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Initial-boundary value problem with mixed boundary conditions for one system of nonlinear
partial integro-differential equations with source terms are studied. Fully discrete finite differ-
ence scheme is constructed and its stability and convergence is proved. Compared to previous
researches, in this note more general case for nonlinear coefficient of terms with high order
derivatives is considered.
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1. Introduction

In the cylinder @ = [0,1] x [0,00) let us consider the following initial-boundary

value problem:
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where a = a(S), g, f1, f2, Up and V}y are given functions of their arguments.
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System (1) is obtained by adding the source term to the following integro-
differential vector equation [5]:

t

OH
5 = ot |a /|7“0tH|2d7' rotH | , (4)
0

where H = (Hi, Ha, H3) is a vector of the magnetic field and function a = a(5)
is defined for S € [0,00). If the vector of the magnetic field has the form H =
(0,U0,V), where U = U(x,t), V = V(z,t), then from (4) we get the system of
nonlinear parabolic integro-differential equations (1) without the source terms.
Vector equation (4) itself comes from the system of Maxwell equation [13]:
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where again H = (Hy, Ho, H3) is a vector of the magnetic field, 6 is temperature,
¢y and vy, characterize the thermal heat capacity and electroconductivity of the
substance. Note that reduction of system (5) to the integro-differential form (4) at
first, as we already mentioned above, was given in [5]. Later a number of scientists
studied proposed above integro-differential models for different cases of magnetic
field and different kind of diffusion coefficient (see, for example, [1] - [12], [14], [15],
[17] - [19] and references therein).

2. Uniqueness and large time behavior of solution

Here we give the main identity for proving the uniqueness of solution of problem
(1) - (3). Let us assume that there exist two different solutions of problem (1) -
(3): (U1, V1) and (Ug, Vo). To show that Uy — Uy = Vo — Vi = 0 the methodology

of proving the convergence theorem, which is given in the next section, monotone
growth and positiveness features of function g and the following identity are mainly

used:
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For obtaining stabilization of solution the method of a-priori estimates based on
analogical methodology given in [11] is used and large time behavior of solution is

obtained.
Thus, combining the above said the following statement takes place.
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Theorem 2.1: Ifa = a(S) > agp = Const > 0, a’(S) > 0, a"(S) <0, g is a
monotonically increased and positively defined function, Uy, Vo € H'(0,1), Up(0) =
Vo (0) = Vs () = Wol@) L= 0, f1, f2, %, % € L2(Q) and problem (1)

dzx o=1 dx _

- (3) has a solution then it is unique and exponential stabilization of solution as
t — oo takes place.

Here we use usual Ly and Sobolev H! spaces.

3. Finite difference scheme and its convergence

In the rectangle Q7 = [0, 1] x [0, T], where T is a positive constant, let us consider
again problem (1) - (3). On Q7 let us introduce a net with mesh points denoted by
(xi,tj) = (ih,jT), where i = 0,1,...,M; j =0,1,...,N with h = 1/M, 7 = T/N.
Denote discrete approximation at (x;,¢;) by (u], v}) and the exact solution to the
problem (1) - (3) by (U], V). Below, in this section, we will use the following
known notations [20] of forward and backward derivatives:

1 .
0 h ’ Z,0 h ) t,1 T
and inner products and norms:
(o) =h> rlyl, () =hY iy,
i=1 i=1
9] = ()2, )] = (09,2

For problem (1) - (3) let us consider the following finite difference scheme:
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Multiplying equations in (6) scalarly by UZ 1 and vf 1 respectively, it is not difficult
to get the inequalities:

n n
™[>+ Y lgPr < ot P+ ) lldlPr <€, n=1,2,.,N,  (9)
7=1 7j=1

where here and below C' is a positive constant independent from 7 and h.

On the basis of one variant of the well known Brouwer fixed point theorem (see,
[16], pp. 53-54) using the a priori estimate (9) the solvability of the scheme (6) -
(8) is easily derived. The technique used to prove convergence theorem below, can
be applied to prove the stability and uniqueness of the solution of the scheme (6)
- (8) too.

The main statement of the present section can be stated as follows.

Theorem 3.1: Ifa = a(S) > a9y = Const > 0, d/(S) > 0, a"(S) < 0,
g is monotonically increased and positively defined function and problem (1) -
(3) has a sufficiently smooth solution (U(x,t), V(x,t)), then the solution uw/ =
(], uly, ...,y ), Vo= (v],vh,.. v ), 4 = 1,2,...,N of the diﬁergnce
scheme (6) - (8) tends to the solution of continuous problem (1) - (3) UJ =
u.ug,....U3,_ ), Vi=WV Vi, oV ), i =12...,NasT =0, h = 0
and the following estimates are true:

Cmaz ||W — U <C(r+h), max | —VI|<C(r+h). (10)
=1,2,..,N j=1,2,..,N

=1,4,..., =1,4,...,

Proof: Introducing the differences z/ = uf — Ul-j and w
following relations:

= vf — Vij we get the
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where 1/1{1 and w%l are approximation errors of scheme (6) and
Li=0(r+h), k=12

Multiplying the first equation of system (11) scalarly by the grid function 727! =

T(Z{H, Z%Jrl, ce zﬂ_ll) and using the boundary conditions (12) we get
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Analogously,
M Jj+1 .
1P = (@ ) iy { (TZ [ + @502]) v
i=1 k=1
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Taking into account monotonicity and positiveness of the function g, from the
last two equalities we have
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Note that, using the Hadamard formula
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d
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below we prove one of the main inequalities to estimate terms with the nonlinear
diffusion coefficient a(.5)
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where

and therefore,
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After substituting this equality in (14) we get
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Taking into account that a(S) > ag = Const > 0 and relations s/*1(u) > 0,
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From (16) we arrive at
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Using the discrete analogue of the Poincaré inequality [20]
I < g

)

from (17) we get

1712 = 12712 4 7202 2 = 2 4 72 ]2

1
+2h§:/ 7 (u [(5%“)2 - (5?)2] dp (18)
0
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~
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Summing (18) from j =0 to j =n — 1 we arrive at

n—1 n—1
12717+ 72> NP + [l 1P+ 72 el |

j=0 Jj=0
n-1 M | . 02 \ 2
+2h Z/a' (S?H(u)) [(5@“) - (5’1-) ] dp (19)
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]:0

Note, that since SJJr (n) > s{(u), a’(S) > 0 and a”(S) <0, for the second line of
the last formula we have
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Taking into account the last relation and (19) one can deduce

n—1 n—1
127017 + ™12+ 72> NP+ 72D llwl |
7=0

§=0
(20)
n—1 - n—1
: o , ,
+7a0 Y (1R + e 112) < = 57 (eI + 1d?) -
j=0 0 j=
From (20) we get (10), and thus Theorem 3.1 is proved. O
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