbolic groups)

In a hyperbolic group, a proper subgroup is quasi-convex in the sense of quasi-
convex subsets of a Cayley graph, if and only if it is fully quasi-convex.

B Bowditch proved in [6] that a subgroup H of a hyperbolic group Γ is quasi-
convex if and only if it is hyperbolic with limit set equivariantly homeomor-
phic to @H . It remains only to see that, if H is quasi-convex in the classical
sense, then the intersection of in�nitely many distinct translates

T
n2N(γn@H)

is empty, and we prove it by contradiction. Let us choose � in
T
n2N(γn@H).

Then, there is L > 0 depending only on the quasi-convexity constant of H
in Γ, and there is, in each coset γnH , an L-quasi-geodesic ray rn(t) tend-
ing to � . As they converge to the same point in the boundary of a hy-
perbolic space, there is a constant D such that for all i and j we have:
9ti;j 8t > ti;j; 9t0; dist(ri(t); rj(t0)) < D . Let N be a number larger than the
number of vertices in the a of radius D in the Cayley graph of Γ, and consider
a point r1(T ) with T bigger than any ti;j , for i; j � N . Then each ray ri ,
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i � N , has to pass through the ball of radius D centered in r1(T ). By a pigeon
hole argument, we see that two of them pass through the same vertex, but they
were supposed to be in disjoint cosets.

Our point of view in De�nition 1.6 is a generalization of the de�nitions in [6],
given for hyperbolic groups.

2 Boundary of an acylindrical graph of groups

Let Γ be as the �rst or the second part of Theorem 0.1. We will say that we
are in Case (1) (resp. in Case (2)) if Γ satis�es the �rst (resp. the second)
assumption of Theorem 0.1. However, we will need this distinction only for the
proof of Proposition 2.2.

Let T be the Bass-Serre tree of the splitting, and � , a subtree of with T which is
a fundamental domain. We assume that the action of Γ on T is k{acylindrical
for some k 2 N (from Sela [23]): the stabilizer of any segment of length k is
�nite.

We �x some notation: if v is a vertex of T , Γv is its stabilizer in Γ. Similarly,
for an edge e, we write Γe for its stabilizer. For a vertex v , Γv is relatively
hyperbolic. This is by assumption in Case (1), and in Case (2), if Γv is conju-
gated to A, we consider that it is hyperbolic relative to itself; in this case the
space � of De�nition 1.4 is just an horoball, and its Bowditch boundary is a
single point. For the existence of such a hyperbolic horoball, notice that the
second de�nition of Bowditch [8] indicates that the group A � A is hyperbolic
relative to the conjugates of both factors. Indeed we do not need to know the
existence of such an horoball, but only that A acts as a geometrically �nite
convergence group on a single point, which is trivial.

2.1 De�nition of M as a set

Contribution of the vertices of T

Let V(�) be the set of vertices of � . For a vertex v 2 V(�), the group Γv is by
assumption a relatively hyperbolic group and we denote by @(Γv) a compact
space homeomorphic to its Bowditch boundary. Thus, Γv is a geometrically
�nite convergence group on @(Γv).

We set Ω to be Γ�
�F

v2V(�) @(Γv)
�

divided by the natural relation

(γ1; x1) = (γ2; x2) if 9v 2 V(�); xi 2 @(Γv); γ−1
2 γ1 2 Γv; γ−1

2 γ1x1 = x2:
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944 Fran�cois Dahmani

In particular, for each v 2 � , the compact space @Γv naturally embeds in Ω as
the image of f1g � @Γv . We identify it with its image. The group Γ naturally
acts on the left on Ω. The compact space γ@(Γv) is called the boundary of the
vertex stabilizer Γγv .

Contribution of the edges of T

Each edge will allow us to glue together boundaries of vertex stabilizers along
the limit sets of the stabilizer of the edge. We explain precisely how.

For an edge e = (v1; v2) in � , the group Γe embeds as a quasi-convex subgroup
in both Γvi , i = 1; 2. Thus, by de�nition of quasi-convexity, these embedings
de�ne equivariant maps �(e;vi) : @(Γe) ,! @(Γvi), where @(Γe) is the Bowditch
boundary of the relatively hyperbolic group Γe . Similar maps are de�ned by
translation, for edges in T n � .

The equivalence relation � on Ω is the transitive closure of the following: for
v and v0 are vertices of T , the points � 2 @(Γv) and �0 2 @(Γv0) are equivalent
in Ω if there is an edge e between v and v0 , and a point x 2 @(Γe) satisfying
simultaneously � = �(e;v)(x) and �0 = �(e;v0)(x).

Lemma 2.1 Let � be the projection corresponding to the quotient: � : Ω!
Ω=� . For all vertex v , the restriction of � on @(Γv) is injective.

Let � and �0 be two points of Ω, both of them being in the boundary of a vertex
stabilizer @(Γv). If they are equivalent for the relation above, then there is a
sequence of consecutive edges e1 = (v; v1); e2 = (v1; v2) : : : en = (vn−1; v), the
�rst one starting at v0 = v and the last one ending at vn = v , and a sequence
of points �i 2 @(Γvi), for i � n−1, such that, for all i, there exists xi 2 @(Γei),
satisfying �i = �(ei;vi−1)(xi) and �i+1 = �(ei;vi)(xi). As T is a tree, it contains
no simple loop, and there exists an index i such that vi−1 = vi+1 . As, for
all j , the maps �(ej ;vj) are injective, the points �i−1 and �i+1 are the same
in @(Γ(vi−1)), and inductively, we see that � and �0 are the same point. This
proves the claim.

