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A COUNTEREXAMPLE TO AN ASSERTION DUE TO

BLUMENTHAL

by E.K. Ifantis and P.D. Siafarikas

Abstract. Let the orthogonal polynomials Pn(x) be defined by

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x),

P−1(x) = 0, P0(x) = 1,

where λn+1 > 0, cn real, limn→∞ cn = c and limn→∞ λn = λ, (n ≥ 1).
Blumenthal has proved that the true interval of orthogonality [σ, τ ]

of the above polynomials is given by σ = c − 2
√
λ, τ = c + 2

√
λ and

the zeros of Pn(x) are dense in [σ, τ ]. Blumenthal also asserted that the
spectrum of the distribution function ψ corresponding to the polynomials
Pn has at most finite points in the complement of [σ, τ ]. In other words the
limit points of the zeros of the polynomials Pn outside the intrval [σ, τ ] are
finite. The falseness of this assertion has been proved first in 1968 with the
use of a series of results concerning chain sequences and a theorem due to
Szegö. Now although one can find many other ways of proving this in the
literature, a concrete counter example fails to exist. Here a counterexample
is given which proves the invalidity of Blumenthal’s assertion. This example
is also of some interest because it exhibits a particular class of the Pollaczek
polynomials where the support of the measure of orthogonality is extented
beyond the interval [−1, 1].

1. Introduction. We consider the sequence of monic polynomials Pn(x),
defined by

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x), n = 1, 2, ...

P−1(x) = 0, P0(x) = 1,
where cn real, λn+1 > 0, (n ≥ 1).

Let xn1 < xn2 < ... < xnn be the n real and distinct zeros of Pn which
satisfy the separation theorem

xn+1,i < xn,i < xn+1,i+1, i = 1, 2, ..., n,
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so that
ξi = lim

n→∞
xni, nj = lim

n→∞
xn,n−j+1

are finite or take the values −∞,+∞.
Moreover, since

ξi ≤ ξi+1 ≤ nj+1 ≤ nj

the following limits σ and τ exist:

σ = lim
i→∞

ξi, τ = lim
j→∞

nj .

In the case limn→∞ cn = c and limn→∞ λn = λ, Blumenthal [1] has proved
that the true interval of orthogonality [σ, τ ] of the above polynomials is given
by σ = c−2

√
λ, τ = c+2

√
λ, and that the set {xni : 1 ≤ i ≤ n, n = 1, 2, ...} is

dence in [σ, τ ]. Blumenthal also asserted that the spectrum of the distribution
function ψ corresponding to the polynomials Pn has at most finite points in the
complement of [σ, τ ]. T.S. Chihara in [2] proved that Blumenthal’s assertion is
false. To do this Chihara used a series of theorems concerning, chain sequences
and proved that it is possible to have ξi < σ, i = 1, 2, .... Consequently the
use of a Szegö’s theorem [6, th.3.41.2] which asserts that ψ is not constant in
the interval (ξi, ξi+1), proves that the set of points in the spectum of ψ smaller
than σ, is denumerable. Now one can find numerous other proofs of this result
in the literature . However, a concrete counterexample fails to exist.

The purpose here is to give a counterexample which proves the falsity of
Blumenthal’s assertion. Moreover, the support of the measure of orthogonality
of a ”singular” case of the Pollaczek polynomials is determined exactly.

2. The counterexample. Consider the polynomials Pn(x) defined by

(2.1) Pn+1(x) + Pn−1(x) +
2b
n
Pn(x) = 2xPn(x)

P0(x) = 0, P1(x) = 1.
It is known that the support of the measure of orthogonality of these poly-

nomials is the spectrum of the self-adjoint tridiagonal operator

Ten =
1
2
(en+1 + en−1) +

2b
n
en

Te1 =
1
2
e2 + be1, b 6= 0, b ∈ R.

This operator is defined on finite linear combinations of the orthonormal basis
en, n = 1, 2, ..., of a Hilbert space H and can be easily extented on all the
elements of H. It can be written as follows

(2.2) T =
1
2
(V + V ∗) + 2bB,
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where V is the unilateral shift with respect to the basis en, V ∗ is its adjoint
and B is the compact tridiagonal operator B : Ben = 1

nen. Since B is compact
and selfadjoint, Weyl’s theorem implies that the operators T and T0 = 1

2(V +
V ∗) have the same continuous spectrum. Since the spectrum of T0 is purely
continuous (in fact absolutely continuous) and covers the interval [−1, 1], it
follows that the interval [σ, τ ] here is the interval [−1, 1] and the zeros of the
polynomials (2.1) are dense in [−1, 1], [5]. On the other hand it is known
[3, 4, Appendix B] that for every b 6= 0 the operator T has an infinite set of
eigenvalues outside the interval [−1, 1]. These eigenvalues are

εn =
√

1 + (b/n)2, n = 1, 2, ... for b > 0

and

(2.3) εn = −
√

1 + (b/n)2, n = 1, 2, ... for b < 0.

Since the normalized distribution function of the polynomials (2.2) is the
function ψ(t) = (Ete1, e1), where Et is the spectral family of T , this example
proves the falsity of Blumenthal assertion. The eigenvalues (2.3) have been
obtained by several methods. For the sake of completeness, we recall the
simplest one.

