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In this paper we consider static three-dimensional model of elastic body consisting of inhomo-
geneous anisotropic thermoelastic piezoelectric material with regard to magnetic field with
continuous or piecewise continuous characteristics. General boundary value problem corre-
sponding to the static model is studied, where on certain parts of the boundary displacement,
electric and magnetic potentials, and temperature vanish, and on the corresponding remain-
ing parts components of stress-vector, electric displacement and magnetic induction, and heat
flux along the outward normal vector of the boundary are given. The variational formulation
of the boundary value problem is obtained, which is equivalent to the original differential
formulation of three-dimensional boundary value problem in the spaces of smooth enough
functions. On the basis of the variational formulation existence, uniqueness and continuous
dependence of solution on the given data is proved in suitable factor spaces of Sobolev spaces.
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1. Introduction

The modern approach for construction of sensors and actuators for control of var-
ious engineering structures is based on application of adaptive materials with spe-
cific properties, which enable to change their shape or material characteristics,
and thereby avoiding the problems of mechanical actuators and sensors. Adaptive
materials are integrated with the structure and replace complex mechanical link-
ages and joints, resulting in essential reduction of weight and structure complexity.
Piezoelectric materials are currently widely used and intensively investigated for
possible application as adaptive materials, because they can be easily embedded
into existing structure and controlled by voltage, they have low weight, and low
power requirements, low-field linearity and high bandwidth.

After discovery of the direct piezoelectric effect by Jacques and Pierre Curie,
and theoretical prediction of the converse effect by G. Lippmann, which was con-
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firmed experimentally by the Curies, W. Voigt [12] developed the first rigorous
theoretical model of piezoelectricity, which describes the interaction between elas-
tic, electric and thermal properties of the elastic body. The first technically rel-
evant application of the piezoelectric effect was developed by P. Langevin, who
constructed a piezoelectric ultrasonic transducer assembling piezoelectric crystals.
Subsequently, W. Cady [1] treated the physical properties of piezoelectric crystals
as well as their practical applications. H. Tiersten [11] studied problems of vibra-
tion of piezoelectric plates. The widespread use of adaptive materials in diverse
engineering construction, in particular, in aerospace industry, where sensors and
actuators might undergo high thermal as well as mechanical stresses, has activated
researches on thermal along with the mechanical and electro-magnetic properties
of materials. A three-dimensional model of piezoelectric body taking into account
thermal properties of the constituting material was derived by R. Mindlin [7] on
the basis of variational principle. Further, W. Nowacki [10] developed some gen-
eral theorems for thermoelastic piezoelectric materials. R. Dhaliwal and J. Wang
[4] proved uniqueness theorem for linear three-dimensional model of the theory of
thermo-piezoelectricity, which was generalized by J. Li in the paper [5], where a
generalization of the reciprocity theorem of Nowacki [9] was also obtained. Ap-
plying the potential method and the theory of integral equations D. Natroshvili
[8] studied problems of pseudo-oscillations with basic and crack type boundary
conditions.

It should be pointed out that three-dimensional boundary value problems with
general mixed boundary conditions for displacement, electric and magnetic poten-
tials, and temperature corresponding to the linear static models for inhomogeneous
anisotropic thermoelastic piezoelectric bodies with regard to the magnetic field
have not been well investigated. The well-posedness results are mainly obtained
for elastic bodies consisting of homogeneous materials. In the present paper, we
investigate well-posedness of the linear three-dimensional boundary value problem
with general mixed boundary conditions, provided that on certain parts of the
boundary surface force and components of electric displacement, magnetic induc-
tion, and heat flux along the outward normal vector are prescribed, and on the
remaining parts displacement, electric and magnetic potentials, and temperature
vanish. We obtain new existence, uniqueness, and continuous dependence results
in the corresponding factor spaces of Sobolev spaces.

In Section 2, we consider a differential and variational formulation of the bound-
ary value problem corresponding to the linear static three-dimensional model for
the inhomogeneous anisotropic thermoelastic piezoelectric body with regard to the
magnetic field. More precisely, in Subsection 2.1 we give the differential formulation
of the boundary value problem and in Subsection 2.2 we obtain integral equations,
which are equivalent to the original problem in spaces of smooth enough functions,
and on the basis of these integral equations we present a variational formulation
of the three-dimensional problem in corresponding Sobolev spaces. In Section 3 we
investigate the existence and uniqueness of solution of the boundary value problem.
We study the structure of the set of solutions of the homogeneous boundary value
problem and obtain the well-posedness results for the boundary value problem in
suitable factor spaces of the corresponding Sobolev spaces.
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2. Three-dimensional boundary value problem