Note that the group Γ acts on the left on Ω=� . Let @T be the (visual) boundary
of the tree T : it is the space of the rays in T starting at a given base point; let
us recall that for its topology, a sequence of rays (�n) converges to a given ray
�, if �n and � share arbitrarily large pre�xes, for n large enough. We de�ne
M as a set:

M = @T t (Ω=�):
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As before, let � be the projection corresponding to the quotient: � : Ω! Ω=� .
For a given edge e with vertices v1 and v2 , the two maps � � �(e;vi) : @(Γe)!
Ω=� (i = 1; 2), are two equal homeomorphisms on their common image. We
identify this image with the Bowditch boundary of Γe , @(Γe), and we call this
compact space, the boundary of the edge stabilizer Γe .

2.2 Domains

Let V(T ) be the set of vertices of T . We still denote by � the projection:
� : Ω ! Ω=� . Let � 2 Ω=� . We de�ne the domain of � , to be D(�) = fv 2
V(T ) j � 2 �(@(Γv))g. As we want uniform notations for all points in M , we
say that the domain of a point � 2 @T is f�g itself.

Proposition 2.2 (Domains are bounded)

For all � 2 Ω=� , D(�) is convex in T , its diameter is bounded by the acylin-
dricity constant, and the intersection of two distinct domains is �nite. The
quotient of D(�) by the stabilizer of � is �nite.

Remark In Case (1), we will even prove that domains are �nite, but this is
false in Case (2).

The equivalence � in Ω is the transitive closure of a relation involving points
in boundaries of adjacent vertices, hence domains are convex.

End of the proof in Case (2) As P is a maximal parabolic subgroup of
G, its limit set is a single point: @(P ) is one point belonging to the boundary
of only one stabilizer of an edge adjacent to the vertex vG stabilized by G.
Hence, the domain of � = @(ΓvA) is fvAg [ Link(vA), that is vA with all its
neighbours, whereas the domain of a point � which is not a translate of @(ΓvA),
is only one single vertex.

Domains have therefore diameter bounded by 2, and any two of them intersect
only on one point. For the last assertion, note that A stabilizes the point
@(ΓvA), and acts transitively on the edges adjacent to vA . This proves the
lemma in Case (2).

In Case (1), we need a lemma:

Lemma 2.3 In Case (1), let � 2 Ω=� . The stabilizer of any �nite subtree of
D(�) is in�nite.
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If a subtree, whose vertices are fv1; : : : ; vng, is in D(�), then there exists a
group H embedded in each of the vertex stabilizers Γvi as a fully quasi-convex
subgroup, with � in its limit set.

The �rst assertion is clearly a consequence of the second one, we will prove the
latter by induction.

If n = 1, H is the vertex stabilizer. For larger n, re-index the vertices so that
vn is a �nal leaf of the subtree fv1; : : : ; vng, with unique neighbor vn−1 . Let e
be the edge fvn−1; vng. The induction gives Hn−1 , a subgroup of the stabilizers
of each vi , i � n−1, and with � 2 @Hn−1 . As � 2 @(Γvn), it is in @(Γe), and we
have � 2 @Hn−1\@(Γe). By Proposition 1.10, Hn−1\Γe is a fully quasi-convex
subgroup of Γvn−1 , and therefore, it is a a fully quasi-convex subgroup of Γe ,
and of Hn−1 . Therefore, (see Remark (iii)), it is a fully quasi-convex subgroup
of Γvn , and of each of the Γi , for i � (n− 1), with � in its limit set. It is then
adequate for H ; this proves the claim, and Lemma 2.3.

End of the proof of Prop. 2.2 in Case (1) By Lemma 2.3, each segment
in D(�) has an in�nite stabilizer, hence by k{acylindricity, Diam(D(�)) �
k . Domains are bounded, and they are locally �nite because of the second
requirement of De�nition 1.6, therefore they are �nite. The other assertions
are now obvious.

2.3 De�nition of neighborhoods in M

We will describe (Wn(�))n2N;�2M , a family of subsets of M , and prove that it
generates an topology (Theorem 2.10) which is suitable for our purpose.

For a vertex v , and an open subset U of @(Γv), let Tv;U be the subtree whose
vertices w are such that [v;w] starts by an edge e with @(Γe) \ U 6= ;.

For each vertex v in T , let us choose U(v), a countable basis of open neigh-
borhoods of @(Γv), seen as the Bowditch boundary of Γv . Without loss of
generality, we can assume that for all v , the collection of open subsets U(v)
contains @(Γv) itself.

Let � be in Ω=� , and D(�) = fv1; : : : ; vn; : : :g = (vi)i2I . Here, the set I is a
subset of N. For each i 2 I , let Ui � @(Γvi) be an element of U(vi), containing
� , such that for all but �nitely many indices i 2 I , Ui = @(Γvi).

The set W(Ui)i2I (�) is the disjoint union of three subsets W(Ui)i2I (�) = A[B[C :
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� A =
T
i2I @(Tvi;Ui),

� B = f� 2 (Ω=�) n (
S
i2I @(Γvi)) j D(�) �

T
i2I Tvi;Uig

� C = f� 2
S
j2I @(Γvj ) j � 2

T
m2Ij�2@(Γvm ) Umg.

Remark The set of elements of Ω=� is not countable, nevertheless, the set
of di�erent possible domains is countable. Indeed a domain is a �nite subset
of vertices of T or the star of a vertex of T , and this makes only countably
many possibilities. The set W(Ui)i2I (�) is completely de�ned by the data of the
domain of � , the data of a �nite subset J of I , and the data of an element of
U(vj) for each index j 2 J . Therefore, there are only countably many di�erent
sets W(Ui)i2I (�), for � 2 Ω=� , and Ui 2 U(vi), vi 2 D(�). For each � we choose
an arbitrary order and denote them Wm(�).

Let us choose v0 a base point in T . For � 2 @T , we de�ne the subtree Tm(�):
it consists of the vertices w such that [v0; w]\ [v0; �) has length bigger than m.
We set Wm(�) = f� 2 M j D(�) � Tm(�)g. Up to a shift in the indexes, this
does not depend on v0 , for m large enough.

