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In this paper we consider static three-dimensional model of elastic body consisting of inhomo-
geneous anisotropic thermoelastic piezoelectric material with regard to magnetic field with
continuous or piecewise continuous characteristics. General boundary value problem corre-
sponding to the static model is studied, where on certain parts of the boundary displacement,
electric and magnetic potentials, and temperature vanish, and on the corresponding remain-
ing parts components of stress-vector, electric displacement and magnetic induction, and heat
flux along the outward normal vector of the boundary are given. The variational formulation
of the boundary value problem is obtained, which is equivalent to the original differential
formulation of three-dimensional boundary value problem in the spaces of smooth enough
functions. On the basis of the variational formulation existence, uniqueness and continuous
dependence of solution on the given data is proved in suitable factor spaces of Sobolev spaces.
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1. Introduction

The modern approach for construction of sensors and actuators for control of var-
ious engineering structures is based on application of adaptive materials with spe-
cific properties, which enable to change their shape or material characteristics,
and thereby avoiding the problems of mechanical actuators and sensors. Adaptive
materials are integrated with the structure and replace complex mechanical link-
ages and joints, resulting in essential reduction of weight and structure complexity.
Piezoelectric materials are currently widely used and intensively investigated for
possible application as adaptive materials, because they can be easily embedded
into existing structure and controlled by voltage, they have low weight, and low
power requirements, low-field linearity and high bandwidth.

After discovery of the direct piezoelectric effect by Jacques and Pierre Curie,
and theoretical prediction of the converse effect by G. Lippmann, which was con-
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firmed experimentally by the Curies, W. Voigt [12] developed the first rigorous
theoretical model of piezoelectricity, which describes the interaction between elas-
tic, electric and thermal properties of the elastic body. The first technically rel-
evant application of the piezoelectric effect was developed by P. Langevin, who
constructed a piezoelectric ultrasonic transducer assembling piezoelectric crystals.
Subsequently, W. Cady [1] treated the physical properties of piezoelectric crystals
as well as their practical applications. H. Tiersten [11] studied problems of vibra-
tion of piezoelectric plates. The widespread use of adaptive materials in diverse
engineering construction, in particular, in aerospace industry, where sensors and
actuators might undergo high thermal as well as mechanical stresses, has activated
researches on thermal along with the mechanical and electro-magnetic properties
of materials. A three-dimensional model of piezoelectric body taking into account
thermal properties of the constituting material was derived by R. Mindlin [7] on
the basis of variational principle. Further, W. Nowacki [10] developed some gen-
eral theorems for thermoelastic piezoelectric materials. R. Dhaliwal and J. Wang
[4] proved uniqueness theorem for linear three-dimensional model of the theory of
thermo-piezoelectricity, which was generalized by J. Li in the paper [5], where a
generalization of the reciprocity theorem of Nowacki [9] was also obtained. Ap-
plying the potential method and the theory of integral equations D. Natroshvili
[8] studied problems of pseudo-oscillations with basic and crack type boundary
conditions.

It should be pointed out that three-dimensional boundary value problems with
general mixed boundary conditions for displacement, electric and magnetic poten-
tials, and temperature corresponding to the linear static models for inhomogeneous
anisotropic thermoelastic piezoelectric bodies with regard to the magnetic field
have not been well investigated. The well-posedness results are mainly obtained
for elastic bodies consisting of homogeneous materials. In the present paper, we
investigate well-posedness of the linear three-dimensional boundary value problem
with general mixed boundary conditions, provided that on certain parts of the
boundary surface force and components of electric displacement, magnetic induc-
tion, and heat flux along the outward normal vector are prescribed, and on the
remaining parts displacement, electric and magnetic potentials, and temperature
vanish. We obtain new existence, uniqueness, and continuous dependence results
in the corresponding factor spaces of Sobolev spaces.