2.1. Differential formulation

Let us consider a multilayer thermoelastic piezoelectric body with initial configu-
_ K __ _
ration ) = kulﬁk, where each subdomain Q, k = 1,..., K, consists of a general

inhomogeneous anisotropic material. The static linear three-dimensional model of
the stress-strain state of thermoelastic piezoelectric body 2 with regard to the mag-
netic field is given by the following system [5], [8] of partial differential equaions:

3 (90
—Z o, 1k in Qpi=1,23, (1)
3
oDk
d o b=k in Q, (2)
i=1 z;
3
OBk _
2 o, =0 in Q, (3)
3
0 ( . 0fF > e
- Z U :f7 mn Qka (4)
m,zlﬁ T O

where k = 1,..,K, fF = ( k)3, : Q. — R3 is the density of the applied body
force, (Uzkj)?,jzl is the mechanical stress tensor in the subdomain €2, which is given

by the following linear constitutive equations for thermoelastic piezoelectric solid:

3 3
apr >
k k k k pk ..
Oij = Z Ciquepq Z pzy 8 prz] 6 - )‘1]9 ) L7 = 1a2a37 (5)
pyg=1
where u* = (uf)?zl : Q) — R3 is the displacement vector-function, o : Q) —

R and ¥* : Q. — R stand for the electric and magnetic potentials such that
electric and magnetic fields are EF = —grad ¢* and H* = —grady*, 6% : Q) — R
is the temperature distribution, e;j(v) = 1/2(dv;/0x; + 0v;/0x;), i, = 1,2,3,
v = (v;)3_,, is the strain tensor, | is the elasticity tensor, (551']')?,]‘,;;:1
1 is the

(Ciqu)i,j,p,q:

, are piezomagnetic coefficients, (/\k 3

are piezoelectric and (b” )i

:mj)wp—
stress-temperature tensor. D¥ = (Df)?zl is the electric displacement vector and
B = (Bj)j)-’:1 is the magnetic induction vector, which are given by the following
constitutive equations:

3 3 gt 3 ok .
DF =" eb epg(uf) =Y dfi == o) > a fja +ukek, i=1,2,3, (6)
p,q=1 Jj=1 J=1
3 d 3 9 .
Z bzpqepq Za i, Z Zk;a +mke*, i=1,2,3, (7)
p,q=1 Jj=1 =
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where (dF. )” , and (¢ )” ; are the permittivity and permeability tensors,

(af )f’ j—1 are the coupling coeflicients connecting electric and magnetic fields,
(1¥)2_, and (mk)2_, are coefficients characterizing the relation between thermal,

electric and magnetlc fields, fF is the density of electric charges. (nw)w:l is the

thermal conductivity tensor and f%* is the density of heat sources.

We assume that the thermoelastic piezoelectric body €2 is clamped along a part
I'g € T' = 09 of the Lipschitz boundary I' = 0f2, and on the remaining part
I'y = I'\['y applied surface force with density g = (g;) : 1 — R? is given, where
N =TogUTly U1, ToNTy =0, is a Lipschitz dissection [6] of 9€2:

=0 on F[)k = F(] N 8Qk, ZO’U ] = g; on Fl,k = 8Qk\1“07k, 1= 1,2,3, (8)
7=1
where n¥ = (n¥)2_, is the unit outward normal vector to 'y ;. Along a part I'{ C
I' = 09 of the boundary the electric potential vanishes and on the remaining
part I'Y = I'\I'{’ the normal component of the electric displacement with density
#:TY — R is given, where 0Q = Ty UL, UTY, T NTY = 0, is a Lipschitz
dissection of 0€2:

3
F=0 on T¢, =T¢ N0y, ZDfnf:g‘P on I'Y, =0\I'y ., (9)
i=1
where n* = (n¥)3_, is the unit outward normal vector to F“f’k. Along a parﬁ1 g -

I' = 09 magnetic potential vanishes and on the remaining part I’qf = I’\I’g the
normal component of the magnetic induction with density g% : sz — R is given,
where 99 = Fw U F LU F Fg} NTY = (), is a Lipschitz dissection of 9

3
Y =0 on F(zik = Fg) N 0, ZBfnf =g¥ on I‘wk = OQk\FOk, (10)

where n* = (n¥)3_, is the unit outward normal vector to Iﬂf - The temperature
vanishes along a part Fg C I' = 09 of the boundary and heat flux along the

outward normal of I' with density ¢? : F? — R is given on F? = F\ﬁ, where
o0 =THuTf, uTy, TN =0, is a Lipschitz dissection of 9€2:

3
89k _
0" =0 onT§, =T§nowy, E:"Za nf =g’ onT{, =00,\IY,, (11)
,j=1

where n* = (n¥)2_, is the unit outward normal vector to F? - Since {1 consists

of several subdomains, on the common interfaces 9§ N 08y, kk=1,.,K, of
the subdomains €25 and €z special transmission conditions should be satisfied. We
consider the so-called rigid contact conditions, where the displacement and stress
vectors, temperature, electric and magnetic potentials, and normal components of
the heat flux, electric displacement and magnetic induction are continuous:
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3 _
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— =
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i— i=1
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9k _ 9/@7 Z mk]a R Za n; on 0QEN QQE, (15)
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where n = (n;)?_; is the unit normal vector of 9Q; N 9Q, k, k=1, ..., K.

2.2. Variational formulation

In order to investigate the three-dimensional boundary value problem (1)-(15) let
us obtain variational formulation in corresponding Sobolev spaces. Throughout
this article for each real s > 0 we denote by H*(2) and H*(I') the Sobolev
spaces of functions based on H°(Q) = L2(Q) and H(I') = L*(I'), respectively,
and try : HY(Q) — HY2(T) are the trace operators, where  C R™, n € N, is

a bounded Lipschitz domain and I' is an element of a Lipschitz dissection of the
boundary I' = 0 [6]. Hi(€2) denotes the closure of the set ®(€2) of infinitely
differentiable functions with compact support in Q in the space H*(Q2). We de-
note the corresponding spaces of vector-valued functions by H*(Q) = [H* ()3,
H(Q) = [H{(Q)P, B (T) = [H D, s > 0, L+ (D) = (L (D), 51 > 1, and by
try : H'(Q) — H1/2( ). Hereafter, we use c1, c2 to denote generic constants that
are independent of the main parameters involved, but whose values may differ from
line to line and may change even within a single chain of estimates.
We assume that the elasticity tensors (c¥; )? are symmetric

1jpq/1,J,p,q=1"
Ciipg = Cijap = Ciipgp b0 q=1,2,3, k=1,..,K; (16)
k 3 k 3 . . . . . .
tensors (e5;;)7 ;=1 and (bp;;)7 ;1. consisting of piezoelectric and piezomagnetic

coefficients are symmetric with respect to the second and third indices

k k bk: _bk:

Epij = Epjis 'pij pjis

ks iip=123, k=1,..K; (17)

the stress-temperature tensors ()\f])l j—1, are symmetric

A=A =123, k=1,.,K (18)

Ifuk:(uf)?’ cQp — R, 0F Q) - R, YF Q= R, and 6F : Q) — R,
k=1,..,K,are smooth enough, then by multlplymg the equations (1) by arbitrary
contmuously differentiable functions oF : Q) — R (i = 1,2,3), which vanish on

Iy and Ui = vi on 9Q, N 0€)y, equation (2) by a continuously differentiable
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function @* : Qp — R, such that @* = 0 on I'f; and 2" = %F on O N 0y,
the equation (3) by a continuously differentiable function @k : Qr — R, which
vanishes on Fz)p  and ¢ = w on 08, N 0Q, and equation (4) by a continuously
differentiable function " Q. — R, such that 8" =0 on F&k and 8" = §E on
0N, k,k=1,..., K, by integrating on €, using Green’s formula, and taking

into account constitutive equations (5)-(7) and symmetry conditions (16)-(18) we
obtain the following integral equations:

3
/Z Ufjnfvlkdf—i—/ Z cfquepq( Jeij(v ngwa eij(v (v*) |da

8Qk )= 1 Qk i)j7p7q:1 7.]7p_
3 oyt
+/ > b';”a eij(v dx—/ Z A0k e (v daz—/z fFokda, (19)
Qk 17]7]7:1 Qk 1.7 1 k
3
dp* op"
k, k—k k
| 3 plnghar - / > el /z S S
o, =1 G, Bip=1 &, =1
3
ok op" ogF
k kpk ek—k
dx 0 = 2
/zwax =z /Z o = /f dr, (20)
Qi W= 1 Q, Qp,
3 —k 3 k
k, kTR 3 p 0" 8¢
[ m [ 5 e 2 [ 35 a2 00,
a0, =1 Q, BIp=1 @, b=l
— 3 —
dYr 9y oY
k k ok
dx — 9" ——dr =0 21
/;@J@% s /Zm e =0, (21)
Q™ Q, =

k gk a@k 0,k

89 7.7 1 k 7]_ Qk

where n* = (n¥)?_, is the unit outward normal vector to 9Qx. On the common
interfaces 0§ N O€);, we have vf = v?, 7F = @E, ﬂk = @k, 7" =" and n* = —nE,
k,k = 1,..,K, and therefore from the rigid contact conditions (12)-(15) after

summation of equations (19)-(22) with respect to k = 1,..., K, and taking into
account boundary conditions (8)-(11) we obtain:

K 3
Z Z quepq CU dx + Z Z €pl] el] k)
k=18 8

k= 1Q va 1

+§:/Z ”a e” d:p—Z/Z)\kaeU
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—k K 3 —k
51/1 k 390k oY
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k=1¢, ijp=1 v k=1 ij=1 J v
OP* O w —
¢ myet o — ~dr = - / Yyl 2
+z/jzljaxjam z/z v=— [ g¥gar,  (25)
Q ° Qp rv

90* 98"
k ) 0n
E / E U~y bz, O; S dr = / f"0dx / 6dl’, (26)

k= 1Q 1,j=1

Wherefi:fik, fe=f ok fO=f0FinQpv=0" =0 =9 ,0=0 onQ,
E=1,.. K.

Therefore, if uf = (uf)?zl QO = R, Q8 Q) = R, F: Qp — R, and 6F :
Qr — R, k = 1,..., K, are solutions of equations (1)-(4) and satisfy boundary
conditions (8)-(11), and rigid contact conditions (12)-(15), then u*, ©*, * and
0% are solutions of equations (23)-(26). Conversely, if u*, ©*, ¢¥* and 6% are twice
continuously differentiable solutions of integral equations (23)-(26), then by using
Green’s formula we have:

3 3 9 k
DI D ILTTTIS 3 DOl & SR ITES pest. s
p=1

k= 189 i,j=1 k= IQ j= 1 p,q=1
3 P 3 3
—I—Zb’;ija— — )\Zﬂk vFdr = /Zfividx—i—/z:gwidf, (27)
p=1 Tp o =1 r, i=1
3 3 Dk
> [ Y ptatgtar ey /) z |3 et - a5
=1y, =1 k=1¢ pg=1 j=1
3
—Zaf]87+ ko kdm—/f cpdx—/g wdl, (28)

1"%"

3
0
_Z / ZBk k¢ dF+Z/Z Z blpqepq Za%a—fj

k=lg0, =1 k=1¢y, j=1
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—Zdz 90 et | ae=— [ grar, (29)
J F"b
K 3
00k —k
k k
Z/ana kgt ar — Z/Z%(”ax)edx
k:laﬂk 2,7=1 k= 1Q 3,j=1
/ f20dx — / 99dr, (30)
1"8

where vF = (vf)?zl, 7", @k, gk are continuously differentiable functions on Q,
such that vk = 0 on ok, ?* =0 on ngk, @k =0 on ngv 5 = 0 on FOk,, and
vk = o BF = Bk, @7 @’“ 5k—5k0n89k089k,i—123 k;E_1 LK.
By letting v* E (CL(W))3, CH(Q) = {v € CL(Qk) [v = 0 on O}, P* € CO(Qk)
zp € CH(y), 7" € C} (), from equations (27)-(30) we obtain:

kf:/i i kda:_Z/ka e, (31)

K 3
e el

Z

k=1¢
; Q/ Z =0, (33)
—Z/ ;1 B, ( i B ) §'de = é Q/ o4 dx. (34)

By taking account of density of C§(Q) in L*(Q) from (31)-(34) we obtain that
uk, oF F and 0%, k =1, ..., K, satisfy equations (1)-(4). Now, if we assume that
functions v*, %", @k and §° are arbitrary continuously differentiable functions
on surfaces I'y g, Ff s Flf  and I‘(f » Which vanish on the remaining parts of the

boundary 0, from equations (27)-(30) taking into account equations (1)-(4) we
have:

3
> / S bbb = 3" [ 3 gafar
:11"11« i=1

klr i,j=1

—Z/ZDknkwde— Z/g 7rdr,

k:ll—w i=1 kll—w
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K 3 K
X [ Bt =3 [ gt
k=1, i=1 k=1
Fl Fl.k
3 - k 09" nka"ar = ¢%9
Z Z m; o2 9 dl = Z 9" dr.
k=1pp  ij=1

[
Flk

From the latter equations and density of the sets of continuously differentiable
functions vanishing on the boundary of I'y 1, F‘ik, Flﬁk and F(f’k in spaces L*(T'1 1),
L2(TF,), L*(IY,) and L*(I'Y ) we infer that u, oF, % and 6%, k = 1,..., K, satisfy
boundary conditions (8)-(11). In order to obtain contact conditions we take func-
tions v*, B, @k and 0", which are arbitrary continuously differentiable functions
on interface 0§ N O, k,k = 1,..., K, and vanish on the remaining part of the
boundary 9. From equations (27)-(30) taking into account equations (1)-(4) we
obtain:

Z O‘Z] ; Kokdl + / Z ain?v?dl“ =0, (35)
ana0; =1 na0 =1
3 3 L
— / > Dinj@tdr — / Y Dinf@Fdr =0, (36)
90, N0Q; =1 80,.naQ; =1
3 3 _
. / N Bfnkytar - / 3" BFalytdr =o, (37)
,no0; =1 ana0y =1
Z ”@Ja ’“9 T + / Z ”@Ja ’f@ dl' = 0. (38)
0na0 =1 na0 =1

The equations (35)-(38) and density of the set of continuously differentiable func-
tions vanishing on the boundary of 92 N 9€2; in the space L2(0Qx N 0Q) imply
that u®, o¥, ¥ and 6%, k = 1, ..., K, satisfy rigid contact conditions (12)-(15).

So, the boundary value problem (1)-(15) corresponding to the static three-
dimensional model of multilayer anisotropic inhomogeneous thermoelastic piezo-
electric solid with regard to magnetic field is equivalent to integral equations (23)-
(26) in spaces of twice continuously differentiable functions. Note that if functions
v* belong to H'(Qy), k = 1,..., K, and on the common interfaces 9, N 0Qr we
have troo,noa-(vF) = trag,noo.(v¥), then there exists the function v € H' (1)
such that v = v* in Q, k = 1, ..., K. Therefore, on the basis of integral equations
(23)-(26) we obtain the following variational formulation of the boundary value
problem (1)-(15): Find uw € V/(Q) = {v € H (Q);trr(v) =0 on Ty}, p € V¥(Q)=
{7 € H'(itre() = 0 on Tf}, v € VU() = { € H'(@)stre(D) = 0 on I,
0cVQ)={0c H (Q);trr(f) = 0 on T¥} such that

c(u,v) +e(p,v) +0(Y, v) = A(,v) = L¥(v), Vv e V(Q), (39)
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_5(57 u) + d(@v@) + a(wﬁ) - M(Gva) = L@(@)’ V@ € V¢(Q)> (40)
—b(,u) +alp, ) + (¢, ) —m(0,9) = LY($), Y eVV(Q),  (41)
n(0,0) = L°(0), Y0 € V°(Q), (42)

3
Z 5p”8 eij(v)dx,

i,7,p=1

/

Z?]

3
cwv)= [ 3 comemwes o)
Q

p,q=1
3

0 ’
bpija—%eij(v)da:, / Z )\139(31]

3,j=1

:J\

~
<

p=1

3

3 —
_ Op 0p _ O 09
Ao )= [ Y dygt SPdr awp) = [ Y ey o lan
Q

2,7=1 Q 4,7=1

5. oo _ N L
(0, p) = /Zuiﬁazd:& C(, ) —/ Z Gij 6;/; &Zd
Q Q

=1 i,7=1

-
Il

J— 3 0
- - 90 o0
0-—dz, n(0,0)= / Z i3 9 9a; ™

3
mif. 9) = /Zmz O; .
Q =1 Q 3,7=1
3 3
L*(v) = / > fivida + / 3 gwidl, L?(p) = / fpdz — / g%,
q =1 r, &=l Q re
LY() = — / g¥ydr, L°(6 / 0dx — / %9ar,
ry
k g_ gk _ k _ -k _ 1k _\k
and u = u* P = 90 b =9"0=0" Cijpg = Cijpg> Epis = Epijs bpz] bm]’ /\ )\U’
d;; _dfja Qi = z’ja,ui_/j/i7Cij_zk37m f,mj=77fjin9k7k—1 K

Slnce functlons veV(Q), P cV¥Q)and ¢ € V¥(Q) are independent of each
other, problem (39)-(42) is equivalent to the following problem: Find (u, ¢, ) €
V(Q) = V(Q) x VP(Q) x V¥(Q), § € VP(Q) such that

A((u, 0,9), (v,2,9)) = L0, (v,%,9)), V(v,%,9) € V(Q), (43)
n(9,0) = L°(6), Ve V9Q), (44)
where L(0, (v,,¥)) = L*(v) + L?(@) + LY () + A0, (v, 3,9)),

A0, (v,5,9)) = A0, v) + pu(0,%) +m(0, ),
A(u, 0, 9), (v,8,9)) = c(u,v) + d(¢, %) + a(e),B) + ale, )
+ C(i/%@) + e(go, ’U) - 8(@? u) + b(wa U) - b(@v u)
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3. Existence and uniqueness of solution

Note that if the parts g, T'§, Fg’ and Fg of the body (2, where displacement vector-
function, electric and magnetic potentials, and temperature vanish, are empty sets,
then the homogeneous problem (43), (44) has non-trivial solutions. Hence, the solu-
tion of problem (43), (44) is not unique in the first order Sobolev spaces mentioned
in the variational formulation and it is necessary to introduce suitable factor spaces,
where solution of problem (43), (44) will be unique.