Lemma 2.4 (Avoiding an edge)

Let � be a point in M , and e an edge in T with at least one vertex not in
D(�). Then, there exists an integer n such that Wn(�) \ @(Γe) = ;.

If � is in @T the claim is obvious. If � 2 Ω=� , as T is a tree, there is a unique
segment from the convex D(�) to e. Let v be the vertex of D(�) where this
path starts, and e0 be its �rst edge. It is enough to �nd a neighborhood of �
in @(Γv) that misses @(Γe0). As one vertex of e0 is not in D(�), � is not in
@(Γe0), which is compact. Hence such a separating neighborhood exists.

2.4 Topology of M

In the following, we consider the smallest topology T on M such that the family
of sets fWn(�); n 2 N; � 2 Mg, with the notations above, are open subsets of
M .

Lemma 2.5 The topology T is Hausdor�.

Let � and � two points in M . If the subtrees D(�) and D(�) are disjoint, there
is an edge e that separates them in T , and Lemma 2.4 gives two neighborhoods
of the points that do not intersect. Even if D(�) \ D(�) is non-empty, it is
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nonetheless �nite (Proposition 2.2). In each of its vertex vi , we can choose
disjoint neighborhoods Ui and Vi for the two points. This gives rise to sets
Wn(�) and Wm(�) which are separated.

Lemma 2.6 (Filtration)

For every � 2 M , every integer n, and every � 2 Wn(�), there exists m such
that Wm(�) �Wn(�).

If D(�) and D(�) are disjoint, again, Lemma 2.4 gives a neighborhood of � ,
Wm(�) that do not meet @(Γe), whereas @(Γe) � Wn(�), because � 2 Wn(�).
By de�nition of our family of neighborhoods, Wm(�) �Wn(�).

If the domains of � and � have a non-trivial intersection, either the two points
are equal (and there is nothing to prove), or the intersection is �nite (Prop.
2.2). Let (vi)i2I = D(�), let (Ui)i2I be such that Wn(�) = W(Ui)i(�), and let
J � I be such that D(�) \ D(�) = (vj)j2J . In this case, we can choose, for
all j 2 J , a neighbourhood of � in @(Γj), U 0j � Uj such that U 0j do not meet
the boundary of the stabilizer of an edge (vj ; vi) for any i 2 I � J ; this gives
Wm(�) �Wn(�).

Corollary 2.7 The family fWn(�)gn2N;�2M is a fundamental system of open
neighborhoods of M for the topology T .

It is enough to show that the intersection of two such sets is equal to the union
of some other ones. Let Wn1(�1) and Wn2(�2) be in the family. Let � be
in their intersection. Lemma 2.6 gives W(Uj)j (�) � Wn1(�1) and W(Vj)j (�) �
Wn2(�2). As W(Uj)j (�) \W(Vj)j (�) = W(Uj\Vj)j (�), we get an integer m� such
that Wm� (�) is included in both Wni(�i). Therefore, Wn1(�1) \ Wn2(�2) =S
�2Wn1(�1)\Wn2 (�2)Wm� (�).

Corollary 2.8 Recall that � be the projection corresponding to the quotient:
� : Ω! Ω=� . For all vertex v , the restriction of � on @(Γv) is continuous.

Let � be in @(Γv), and let (�n)n be a sequence of elements of @(Γv) converging
to � for the topology of @(Γv). Let (Un)n be a system of neighbourhoods of
� in @(Γv), such that for all n, for all n0 � n, �n0 2 Un . Let D(�(�)) =
fv; v2; : : :g in T , and consider Wm = W(Ui(m))(�(�)), such that U1(m) � Un .
By de�nition, W(Ui(m))(�(�)) \ �(@(Γv)) is the image by � of an open subset
of U1(m) containing � . Therefore, by property of fundamrental systems of
neighbourhoods, �(�n) converges to �(�). Therefore � is continuous.
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From now, we identify � and �(�) in such situation.

Lemma 2.9 The topology T is regular, that is, for all � , for all m, there
exists n such that Un(�) � Um(�).

In the case of � 2 @T , the closure of Wn(�) is contained in W 0n(�) = f� 2
M jD(�)\ Tn(�) 6= ;g (compare with the de�nition of Wn(�)). As, by Proposi-
tion 2.2, domains have uniformly bounded diameters, we see that for arbitrary
m, if n is large enough, Wn(�) �Wm(�).

In the case of � 2 Ω=� , W(Ui)i(�)nW(Ui)i(�) contains only points in the bound-
aries of vertices of D(�), and those are in the closure of the Ui (which is
non-empty only for �nitely many i), and in the boundary (not in Ui ) of edges
meeting Ui n f�g. Therefore, given Vi � @(Γvi), with strict inclusion only for
�nitely many indices, if we choose the Ui small enough to miss the boundary
of every edge non contained in Vi , except the ones meeting � itself, we have
W(Ui)i(�) �W(Vi)i(�).

Theorem 2.10 Let Γ be as in Theorem 0.1. With the notations above,
fWn(�); n 2 N; � 2Mg is a base of a topology that makes M a perfect metriz-
able compact space, with the following convergence criterion: (�n ! �) ()
(8n9m08m > m0; �m 2Wn(�)) .

The topology is, by construction, second countable, separable. As it is also
Hausdor� (Lemma 2.5) and regular (Lemma 2.9), it is metrizable. The con-
vergence criterion is an immediate consequence of Corollary 2.7. Let us prove
that it is sequentially compact. Let (�n)n2N be a sequence in M , we want to
extract a converging subsequence. Let us choose v a vertex in T , and for every
n, vn 2 D(�n) minimizing the distance to v (if �n 2 @T , then vn = �n ). There
are two possibilities (up to extracting a subsequence): either the Gromov prod-
ucts (vn � vm)v remain bounded, or they go to in�nity. In the second case, the
sequence (vn)n converges to a point in @T , and by our convergence criterion,
we see that (�n)n converges to this point (seen in @T � M ). In the �rst case,
after extraction of a subsequence, one can assume that the Gromov products
(vn � vm)v are constant equal to a number N . Let gn be a geodesic segment or
a geodesic ray between v and vn . there is a segment g = [v; v0] of length N ,
which is contained in every gn , and for all distinct n and m, gn and gm do not
have a pre�x longer than g .

