
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLVI

2008

ON THE MULTIPLICITY OF A QUASI-HOMOGENEOUS

ISOLATED SINGULARITY

by Maciej S ↪ekalski

Abstract. We give a formula for the multiplicity of a quasi-homogeneous
isolated singularity in terms of its weights.

Let f = f(x1, . . . , xn) ∈ C{x1, . . . , xn} be a convergent power series. We
call f an isolated singularity at the origin 0 ∈ Cn if f(0) = 0 and 0 ∈ Cn

is an isolated solution of the system of equations ∂f
∂x1

= · · · = ∂f
∂xn

= 0. By
the multiplicity ordf of a series f , we mean the lowest degree of a monomial
which appears in f with nonzero coefficient. Moreover, let us recall that f is
quasi-homogeneous of type (w1, . . . , wn) if it is a polynomial of the form

f =
∑

i1
w1

+···+ in
wn

=1

ci1...inxi1
1 · · ·x

in
n

for some positive rationals w1, . . . , wn.
The quasi-homogeneous isolated singularities have been studied by many

authors. Milnor and Orlik ([2], Theorem 1) proved that the Milnor number of
a quasi-homogeneous isolated singularity of type (w1, . . . , wn) equals

∏n
i=1(wi−

1). Thus this product is an integer, even though the w′is themselves may not
be integers.

The main result of this note is

Theorem. If f is a quasi-homogeneous isolated singularity of type
(w1, . . . , wn) then

ordf = min{m ∈ N : m > min{wi : i = 1, . . . , n}}.

S. S.-T. Yau proved the above formula for n = 3 (see [4], Theorem 6). His
proof is based on the classification of quasi-homogeneous isolated singularities
given in [1] and in [3] and it does not generalize to the case of an arbitrary n.
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Proof. Since ordf is an integer, it suffices to show that

min{wi : i = 1, . . . , n} 6 ordf < min{wi : i = 1, . . . , n}+ 1.

To check the first inequality, let us note that

ordf = min{i1 + · · ·+ in : ci1...in 6= 0}.

For any i1, . . . , in such that ci1,...,in 6= 0, there holds

1 =
i1
w1

+ · · ·+ in
wn

6
i1 + · · ·+ in

min{wi : i = 1, . . . , n}
,

hence

1 6
ordf

min{wi : i = 1, . . . , n}
and the first inequality follows.

In order to prove the inequality ordf < min{wi : i = 1, . . . , n}+1, we need
the following observation due to Arnold (see [1]).

Lemma. Fix an i ∈ {1, . . . , n}. For an isolated singularity f , at least one
of the monomials of the form xa

i xj, a > 1, j = 1, . . . , n appears in the series f
with a nonzero coefficient.

Proof. We may assume that i = 1. Let us write

f(x1, . . . , xn) = a0(x2, . . . , xn) + x1a1(x2, . . . , xn) + · · · .

There is ord a0 > 2 and ord a1 > 1 as ord f > 2. We will show that there exists
a k > 1 such that ord ak = 0 or ord ak = 1.

To obtain a contradiction, suppose that ord ak > 2 for all k > 1. This gives
ord∂ak

∂xj
> 1 for j = 2, . . . , n and hence

ak(0, . . . , 0) = 0 and
∂ak

∂xj
(0, . . . , 0) = 0 for all k > 1 and j > 2,

thus
∂f
∂x1

(x1, 0, . . . , 0) = a1(0) + 2x1a2(0) + · · · = 0,
∂f
∂xj

(x1, 0, . . . , 0) = ∂a0
∂xj

(0) + x1
∂a1
∂xj

(0) + · · · = 0 for j = 2, . . . , n
in C{x1}

and this implies the inclusion {x2 = · · · = xn = 0} ⊂
{

∂f
∂x1

= · · · = ∂f
∂xn

= 0
}

.
We get a contradiction because 0 ∈ Cn is an isolated critical point of f .

Now let us suppose that w1 = min{wi : i = 1, . . . , n}. According to
Lemma, at least one of the monomials of the form xa

1xj , a > 1, j = 1, . . . , n
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appears in f with nonzero coefficient. Thus ordf 6 a + 1 and for some j ∈
{1, . . . , n} there is a

w1
+ 1

wj
= 1. This gives

ordf 6 w1

(
1− 1

wj

)
+ 1 = w1 + 1− w1

wj
< w1 + 1

and the proof is complete.
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