Let us determine the structure of the set R of solutions of the homogeneous
problem (43), (44), where L*(v) = 0, L¥(@) = 0, L¥(¢) = 0, LY() = 0, for all
(’U,@, @) S V(Q) and g S VG(Q) We assume that Cijpqs Epijs bpij, dij, Cij7 Qij, )\ijy
Wi, mi, ni; € L>®(Q), i,j,p,q = 1,2,3, satisfy the following positive definiteness
conditions

3 3
Z Ciqufijgpq > e Z 51] ) Z 77@]5]5] > ay Z 5@ ) (45)
1,3,P,q=1 i,j=1 i,j=1
Z dij&ii + Z ai€i&i + Z ai&i€ + Z Cis&is Zaz ()2 + (&)%), (46)
,j=1 ,j=1 ,5=1 i,j=1

for all &; € R, &j = &jis &, 5, € R, where a¢, oy, o are positive constants.
We denote by (u™", ™" 4" 67) € V(Q) x V?(Q) solution of the homogeneous
problem (43), (44). From positive definiteness condition (45) for the tensor (n;;)? =1

we obtain that 8" € My = {v € V(Q);v = ay, ag = const}. Hence from the
equation (43) we have:

A "0, (0.8.0) = AW (0.8.0)), Y(0.8.9) €VQ).  (47)

From conditions (45), (46) it follows that the solution (u™", "%, 4"") of the latter
equaion for #” = 0 is a rigid displacement for u? and constants for ¢’ and
W de (0", 90) € Ry = {(0",FY) € VQ)iv' = d+Fx 0r,d.f e
R3,p" = Qp, 0@ = const, ¥ = =,y = const}. Hence, in order to study the
equation (47) we introduce the factor space V(Q ) /Ry, COHSlstlng of the following

equivalence classes (v,5,¢)™ = {(v,%,¢) + (v", 7", ) (v, 7)€ Ry} for
each (v,9,v) € V(Q), which is a Hllbert space with respect to the norm

|2 9™

V(Q)/DRV = lnf{H(Uﬁava) + (/UT7¢T7¢ )||(H1(Q))5, (Ur7¢r7w ) c mv}

In the factor space V(€2) /MRy the nonhomogeneous equation (47) is equivalent to
the following equaion: Find (u™", ™" ¢ )R € V(Q) /Ry,

A%V((urm’@rW’er’")mv’ (vya,@fﬁv) — A%V (97"’ (1}7@7@)9‘{‘/)7 (48)

for all H(va @7 E)SRV € V(@/mV7 where A%VL(UTO"" 801”9"" djrer)%v 7&107 @, @)%V) =
AW, g7 0, (0,5,0)), A (07, (0,5,9)™) = AB", (0,5,1)). The equa-
tion (48) has a unique solution. The uniqueness of solution of (48) directly follows
from the construction of the factor space, so it is sufficient to show the existence.
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Sience Cijpgs dl]7 Qjj, Cl]v Epigs bp’ij7 )\l]) Wiy Ty € LOO(Q)a /iv.japaq = 1)2)37 we infer
that the bilinear forms c(.,.), d(.,.), a(.,.), ¢(.,.), €(.,.) and b(.,.), and linear forms

O, ), w(0,.),m,.), 0 Hl(Q), are continuous in the corresponding first order
Sobolev spaces, and thus we have:

A ((w, 3,90)™ , (v, ,9)7)

< e |(w, 3 9)™ (0.7.9)™

(49)

V(Q)/Ry V(Q)/%y

A™ (@, (0.7, 9)™) < 0.7 0)™

50
V(Q)/Ry (50)

for all (w, @, 1;)%", (v,2,¢)" € V(Q)/Ry. From positive definiteness conditions
(45), (46) we obtain:

A((v,

), (0,5,9)) = c(v,v) + d(@,?) + a(¥, P) + a(®,
3
Z eij(v dx+a/z<<axl 81131, )

Applying corollary from Korn’s inequality in factor spaces [3] and generalized
Poincare’s inequality [2] we have:

)+ (¥, )