Either there is a subsequence so that gnk = g for all nk , and as @Γv0 is compact,
this gives the result, or there is a subsequence such that every gnk is strictly
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longer than g . Let enk be the edge of gnk following v0 . All the enk are distinct,
therefore, by Proposition 1.8, one can extract another subsequence such that
the sequence of the boundaries of their stabilizers converge to a single point
of @Γv0 . The convergence criterion indicates that the subsequence of (�nk)n
converges to this point.

Therefore, M is sequentially compact and metrisable, hence it is compact. It
is perfect since @T has no isolated point, and accumulates everywhere.

Theorem 2.11 (Topological dimension of M ) [Theorem 0.2]

dim(M) � maxv;efdim(@(Γv)); dim(@(Γe)) + 1g.

It is enough to show that every point has arbitrarily small neighborhoods whose
boundaries have topological dimension at most (n−1) (see the book [16], where
this property is set as a de�nition).

If � 2 @T , the closure of Wn(�) is contained in W 0n(�) = f� 2M jD(�)\Tn(�) 6=
;g (compare with the de�nition of Wn(�)). The boundary of Wn(�) is therefore
a compact subspace of the boundary of the stabilizer of the unique edge that
has one and only one vertex in Tn(�); the boundary of Wn(�) has dimension
at most maxefdim(@(Γe))g.
If � 2 Ω=� , W(Ui)i(�) n W(Ui)i(�) contains only points in the boundaries of
vertices of D(�), and those are in the closure of the Ui (which is non-empty
only for �nitely many i), and in the boundaries (not in Ui) of stabilizers of
edges that meet Ui n f�g. Hence, the boundary of a neighborhood Wn(�) is
the union of boundaries of neighborhoods of � in @(Γvi) and of a compact
subspace of the boundary of countably many stabilizers of edges. As the di-
mension of a countable union of compact spaces of dimension at most n is of
dimension at most n (Theorem III.2 in [16]), its dimension is therefore at most
maxv;efdim(@(Γv))− 1; dim(@(Γe))g. This proves the claim.

3 Dynamic of Γ on M

We assume the same hypothesis as for Theorem 2.10. We �rst prove two lem-
mas, and then we prove the di�erent assertions of Theorem 3.7.

Lemma 3.1 (Large translations)

Let (γn)n2N be a sequence in Γ. Assume that, for some (hence any) vertex
v0 2 T , dist(v0; γnv0) ! 1. Then, there is a subsequence (γ�(n))n2N , there
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is a point � 2 M , and a point � 0 2 @T , such that for all compact subspace
K � (M n f� 0g), one has γ�(n)K ! � uniformly.

Let �0 be in @(Γv0). Using the sequential compactness of M , we choose a
subsequence (γ�(n))n2N such that (γ�(n)�0)n converges to a point � in M ; we
still have dist(v0; γ�(n)v0)!1.

Let v1 be another vertex in T . The lengths of the segments [γnv0; γnv1] are all
equal to the length of [v0; v1], therefore, for all m, there is nm such that for
all n > nm , the segments [v0; γ�(n)v0] and [v0; γ�(n)v1] have a common pre�x
of length more than m.

Let �1; �2 in @T . The center of the triangle (v0; �1; �2) is a vertex v in T .
Therefore, for all m � 0, the segments [v0; γ�(n)v0] and [v0; γ�(n)v] coincide on
a subsegment of length more than m, for su�ciently large integers n. This
means that for at least one of the �i , the ray [v0; γ�(n)�i) has a common pre�x
with [v0; γ�(n)v0] of length at least m. By convergence criterion, (γ�(n)�i)
converges to � . Therefore there exits � 0 in @Γ, such that any other point
�" 2 (@T n f� 0g), satis�es γ�(n)�"! � .

Let K be a compact subspace of (M n f� 0g). There exists a vertex v0 , a
point � 2 @T , and a neighborhood Wm(�) (see the de�nition in the section
above, where v0 is the base point) of � containing K , not containing � 0 . Let
v be on the ray [v0; �), at distance m from v0 . Then for all points �0 in
Wm(�) the ray [v0; �

0) has the pre�x [v0; v]. As the sequence (γ�(n)@Γv)n2N
uniformly converges to � , the sequence (γ�(n)Wm(�))n2N uniformly converges
to this point. Therefore, the convergence is uniform on K .

Lemma 3.2 (Small translation)

Let (γn)n2N be a sequence of distinct elements of Γ, and assume that for some
(hence any) vertex v0 , the sequence (γnv0)n is bounded in T . Then there
exists a subsequence (γ�(n))n2N , a vertex v , a point � 2 @(Γv), and another
point � 0 2 Ω=� , such that, for all compact subspace K of M n f� 0g, one has
γ�(n)K ! � uniformly.