In Section 2, we consider a differential and variational formulation of the bound-
ary value problem corresponding to the linear static three-dimensional model for
the inhomogeneous anisotropic thermoelastic piezoelectric body with regard to the
magnetic field. More precisely, in Subsection 2.1 we give the differential formulation
of the boundary value problem and in Subsection 2.2 we obtain integral equations,
which are equivalent to the original problem in spaces of smooth enough functions,
and on the basis of these integral equations we present a variational formulation
of the three-dimensional problem in corresponding Sobolev spaces. In Section 3 we
investigate the existence and uniqueness of solution of the boundary value problem.
We study the structure of the set of solutions of the homogeneous boundary value
problem and obtain the well-posedness results for the boundary value problem in
suitable factor spaces of the corresponding Sobolev spaces.
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2. Three-dimensional boundary value problem

2.1. Differential formulation

Let us consider a multilayer thermoelastic piezoelectric body with initial configu-

ration Ω =
K∪

k=1
Ωk, where each subdomain Ωk, k = 1, ..., K, consists of a general

inhomogeneous anisotropic material. The static linear three-dimensional model of
the stress-strain state of thermoelastic piezoelectric body Ω with regard to the mag-
netic field is given by the following system [5], [8] of partial differential equaions:

−
3∑

j=1

∂σk
ij

∂xj
= fk

i in Ωk, i = 1, 2, 3, (1)

3∑

i=1

∂Dk
i

∂xi
= f ε,k in Ωk, (2)

3∑

i=1

∂Bk
i

∂xi
= 0 in Ωk, (3)

−
3∑

i,j=1

∂

∂xi

(
ηk

ij

∂θk

∂xj

)
= fθ,k in Ωk, (4)

where k = 1, ..., K, fk = (fk
i )3i=1 : Ωk → R3 is the density of the applied body

force, (σk
ij)

3
i,j=1 is the mechanical stress tensor in the subdomain Ωk, which is given

by the following linear constitutive equations for thermoelastic piezoelectric solid:

σk
ij =

3∑

p,q=1

ck
ijpqepq(uk) +

3∑

p=1

εk
pij

∂ϕk

∂xp
+

3∑

p=1

bk
pij

∂ψk

∂xp
− λk

ijθ
k, i, j = 1, 2, 3, (5)

where uk = (uk
i )

3
i=1 : Ωk → R3 is the displacement vector-function, ϕk : Ωk →

R and ψk : Ωk → R stand for the electric and magnetic potentials such that
electric and magnetic fields are Ek = −grad ϕk and Hk = −grad ψk, θk : Ωk → R
is the temperature distribution, eij(v) = 1/2 (∂vi/∂xj + ∂vj/∂xi), i, j = 1, 2, 3,
v = (vi)3i=1, is the strain tensor, (ck

ijpq)
3
i,j,p,q=1 is the elasticity tensor, (εk

pij)
3
i,j,p=1

are piezoelectric and (bk
pij)

3
i,j,p=1 are piezomagnetic coefficients, (λk

ij)
3
i,j=1 is the

stress-temperature tensor. Dk = (Dk
j )3j=1 is the electric displacement vector and

B = (Bj)3j=1 is the magnetic induction vector, which are given by the following
constitutive equations:

Dk
i =

3∑

p,q=1

εk
ipqepq(uk)−

3∑

j=1

dk
ij

∂ϕk

∂xj
−

3∑

j=1

ak
ij

∂ψk

∂xj
+ µk

i θ
k, i = 1, 2, 3, (6)

Bk
i =

3∑

p,q=1

bk
ipqepq(uk)−

3∑

j=1

ak
ij

∂ϕ

∂xj
−

3∑

j=1

ζk
ij

∂ψ

∂xj
+ mk

i θ
k, i = 1, 2, 3, (7)
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where (dk
ij)

3
i,j=1 and (ζk

ij)
3
i,j=1 are the permittivity and permeability tensors,

(ak
ij)

3
i,j=1 are the coupling coefficients connecting electric and magnetic fields,

(µk
i )

3
i=1 and (mk

i )
3
i=1 are coefficients characterizing the relation between thermal,

electric and magnetic fields, fε,k is the density of electric charges. (ηk
ij)