{O\ ﬁ\

3
> (ei(v)de > e int{]|v + u' |3 g | (w0, ¢7) € Ry},
o ig=1

2
2
/Z <8 ) dx > ¢ /vzdx - ‘/vdm = ¢y inf{|jv +c||%2(Q) |c € R}, (51)
X
Q = Q Q

for allv € H'(Q). Consequently, the bilinear form A™ : V(Q) /Ry xV(Q) /Ry — R
satisfies the following inequality

A™ (0,5, 9)™, (0.5,0)™) 2 o | (0.7, 9)™

52
V(Q)/Ry (52)

for all (v,5,1%)" € V(Q)/Ry. Hence A%V is continuous and bounded below,
and from Lax-Milgram theorem [6] we have that equation (48) possesses a unique
solution in V(Q)/MRy. Therefore, solution (uw"", ™" ™" 07) € V(Q) x V(Q) of
the equation (47) corresponding to 0" € Ry exists.

Thus, the set PR of solutions of the homogeneous problem (43), (44) is of the
following form:

R= {57 0" .07 eVQ) x VIQ); v =d+[Fx Oz +u,d,Fer,

7 = oy + gOW7 o, = const, @rm =y + 0" oy, = const, 0" € Ry}

Applying the set R we can define the factor space (V(Q) x V9(Q))/R, which
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consists of the following elements (v,%,9,0)% = {(v,3,9,0) + (v, 57",

@wr, 07); (v, 70" ¢ ,0") € M}, which is the Hilbert space equipped with the
following norm:

H(W,@,?)”“H*:inf{H(v,@,E,?) + @7 0 |y
( T@T, T@T,,l/} )em}

Remark 1. If F? = 0f), then the area of the surface Fg is positive and, hence, the
homogeneous equation (44) has only trivial solution, Ry = {0}and R = Ry x {0}.

Remark 2. If the areas of the surfaces I'g, I'{, Fg’, Fg are positive, then the
homogeneous equations (43), (44) have only trivial solution, Ry = {(0,0,0)}, Ry =
{0} and ;R = {(0,0,0,0)}.

Note that if (u, ¢, 1, 0) is a solution of the problem (43), (44), then any function
(w, p,,0) + (v, 5" A ,07), where (v ,@”m e ,0") € R is a solution of
(43), (44). Therefore, we say that (u,p,,0)” is a solution of the problem (43),
(44), if any function from the equivalence class (u,,,0)™ is a solution of the

problem (43), (44).

For the problem (43), (44), which is equivalent to the boundary value problem
(1)-(15) in the spaces of classical smooth enough function, we have the following
existence, uniqueness and continuous dependence theorem.

Theorem 3.1: Suppose that the parameters characterizing thermo-mechanical
and electro-magnetic properties of the elastic body ) satisfy the symmetry
and positive definiteness conditions (16)-(18) and (45), (46), and cijpq, €pij
bpij g Gij» @i Nigis pis iy iy € L°(Q), 4,4,p,q = 1,2,3. If f € L9%(Q), g €
LT, 7 e I°(Q), ¢¢ € LYA(TY), ¢* € LY3(IY), 7 e L¥°(Q),
¢’ e LY3TY), and LY(6") = 0 and L(v") + L¥(@") + L¥Y(Y") = 0, for all
(v, 7", ") € Ry, 0" € Ry, then the problem (43), (44) possesses a unique solution
(u, 0,9, )% € (V(Q) x V(Q))/R, which continuously depends on the given data,
i.e., the mapping (f,g, f5, 9%, 9%, f%,4%) — (u, @, v, 0)™ is linear and continuous
from the space L%%(Q) x L*3(I'y) x L8/5() x LY3(T%) x LY3(TY) x L8/5(2) x
LA3(TY) to the space (V(Q) x VI(Q))/R.

Proof: Note that from the linearity of the problem (43), (44) it follows that the
solution is unique in the factor space (V(Q2) x V9(Q2))/R. Hence, let us prove the
existence and continuous dependence on the given data.

From the conditions of the theorem c¢;jpq, dij, @ij, Cijs €pijs bpij, Mij €
L>(Q), i,j,p,q = 1,2,3, we infer that the bilinear forms ¢(.,.), d(.,.), a(.,.),
¢(.,.), e(.,.), b(.,.) and n(.,.) are continuous in corresponding spaces, and
hence the bilinear forms A™ ((u, ¢, ¥)™ (v, 3, w)mv) = A((u, ,7), (v,9,)) :

V()R xV(Q)/Ry — R and ™ (67,07) = 1(6.6) : V/(2)/ Ro x V/(2)/ R — R
are continuous, where V?(2)/ My is the factor space consisting of the equivalence
classes 6 = {04 67;0" € Ry} for each § € V¥(Q), which is a Hilbert space with
respect to the norm HémGH\/e(Q)/% = inf{||6 + HTHHl ;0" € Ry}