We distinguish two cases. First, we assume that for some vertex v , and for some
element γ 2 Γ, there exists a subsequence such that γn = hnγ , with hn 2 Γv
for all n. In such a case, we can extract again a subsequence (but, without
loss of generality, we still denote it by (γn)n ) such that there exists a point
� 0 2 @(Γγ−1v) and a point � 2 @(Γv), such that for every compact subspace
Kγ−1v � @(Γγ−1v)nf� 0g, our subsequence of γnKγ−1v converges to � uniformly.
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Assume that � 0 is not a parabolic point for Γv in @(Γv). For any vertex w
in D(γ� 0), let e be the �rst edge of the segment [v;w]. The boundary of its
stabilizer contains � 0 . The elements hn are all, except �nitely many, in the same
left coset of Stab(e), otherwise, as hnγ� 0 and hn� go to di�erent points, for all
� 6= γ� 0 in @(Γe) n f� 0g (which is non empty since � 0 is not parabolic), we get
a contradiction with Proposition 1.8. Therefore, we can extract a subsequence
(but, without loss of generality, we still denote it by (γn)n ) such that, for
each vertex γ−1w 2 D(� 0), for each compact subspace Kγ−1w of @(Γγ−1w),
not containing � 0 , the sequence γnKγ−1w converges to � uniformly. Assume
now that � 0 is a parabolic point for Γv in @(Γv). Then hn(γ� 0) do converge
to � , otherwise, � 0 would be a conical limit point. Therefore, for all vertex
γ−1w 2 D(� 0) n fγ−1vg, the sequence γn@(Γγ−1w) converges to � uniformly.

Therefore, if v0 is a vertex not in the domain of � 0 , the path from γ−1v to v0

contains an edge such that the boundary of its stabilizer is a compact space
Kγ−1w satisfying: γnKγ−1w ! � 0 uniformly. Let K be a compact subspace of
M nf� 0g. For each vi 2 D(� 0), there exists a compact space Ki � @(Γvi)nf� 0g,
K \ @(Γvi) � Ki such that for all other point � of K , the unique ray in T
from D(� 0) that converges to � contains an edge such that the boundary of its
stabilizer is contained in some Ki . Therefore, γnK ! � 0 uniformly.

We turn now to the second case, where such a subsequence does not exists.
Nevertheless, after extraction, we can assume that the distance dist(v0; γnv0) is
constant. Let v be the vertex such that there exists a subsequence (γ�(n))n2N
with the property that some segments [v0; γ�(n)v0] have a common pre�x [v0; v],
and the edges e�(n) � [v0; γ�(n)v0] located just after v , are all distinct. By
Proposition 1.8, one can extract a subsequence (e�0(n))n such that the bound-
aries of the stabilizers of these edges converge to some point � 2 @(Γv). By our
convergence criterion, γ�0(n)@(Γv0) uniformly converges to � .

Let � be a point in @T . We claim that v is not in the ray [γ�0(n)v0; γ�0(n)�), for
n su�ciently large. If it was, there would be a subsequence satisfying: γ−1

�0(n)v is

constant on a vertex w of the ray [v0; �), that is, γ−1
�0(n) = hnγ , where hn 2 Γw .

Therefore, γ�0(n)w equals v for all n. In other words, for all n there exists hn
in Γw such that γ�0(n) = hnγ�0(0) . This contradicts our assumption that we are
not in the �rst case, and this proves the claim.

If d = dist(γ�0(n)v0; v) (which is constant by assumption), we choose the neigh-
borhood of � de�ned by Wd+1(�) (here v0 is the base point). Then, for each
point in γ�0(n)Wd+1(�), the unique path in T from v0 to this point contains
en . Therefore, γ�0(n)Wd+1(�), uniformly converges to � .
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Let � be now a point in the boundary of the stabilizer of a vertex v0 . Again,
for the same reason, the vertex v is not in [γ�0(n)v0; γ

0
�(n)v

0] for n large enough.
Therefore the unique path from v to γ�0(n)v

0 contains the edge e�0(n) . If γ�0(n)�
is not in @(Γe�0(n)

), for all n su�ciently large, then there exists a neighborhood
N of � such that the convergence γ�0(n)N ! � is uniform. If γ�0(n)� is in
@(Γe�0(n)

), then there exists another vertex v00n in D(�) such that γ�0(n)(v00n) = v .
If D(�) is �nite, after extracting another subsequence, we see that we are in the
�rst case, but we supposed we were not. If D(�) is in�nite, we are in case (2)
of the main theorem, and D(�) is exactly the star of a vertex v". If v is in the
orbit of the vertex stabilized by the group A, again, necessarily γ�0(n)(v") = v .
If v is not in this orbit, γ−1

�0(n)v ranges over in�nitely many neighbours of v",

therefore γ−1
�0(n)@(Γv) converges to the unique point of @(Γv") which we call � 0 .

Therefore, the convergence is locally uniform away from � 0 , what we wanted to
prove.

As an immediate corollary of the two previous lemmas, we have:

Corollary 3.3 With the previous notations, the group Γ is a convergence
group on M (cf De�nition 1.1).

Lemma 3.4 Every point in @T �M is a conical limit point for Γ in M .

Let � 2 @T . Let v0 a vertex in T with a sequence (γn)n2N of elements of Γ
such that γnv0 lies on the ray [v0; �), converging to � .

By Lemma 3.1, after possible extraction of subsequence, there is a point �+ 2
M , and for all � 2 M , except possibly one in @T , we have γ−1

n � ! �+ . Note
that, in particular, we have γ−1

n @(Γv0) ! �+ . By multiplying each γn on the
right by elements of Γv0 , we can assume that �+ is not in @(Γv0), and we still
have γnv0 lying on the ray [v0; �), converging to � .

Now it is enough to show that γ−1
n :� does not converge to �+ . But v0 is always

in the ray [γ−1
n v0; γ

−1
n �). Therefore, if γ−1

n � ! �+ , this implies that �+ is in
@(Γv0), which is contrary to our choice of (γn)n2N .

Lemma 3.5 Every point in Ω=� which is image by � of a conical limit point
in a vertex stabilizer’s boundary, is a conical limit point for Γ.

Such a point is in @(Γv) for some vertex v , and it is a conical limit point in
@(Γv) for Γv . Therefore it is a conical limit point in M for Γv (see the remark
(i) in section 1), hence for Γ.
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Lemma 3.6 Every point in Ω=� which is image by � of a bounded parabolic
point in a vertex stabilizer’s boundary, is a bounded parabolic point for Γ.
The maximal parabolic subgroup associated is the image in Γ of a parabolic
subgroup of a vertex group.