3
i,j=1 is the

thermal conductivity tensor and fθ,k is the density of heat sources.
We assume that the thermoelastic piezoelectric body Ω is clamped along a part

Γ0 ⊂ Γ = ∂Ω of the Lipschitz boundary Γ = ∂Ω, and on the remaining part
Γ1 = Γ\Γ0 applied surface force with density g = (gi) : Γ1 → R3 is given, where
∂Ω = Γ0 ∪ Γ01 ∪ Γ1, Γ0 ∩ Γ1 = ∅, is a Lipschitz dissection [6] of ∂Ω:

uk = 0 on Γ0,k = Γ0 ∩ ∂Ωk,
3∑

j=1

σk
ijn

k
j = gi on Γ1,k = ∂Ωk\Γ0,k, i = 1, 2, 3, (8)

where nk = (nk
i )

3
i=1 is the unit outward normal vector to Γ1,k. Along a part Γϕ

0 ⊂
Γ = ∂Ω of the boundary the electric potential vanishes and on the remaining
part Γϕ

1 = Γ\Γϕ
0 the normal component of the electric displacement with density

gϕ : Γϕ
1 → R is given, where ∂Ω = Γϕ

0 ∪ Γϕ
01 ∪ Γϕ

1 , Γϕ
0 ∩ Γϕ

1 = ∅, is a Lipschitz
dissection of ∂Ω:

ϕk = 0 on Γϕ
0,k = Γϕ

0 ∩ ∂Ωk,
3∑

i=1

Dk
i nk

i = gϕ on Γϕ
1,k = ∂Ωk\Γϕ

0,k, (9)

where nk = (nk
i )

3
i=1 is the unit outward normal vector to Γϕ

1,k. Along a part Γψ
0 ⊂

Γ = ∂Ω magnetic potential vanishes and on the remaining part Γψ
1 = Γ\Γψ

0 the
normal component of the magnetic induction with density gψ : Γψ

1 → R is given,
where ∂Ω = Γψ

0 ∪ Γψ
01 ∪ Γψ

1 , Γψ
0 ∩ Γψ

1 = ∅, is a Lipschitz dissection of ∂Ω:

ψk = 0 on Γψ
0,k = Γψ

0 ∩ ∂Ωk,
3∑

i=1

Bk
i nk

i = gψ on Γψ
1,k = ∂Ωk\Γψ

0,k, (10)

where nk = (nk
i )

3
i=1 is the unit outward normal vector to Γψ

1,k. The temperature
vanishes along a part Γθ

0 ⊂ Γ = ∂Ω of the boundary and heat flux along the
outward normal of Γ with density gθ : Γθ

1 → R is given on Γθ
1 = Γ\Γθ

0, where
∂Ω = Γθ

0 ∪ Γθ
01 ∪ Γθ

1, Γθ
0 ∩ Γθ

1 = ∅, is a Lipschitz dissection of ∂Ω:

θk = 0 on Γθ
0,k = Γθ

0∩∂Ωk, −
3∑

i,j=1

ηk
ij

∂θk

∂xj
nk

i = gθ on Γθ
1,k = ∂Ωk\Γθ

0,k, (11)

where nk = (nk
i )

3
i=1 is the unit outward normal vector to Γθ

1,k. Since Ω consists
of several subdomains, on the common interfaces ∂Ωk ∩ ∂Ωk, k, k = 1, ..., K, of
the subdomains Ωk and Ωk special transmission conditions should be satisfied. We
consider the so-called rigid contact conditions, where the displacement and stress
vectors, temperature, electric and magnetic potentials, and normal components of
the heat flux, electric displacement and magnetic induction are continuous:
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uk = uk,
3∑

j=1

σk
ijnj =

3∑

j=1

σk
ijnj on ∂Ωk ∩ ∂Ωk, i = 1, 2, 3, (12)

ϕk = ϕk,
3∑

i=1

Dk
i ni =

3∑

i=1

Dk
i ni on ∂Ωk ∩ ∂Ωk, (13)

ψk = ψk,

3∑

i=1

Bk
i ni =

3∑

i=1

Bk
i ni on ∂Ωk ∩ ∂Ωk, (14)

θk = θk,
3∑

i,j=1

ηk
ij

∂θk

∂xj
ni =

3∑

i,j=1

ηk
ij

∂θk

∂xj
ni on ∂Ωk ∩ ∂Ωk, (15)

where n = (ni)3i=1 is the unit normal vector of ∂Ωk ∩ ∂Ωk, k, k = 1, ..., K.