Because f € L% °(Q) and g € LY 3(Ty) by applymg Holder’s inequality, and
continuity of the embedding H'(Q) — L%(Q) and the trace operator tr : H' () —
LA(T) [2] we have:
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IL(v)| < |(f,v) 20| + ‘(gatrrl(v))p(rl) <N llpers ) Ivllzsq)

+ gl pora oy 1Ere, () aryy < e llFllpors ) 10l ar o) + 2 19l Lo, 101l g @

for all v € H'(Q). Therefore, the linear form L : H'(Q) — R is continuous. From
2 e L¥A(Q), g7 € LYA(IY), g¥ € LYA(Y), f7 € L95(Q), ¢° € LY(TY) we
similarly obtain that the linear forms L¥ : H'(Q) — R, LY : H'(Q) — R, and
L% : H'(Q) — R are continuous.

Taking into account that L%(6") = 0, for all " € Ry, we have:

7R n T T T
LY@ = |L2@+07)] = [L°@)] < 1 inf{[[0+07|| (0 |0" € Ro} = 1|8 1vo(/om,.

for all ¢ € V?(Q)Re — R. From positive definiteness conditions (45) for (r;;)?
applying inequality (51) we obtain:

2,7=1

ee>%/z<

—R _

Thus, n™ (gm, 6™) = n(8,0) is continuous and bounded from below on V#(Q)/
Ry, and from Lax-Milgram theorem [6] we have that the equation (44) possesses a
unique solution 6% € V9(Q)/ Ry and

As in the case of the linear form L? from the continuity of the linear forms
L:HY(Q) — R, L¥ : HY(Q) — R, LY : H'(Q) — R taking into account that
L(u") 4+ L (") + L¥(¢") = 0, for all (u", ", ") € Ry, and using (50) we obtain:

0 0
oy, < 1 (17 11zvs@) + 11" Lorsrsy) - (53)

L0, (v,5,9)™)| = |L(v) + L?(@) + LY () + A0, (v, 5, 9))|
<o w7 d)™

V(Q)/%Ry

for all (v,3,¢)™ € V(Q)/Ry and § € V9(Q). Therefore, because ARV is continu-
ous and bounded from below, from Lax-Milgram theorem we have that the equation

(43) for each 6 € 7% possesses a unique solution (u, , )™ € V(Q)/Ry, and

H(ua 2 lb)%v <cp«t1 He + 9T‘|H1(Q) 5 V" e 9{9,

V(Q)/Rv

where cpu = ”f||L6/5(Q) + Hg||L4/3(F1) + ||fa||L6/5(Q) + ||990||L4/3(1“;") + ||950||L4/3(F§’)7
and hence

inf{||(w, 0, ¥)™ [ly(q)m, 0" € Ro} < cpe
+c lnf{HH—FGTHHl(Q) ;QT € %9} (54)
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So, solution of the problem (43), (44) exists and is unique in the space (V(2) x
V9(Q))/M, and combining estimates (53) and (54) we obtain the continuity of the

mapplng (fa g, fe’ g‘P7 9¢, fe, 99) - (u, @, 1/1, e)m, because

| w007 < cvint{ll (a0 )™ vy, 167 € Ra} + erl|0™ [ Ivogen ov,

]

From Remark 2 it follows, that if the areas of the surfaces I'g, I'f, I‘g’, Fg are
positive, then the factor space (V(2) x V?(Q)) /R coincides with V(Q) x V?(Q) and
from Theorem 3.1 we have the following theorem.

Theorem 3.2: Suppose that the parameters characterizing thermo-mechanical
and electro-magnetic properties of the elastic body ) satisfy the symmetry
and positive definiteness conditions (16)-(18) and (45), (46), and cijpq, €pij,
bpig i, Gij» Gigs Mg iy iy € L®(Q), 4,4,p,¢ = 1,2,3. If f € L55(Q), g €
LY3(Ty), f° € L¥°(Q), g7 € LYAIY), ¢ € LYAIY), 2 € L/°(Q), ¢’ €
L4/3(F(f), then the problem (43), (44) possesses a unique solution (w,p,,0) €
V(Q) x V(Q), which continuously depends on the given data, i.e., the mapping
(f,ag, 15, 9%,9%, %, ¢°) — (u,0,,0) is linear and continuous from the space
L%/5(Q) x LY3(T)) x L8/3(Q) x L¥3(D¥) x L¥3(IY) x L8/5(Q) x LY3(TY) to the
space V() x V().
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