Let � be the image by � of a bounded parabolic point in a vertex stabilizer’s
boundary, let D(�) be its domain, and v1; : : : ; vn the (�nite, by Proposition
2.2) list of vertices in D(�) modulo the action of Stab(D(�)), with stabilizers
Γvi . Let P be the stabilizer of � . It stabilizes also D(�), which is a bounded
subtree of T . By the Serre �xed-point theorem, it �xes a point in D(�), which
can be chosen to be a vertex, since the action is without inversion. Therefore, P
is a maximal parabolic subgroup of a vertex stabilizer, and the second assertion
of the lemma is true. For each i � n the corresponding maximal parabolic
subgroup Pi of Γvi is a subgroup of P , because it �xes � . But for each i � n,
Pi is bounded parabolic in Γvi , and acts properly discontinuously co-compactly
on @(Γvi) n f�g.

For each index i � n, we choose Ki � @(Γvi) n f�g, a compact fundamental
domain of this action. We consider also Ei the set of edges starting at vi whose
boundary intersects Ki and does not contain � . Let e be an edge with only
one vertex in D(�), and vi be this vertex. As Ki is a fundamental domain for
the action of Pi on @(Γvi) n f�g, there exists p 2 Pi such that @(Γe)\ pKi 6= ;.
Therefore, the set of edges

S
i�n PEi contains every edge with one and only one

vertex in D(�).

For each i � n, let Vi be the set of vertices w of the tree T such that the �rst
edge of [vi; w] is in Ei , and let Vi be its closure in T [@T . Let K 0i be the subset
of M consisting of the points whose domain is included in Vi . As a sequence
of points in the boundaries of the stabilizers of distinct edges in Ei has only
accumulation points in Ki , the set K 00i = Ki [K 0i is compact. Hence

S
i�nK

00
i

is a compact space not containing � , and because
S
i�n PEi contains every edge

with one and only one vertex in D(�), the union of the translates of
S
i�nK

00
i

by P is M n � . Therefore, P acts properly discontinuously co-compactly on
M n � .

We can summarize the results of this section:

Theorem 3.7 (Dynamic of Γ on M )

Under the conditions of Theorem 0.1, and with the previous notations, the
group Γ is a geometrically �nite convergence group on M .
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The bounded parabolic points are the images by � of bounded parabolic points,
and their stabilizers are the images, and their conjugates, of maximal parabolic
groups in vertex groups.

We are now able to prove our main theorem.

Proof of Theorem 0.1 The two �rst cases are direct consequences of Theo-
rem 3.7 and of Theorem 1.5. The maximal parabolic subgroups are given by
Lemma 3.6.

Cases (3) and (30) can be deduced as follows. Let Γ = G1 �P G2 , where
P is maximal parabolic in G1 and parabolic in G2 . If eP is the maximal
parabolic subgroup of G2 containing P , one has Γ = (G1 �P eP ) �P̃ G2 . One
can apply successively the second and the �rst case of the theorem to get the
relative hyperbolicity of Γ. For the last case, If Γ = G�P , then one can write
Γ = (G �P P 0)�P 0 , where P 0 is as in the statement, and apply consecutively
the second and �rst case of the theorem. The acylindricity or the last HNN-
extension is given by the fact that the images of P 0 in the group (G�P P 0), are
maximal parabolic subgroups not in the same conjugacy class.

4 Relatively Hyperbolic Groups and Limit Groups

In our combination theorem, the construction of the boundary helps us to get
more information. For instance, we get an independent proof, and an extension
to the relative case, of a theorem of I Kapovich [18] for hyperbolic groups.

Corollary 4.1 If Γ is in Case (1) of Theorem 0.1, the vertex groups embed
as fully quasi-convex subgroups in Γ.

The limit set of the stabilizer of a vertex v is indeed @(Γv). As domains are
�nite (Proposition 2.2 and its remark), a point in M belongs to �nitely many
translates of @(Γv).

Finally, we study limit groups, introduced by Sela in [24], in his solution of the
Tarski problem, as a way to understand the structure of the solutions of an
equation in a free group. We give the de�nition of limit groups ; it involves a
Gromov-Hausdor� limit. Here, we do not discuss the existence of such a limit,
but we advise the reader to refer to Sela’s original paper.
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De�nition 4.2 (Limit groups, [24])

Let G be a �nitely generated group, with a �nite generating family S , and
γ = (γ1 : : : γk) a prescribed set of k elements in G. Let F be a free group
of rank k with a �xed basis a = (a1 : : : ak), and let X be its associated
Cayley graph (it is a tree). Let H(G;F ; γ; a) be the set of all the homo-
morphisms of G in F sending γi on ai . Each element of H(G;F ; γ; a) nat-
urally de�nes an action of G on X . Let (hn)n2N be a sequence of homo-
morphisms in distinct conjugacy classes, and let us rescale X by a constant
�n = minf2F maxg2S(dX(id; fhn(g)f−1)) to get the pointed tree (Xn; xn),
whose base point xn is the image of a base point in X . There is a subse-
quence such that (X�(n); x�(n)) converges in the sense of Gromov-Hausdor�,
and let (X1; y) be the real tree that is the Gromov-Hausdor� limit, on which
the group G acts. Let K1 be the kernel of this action (the elements of G �xing
every point in X1 ). We say that the quotient L1 = G=K1 is a limit group.

An important property of limit groups is an accessibility theorem, proven by
Sela. Every limit group has a height: limit groups of height 0 are the �nitely
generated torsion-free abelian groups, and every limit groups of height n > 0
can be constructed by �nitely many free products, HNN-extensions or amalga-
mations of limit groups of height at most (n − 1), over cyclic groups (this is
a consequence of Theorem 4.1 in [24]). We need only this fact, and the fact
that every abelian subgroup of a limit group is contained in a unique maximal
abelian subgroup (Lemma 1.4 in [24]). Limit groups are known to enjoy many
more powerful properties, therefore, one can hope that a similar argument than
ours would work for a wider class of groups. We now establish properties of
acylindricity, which can be also found in [24].

