Geometry & Topology, Vol. 8 (2004)
Paper no. 35, pages 1281--1300.
The proof of Birman's conjecture on singular braid monoids
Luis Paris
Abstract.
Let B_n be the Artin braid group on n strings with standard generators
sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid
with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ...,
tau_{n-1}. The desingularization map is the multiplicative
homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =
_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <=
n-1. The purpose of the present paper is to prove Birman's conjecture,
namely, that the desingularization map eta is injective.
Keywords.
Singular braids, desingularization, Birman's conjecture
AMS subject classification.
Primary: 20F36.
Secondary: 57M25. 57M27.
DOI: 10.2140/gt.2004.8.1281
E-print: arXiv:math.GR/0306422
Submitted to GT on 6 January 2004.
(Revised 21 September 2004.)
Paper accepted 21 September 2004.
Paper published 28 September 2004.
Notes on file formats
Luis Paris
Institut de Mathematiques de Bourgogne, Universite de Bourgogne
UMR 5584 du CNRS, BP 47870, 21078 Dijon cedex, France
Email: lparis@u-bourgogne.fr
URL: http://math.u-bourgogne.fr/topo/paris/index.html
GT home page
Archival Version
These pages are not updated anymore.
They reflect the state of
.
For the current production of this journal, please refer to
http://msp.warwick.ac.uk/.