The eigenvalue equation

(2.4) (V + V ∗ + 2bB)f = 2εf

is equivalent to

(2.5) (C0V + C0V
∗ + 2b)f = 2εC0f,

where C0, the inverse of B, is the diagonal operator C0en = nen, n = 1, 2, ...,
defined on the range of the bounded operator B. Using the set of elements
fz = e1 + ze2 + z2e3 + ..., which is complete in H in the sense that (fz, f) = 0
for every z such that |z| < 1 implies that f = 0, and setting

(2.6) φ(z) = (fz, f)

we have an isomorphism from H onto the Hilbert space H2(∆) consisting of
analytic functions φ(z) =

∑∞
n=1 αnz

n−1 in the open unit disk ∆ = {z : |z| < 1},
which satisfy the condition

∑∞
n=1 |αn|2 <∞. It is known [4] that if (2.6) holds,

then

(fz, C0V
∗f) = φ′(z) =

dφ

dz

(fz, C0f) = (fz, C0V
∗V f) = (zφ)′ = zφ′ + φ

(fz, C0V f) = z2φ′ + 2zφ.
So (2.5) in H is equivalent to the following differential equation in H2(∆)

(fz, C0V f) + (fz, C0V
∗f) + 2b(fz, f) = 2ε(fz, C0f),
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or
z2φ′ + 2zφ+ φ′ + 2bφ = 2ε(zφ′ + φ)

and

(2.7)
φ′(z)
φ(z)

= −(z2 − 2εz + 1)′

z2 − 2εz + 1
− b√

ε2 − 1

( 1
z − z1

− 1
z − z2

)
,

where

(2.8) z1 = ε+
√
ε2 − 1, z2 = ε−

√
ε2 − 1.

For b > 0 the solutions of (2.7) are

(2.9) φ(z) = c
(z − z2)

b√
ε2−1

−1

(z − z1)
b√

ε2−1
+1
, c = constant.

These belong to H2(∆) if and only if

b√
ε2 − 1

= n, n = 1, 2, ..., b > 0, ε > 1.

Thus the eigenvalues εn are the following

εn =

√
1 +

(
b

n

)2

, n = 1, 2, ....

For b < 0 we find that

εn = −

√
1 +

(
b

n

)2

, n = 1, 2, ....

Remark 1. Another way to see that for b < 0 the eigenvalues are negative
is to observe that if 2ε > 0 is an eigenvalue of the operator V + V ∗ + 2bB
corresponding to the eigenvector f , then −2ε is an eigenvalue of the operator
V + V ∗ − 2bB corresponding to the eigenvector Uf , where U is the unitary
operator Uen = (−1)nen.

Remark 2. Unfortunately, for the polynomials (2.1) we know only the
support of the measure of orthogonality. This support consists of the continu-
ous part, which is the entire interval [−1, 1], and the discrete part, consisting of

the points
√

1 + ( b
n)2, n = 1, 2, ... in the case b > 0 or the points −

√
1 + ( b

n)2,
n = 1, 2, ... in the case b < 0. Note that one way to find the discrete part of the
measure of orthogonality is to normalize the eigenvectors xk of the operator
(2.2). More precisely we have to compute the values σk = |(e1, xk)|2, where
‖xk‖ = 1. Then the discrete part of the distribution function µ(x), which
corresponds to the measure of orthogonality µ, is given by µ(x) =

∑
k:λk≤x σk.
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Note that since µ({εn}) = 1∑∞
k=1 P 2

k (εn)
, we need a comprehensive expression for

the sum
∑∞

k=1 P
2
k (εn).

3. Connection with the Pollaczek polynomials. The Pollaczek poly-
nomials P λ

n (x; a, b) are defined as follows

(n+ 1)P λ
n+1(x; a, b) + (n+ 2λ− 1)P λ

n−1(x; a, b) + 2bP λ
n (x; a, b) =

(3.1) 2x(n+ λ+ a)P λ
n (x; a, b)

P λ
−1(x; a, b) = 0, P λ

0 (x; a, b) = 1.

It is well known [6] from Favard’s theorem that these polynomials are orthog-
onal with respect to some positive measure on the real line whenever

(3.2) λ > 0 and a+ λ > 0

or

(3.3) − 1
2
< λ < 0 and − 1 < λ+ a < 0.

Also, it is well-known [7] that if (3.2) or (3.3) holds and if moreover a ≥ |b|,
then the support of the measure of orthogonality is the entire interval [−1, 1].

One can see that the polynomials (2.1) are a particular case of the Pollaczek
polynomials. In fact the polynomials defined by the recurrence relation (2.1)
are obtained from the recurrence relation (3.1) for λ = 1, b 6= 0 ans a = 0.
(Note that the initial conditions are not the same.) Thus the polynomials (2.1)
illustrate the irregular case of the Pollaczek polynomials in the sense that the
support of the measure of orthogonality is extented outside the interval [−1, 1]
by an infinite denumerable set of points. In fact, the interval of orthogonality
is the interval [−1,

√
1 + b2] in case b > 0 and the interval [−

√
1 + b2, 1] in case

b < 0.

Remark 3. We note that a necessary and sufficient condition for the ex-
istence of a mass point ε of the measure of orthogonality of the polynomials
(3.1) is that the functions

(3.4) φ(z) = c
(z − z2)

b−aε√
ε2−1

−λ

(z − z1)
b−aε√
ε2−1

+λ
,

where z1 and z2 are given by (2.8), belong to the space H2(∆). Relation (3.4)
can be obtained in the same way as relation (2.9).
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