Lemma 4.3 One can choose the accessibility splitings of a limit group to
be acylindrical. Moreover, the edge group of a spliting involved is a maximal
abelian subgroup, and malnormal, in at least one of the adjacent vertex groups.

If an amalgamation A �Z B is involved in the accessibility, then the subgroup
Z is maximal abelian in either A or B , since it is a property of limit groups
that it has to belong to a unique maximal abelian subgroup of the ambiant
group. In particular Z is malnormal in either A or B , since if it was not, a
proper subgroup would be in two distinct maximal abelian subgroups. Hence
the amalgamation is 3{acylindrical.

If an HNN-extension A�Z is involved, then, let Z1 and Z2 be the two images
of Z in A in the extension, and let t be a generator of the loop of the graph of
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group. If Z1 is not maximal abelian, let a1 be an element, not in Z1 , and in
the unique maximal abelian subgroup of A containing Z1 . If one conjugates a1

by t, one gets an element of A�Z not in A, that commutes with Z2 . Then Z2

is maximal abelian in A, as if it was not, it would not be in a unique maximal
abelian subgroup of A�Z . Therefore, as in the case of amalgamations, we see
that either Z1 or Z2 has to be maximal abelian, and therefore malnormal.
Now, unless Z1 = Z2 , we see that they cannot intersect non-trivially, because
they would span a larger maximal abelian subgroup, contradicting what we just
proved. Therefore, the HNN-extension is 2{acylindrical. Finally, if Z1 = Z2 ,
note that A�Z = (A �Z Z)�Z = A �Z (Z�Z) = A �Z Z2 , which is a previous
case.

From this accessibility, Sela deduces that limit groups are exactly the �nitely
generated !{residually free groups: these are the groups such that, for every
�nite family of non-trivial elements, there exists a morphism in a free group
that is non trivial on each of these elements.

We will need the general fact:

Lemma 4.4 Let (G;G) be a relatively hyperbolic group, and let Z be a non
parabolic in�nite cyclic subgroup of G which is its own normalizer. Let Z be
the set of conjugates of G. Then (G; (G [Z)) is a relatively hyperbolic group.

To see this, note that the space M obtained from @(G) by identifying for each
conjugate of Z , the two points of its limit set to a point, is Hausdor� because the
sequence of the diameters of the preimages in @(G) of any sequence of points
in M tends to zero (this is a consequence of Proposition 1.8, for instance).
Therefore, M is a compact metrisable space, on which the group G acts as a
convergence group. The images in M of bounded parabolic points of @(G) are
still bounded parabolic points, with same stabilizers. If � 2 M is the image
of a conical limit point, not in the limit set of some conjugate of Z , there is a
sequence (gn) in G, and a and b distinct points of @(G) such that gn� ! a
and gn� ! b for all other � . If a and b map to the same point in M , then they
are in the limit set of a same conjugate Z 0 of Z . We assumed that � is not in
the limit set of Z 0 . Then by multiplying the gn by su�ciently large elements
zn of Z 0 we would get that zngn� ! a, zngnb! b and for a sequence of points
an tending to a more slowly than gn� , zngnan ! c a point in a fundamental
domain of Z 0 acting on @(B)n�Z 0 . In particular, this violates the convergence
property. Therefore the images in M of a and b are distinct. Hence, the
sequence gn and the images of a and b in M show that � is a conical limit
point.
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If � 2 M is the image of the limit set of Z (which consists of two loxodromic
�xed points), then its stabilizer is the normalizer of Z , that is Z itself. As the
cyclic group Z acts co-compactly on the complement of its limit set in @(G),
(this is a consequence of the fact that Z acts as a convergence group on @G
�xing the two points in its limit set), we see that � is a bounded parabolic point
in M . Similar fact is true for every conjugate of Z . All this together proves
the relative hyperbolicity, by Theorem 1.5.

Theorem 4.5 [Theorem 0.3]

Every limit group is hyperbolic relative to the family of its maximal non-cyclic
abelian subgroups.

We argue by induction on the height. It is obvious for groups of height 0.
Consider an HNN extension A�Z or an amalgamation A �Z B , with A and
B of height at most (n − 1), Z cyclic. If Z is trivial or has cyclic central-
izer in the amalgamation, both of its images in the vertex group(s) are fully
quasi-convex, because it has trivial intersection with every non-cyclic abelian
subgroup. Hence, the �rst case of the combination theorem gives the result.

Assume now that A contains a maximal non-cyclic abelian subgroup contain-
ing Z . We consider the case of an amalgamation A �Z B , the case of an
HNN-extension being similar. Let fPig be the set of maximal parabolic sub-
groups of B ; each Pi is a non-cyclic abelian group. From the discussion on
the accessibility, we know that the group Z is a maximal cyclic subgroup of B
not intersecting any of the Pi , and is malnormal in B . In particular, it is fully
quasi-convex in B , and we note Zi the set of conjugates of Z . From Lemma
4.4, we have that B is hyperbolic relative to fPig [ fZig.
We can apply the third case of Theorem 0.1, this gives that A�ZB is hyperbolic
relative to its maximal non-cyclic abelian subgroups, and this ends the proof
for amalgamations.

The proof is similar in the case of an HNN-extension, using the case (30) of the
combination theorem, instead of the third case.

The next proposition was suggested by G Swarup (see also [28]). It was already
known that every �nitely generated subgroup of a limit group is itself a limit
group (it is obvious if one thinks of !{residually free groups).

Proposition 4.6 (Local quasi-convexity)

Every �nitely generated subgroup of a limit group is quasi-convex (in the sense
of De�nition 1.6).
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Again, we argue by induction on the height of limit groups.

The result is classical for free groups, surface groups, and abelian groups. As-
sume now that the property is true for A and B , and consider Γ = A �Z B ,
and H a �nitely generated subgroup of Γ. H acts on the Serre tree T of the
amalgamation. In particular it acts on its minimal invariant subtree. As a
consequence of the fact that H is �nitely generated, the quotient of this tree is
�nite. Moreover, as the edge groups are all cyclic or trivial, H intersects each
stabilizer of vertex along a �nitely generated subgroup. Therefore, one gets a
spliting of H as a �nite graph of groups, the vertex groups of which are �nitely
generated subgroups of the conjugates of A and B , and with cyclic or trivial
edge groups. As they are �nitely generated, and by the induction assumption,
the vertex groups are quasi-convex in the conjugates of A and B , and their
boundaries equivariantly embed in the translates of @A and @B . We can apply
our combination theorem on this acylindrical graph of groups, and as the Serre
tree of the splitting of H embeds in the Serre tree of the splitting of Γ, its
boundary equivariantly embeds in @T . Thus, H is a geometrically �nite group
on its limit set in the boundary of Γ, hence it is quasi-convex in Γ.

The Theorem 4.7 (Howson property for limit groups) was motivated by a dis-
cussion with G Swarup. To prove it, we �rst prove the Proposition 4.8, inspired
by some results in [27]: we study the intersection of (not necessarly fully) quasi-
convex subgroups.

This study completes the work of I Kapovich, who proved the Howson property
for limit groups without any non-cyclic abelian subgroup (see [19] and [20]).

Theorem 4.7 Limit groups have the Howson property: the intersection of
two �nitely generated subgroups is �nitely generated.

We postpone the proof, because we need the following:

Proposition 4.8 (Intersection of quasi-convex subgroup)

Let Γ be a relatively hyperbolic group, with only abelian parabolic subgroups.
Let Q1 and Q2 be two quasi-convex subgroups. Then Q1\Q2 is quasi-convex.
Moreover, �(Q1 \Q2) di�ers from �(Q1) \ �(Q2) only by isolated points.

Let Q1 and Q2 be two quasi-convex subgroups of Γ and Q = Q1 \ Q2 . The
limit sets satisfy �(Q) � �(Q1) \ �(Q2), and the action of Q on �(Q) is
of convergence. As in Proposition 1.10, the conical limit points in �(Q) are
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exactly the conical limit points in �(Q1) and in �(Q2). We want to prove that
each remaining point in �(Q) is a bounded parabolic point. Those points are
among the parabolic points in both �(Q1) and �(Q2), but it may happen that
a parabolic point for Q1 and Q2 is not in �(Q).

However, it is enough to prove that, for all p, parabolic point for Q1 and Q2 ,
then the quotient StabQ(p)n(�(Q1) \ �(Q2) n fpg) is compact. Indeed, if we
manage to do so, we would have proven that �(Q) di�ers from �(Q1)\�(Q2)
only by isolated points: the parabolic points for Q1 and Q2 whose stabilizer
in Q is �nite. Such a point p is isolated, because the statement above implies
that (�(Q1)\�(Q2)nfpg) is compact. Therefore, Proposition 4.8 follows from
the general lemma:

Lemma 4.9 Let G be a �nitely generated abelian group, acting properly
discontinuously on a space E . Assume that G contains two subgroups, A and
B , such that G = AB . If A acts on X � E with compact quotient, and if B
acts similarly on Y � E , then A \B acts properly discontinuously on X \ Y ,
with compact quotient.

The only thing that needs to be checked is that the quotient is compact. Let
KA � X be a compact fundamental domain for A in X , and KB similarly
for B in Y . For all a 2 A such that aKA \ Y 6= ;, there exists b 2 B such
that aKA \ bKB 6= ;. As KA and KB are compact, and since the action of
(A+B) is properly discontinuous, there are �nitely many possible values in G
for a−1b, with a and d satisfying aKA\bKB 6= ;. Therefore, for all such a and
b, there exists a word w written with an alphabet of generators of G consisting
of generators of A and generators of B , of length bounded by a number N
neither depending on a nor on b, such that, in G, w = a−1b. Using abelianity
of the group G, we can gather the letters in w in order to get a new word
of same length, concatenation of two smaller ones: w0 = wAwB with wA 2 A
and wB 2 B , and still, in G, w0 = a−1b. Now we see that awA = b(wB)−1 ,
and therefore awA 2 (A \ B). If we set K = (

S
jwAj�N wAKA) \ Y , which is

compact, we have just shown that (A \ B)K covers X \ Y . That is that we
have proven the lemma.

Now we can prove the Howson property.

Proof of Theorem 4.7 Two �nitely generated subgroups of a limit group are
quasiconvex by Proposition 4.6, therefore, by Proposition 4.8, the intersection
is also quasiconvex. In particular, by remark (ii) in section 1, it is �nitely
generated.
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We �nally give an application of [9]. Following Bestvina [2], we say that a Z {
structure (if it exists) on a group is a minimal (in the sense of Z {sets) aspherical
equivariant, �nite dimensional (for the topological dimension) compacti�cation
of a universal cover of a �nite classifying space for the group, EΓ[@(EΓ), such
that the convergence of a sequence (γnp)n to a point of the boundary @(EΓ)
does not depend on the choice of the point p in EΓ (see [2], [9]).

Theorem 4.10 (Topological compacti�cation)

Any limit group admits a Z {structure in the sense of [2].

The maximal parabolic subgroups are isomorphic to some Zd , and therefore
admits a �nite classifying space with a Z {structure (the sphere that comes
from the CAT (0) structure). As limit groups are torsion free, (Lemma 1.3 in
[24]), the main theorem of [9] can be applied to give the result.

We emphasize that this topological boundary needs not to be the one con-
structed above: if the group contains Zd , the topological boundary contains a
sphere of dimension d− 1.
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