2.2. Variational formulation

In order to investigate the three-dimensional boundary value problem (1)-(15) let
us obtain variational formulation in corresponding Sobolev spaces. Throughout
this article for each real s ≥ 0 we denote by Hs(Ω) and Hs(Γ̃) the Sobolev
spaces of functions based on H0(Ω) = L2(Ω) and H0(Γ̃) = L2(Γ̃), respectively,
and trΓ̃ : H1(Ω) → H1/2(Γ̃) are the trace operators, where Ω ⊂ Rn, n ∈ N, is
a bounded Lipschitz domain and Γ̃ is an element of a Lipschitz dissection of the
boundary Γ = ∂Ω [6]. Hs

0(Ω) denotes the closure of the set D(Ω) of infinitely
differentiable functions with compact support in Ω in the space Hs(Ω). We de-
note the corresponding spaces of vector-valued functions by Hs(Ω) = [Hs(Ω)]3,
Hs

0(Ω) = [Hs
0(Ω)]3, Hs(Γ̃) = [Hs(Γ̃)]3, s ≥ 0, Ls1(Γ̃) = [Ls1(Γ̃)]3, s1 ≥ 1, and by

trΓ̃ : H1(Ω) → H1/2(Γ̃). Hereafter, we use c1, c2 to denote generic constants that
are independent of the main parameters involved, but whose values may differ from
line to line and may change even within a single chain of estimates.

We assume that the elasticity tensors (ck
ijpq)

3
i,j,p,q=1, are symmetric

ck
ijpq = ck

ijqp = ck
jipq, i, j, p, q = 1, 2, 3, k = 1, ..., K; (16)

tensors (εk
pij)

3
i,j,p=1 and (bk

pij)
3
i,j,p=1, consisting of piezoelectric and piezomagnetic

coefficients are symmetric with respect to the second and third indices

εk
pij = εk

pji, bk
pij = bk

pji, i, j, p = 1, 2, 3, k = 1, ..., K; (17)

the stress-temperature tensors (λk
ij)

3
i,j=1, are symmetric

λk
ij = λk

ji, i, j = 1, 2, 3, k = 1, ..., K. (18)

If uk = (uk
i )

3
i=1 : Ωk → R3, ϕk : Ωk → R, ψk : Ωk → R, and θk : Ωk → R,

k = 1, ..., K, are smooth enough, then by multiplying the equations (1) by arbitrary
continuously differentiable functions vk

i : Ωk → R (i = 1, 2, 3), which vanish on
Γ0,k and vk

i = vk
i on ∂Ωk ∩ ∂Ωk, equation (2) by a continuously differentiable
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function ϕk : Ωk → R, such that ϕk = 0 on Γϕ
0,k and ϕk = ϕk on ∂Ωk ∩ ∂Ωk,

the equation (3) by a continuously differentiable function ψ
k : Ωk → R, which

vanishes on Γψ
0,k and ψ

k = ψ
k on ∂Ωk ∩ ∂Ωk, and equation (4) by a continuously

differentiable function θ
k : Ωk → R, such that θ

k = 0 on Γθ
0,k and θ

k = θ
k on

∂Ωk∩∂Ωk, k, k = 1, ..., K, by integrating on Ωk, using Green’s formula, and taking
into account constitutive equations (5)-(7) and symmetry conditions (16)-(18) we
obtain the following integral equations:

−
∫

∂Ωk

3∑

i,j=1

σk
ijn

k
j v

k
i dΓ +

∫

Ωk




3∑

i,j,p,q=1

ck
ijpqepq(uk)eij(vk) +

3∑

i,j,p=1

εk
pij

∂ϕk

∂xp
eij(vk)


dx

+
∫

Ωk

3∑

i,j,p=1

bk
pij

∂ψk

∂xp
eij(vk)dx−

∫

Ωk

3∑

i,j=1

λk
ijθ

keij(vk)dx =
∫

Ωk

3∑

i=1

fk
i vk

i dx, (19)

∫

∂Ωk

3∑

i=1

Dk
i nk

i ϕ
kdΓ−

∫

Ωk

3∑

i,j,p=1

εk
ipqepq(uk)

∂ϕk

∂xi
dx +

∫

Ωk

3∑

i,j=1

dk
ij

∂ϕk

∂xj

∂ϕk

∂xi
dx

+
∫

Ωk

3∑

i,j=1

ak
ij

∂ψk

∂xj

∂ϕk

∂xi
dx−

∫

Ωk

3∑

i=1

µk
i θ

k ∂ϕk

∂xi
dx =

∫

Ωk

fε,kϕkdx, (20)

∫

∂Ωk

3∑

i=1

Bk
i nk

i ψ
k
dΓ−

∫

Ωk

3∑

i,j,p=1

bk
ipqepq(uk)

∂ψ
k

∂xi
dx +

∫

Ωk

3∑

i,j=1

ak
ij

∂ϕk

∂xj

∂ψ
k

∂xi
dx

+
∫

Ωk

3∑

i,j=1

ζk
ij

∂ψk

∂xj

∂ψ
k

∂xi
dx−

∫

Ωk

3∑

i=1

mk
i θ

k ∂ψ
k

∂xi
dx = 0, (21)

−
∫

∂Ωk

3∑

i,j=1

ηk
ij

∂θk

∂xj
nk

i θ
k
dΓ +

∫

Ωk

3∑

i,j=1

ηk
ij

∂θk

∂xj

∂θ
k

∂xi
dx =

∫

Ωk

fθ,kθdx, (22)

where nk = (nk
i )

3
i=1 is the unit outward normal vector to ∂Ωk. On the common

interfaces ∂Ωk ∩ ∂Ωk, we have vk
i = vk

i , ϕk = ϕk, ψ
k = ψ

k, θ
k = θ

k and nk = −nk,
k, k = 1, ..., K, and therefore from the rigid contact conditions (12)-(15) after
summation of equations (19)-(22) with respect to k = 1, ..., K, and taking into
account boundary conditions (8)-(11) we obtain:

K∑

k=1

∫

Ωk

3∑

i,j,p,q=1

ck
ijpqepq(uk)eij(vk)dx +

K∑

k=1

∫

Ωk

3∑

i,j,p=1

εk
pij

∂ϕk

∂xp
eij(vk)dx

+
K∑

k=1

∫

Ωk

3∑

i,j,p=1

bk
pij

∂ψk

∂xp
eij(vk)dx−

K∑

k=1

∫

Ωk

3∑

i,j=1

λk
ijθ

keij(vk)dx
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=
∫

Ω

3∑

i=1

fividx +
∫

Γ1

3∑

i=1

gividΓ, (23)

K∑

k=1


−

∫

Ωk

3∑

i,j,p=1

εk
ipqepq(uk)

∂ϕk

∂xi
dx +

∫

Ωk

3∑

i,j=1

(
dk

ij

∂ϕk

∂xj

∂ϕk

∂xi
+ ak

ij

∂ψk

∂xj

∂ϕk

∂xi

)
dx




−
K∑

k=1

∫

Ωk

3∑

i=1

µk
i θ

k ∂ϕk

∂xi
dx =

∫

Ω

fεϕdx−
∫

Γϕ
1

gϕϕdΓ, (24)

−
K∑

k=1

∫

Ωk

3∑

i,j,p=1

bk
ipqepq(uk)

∂ψ
k

∂xi
dx +

K∑

k=1

∫

Ωk

3∑

i,j=1

ak
ij

∂ϕk

∂xj

∂ψ
k

∂xi
dx

+
K∑

k=1

∫

Ωk

3∑

i,j=1

ζk
ij

∂ψk

∂xj

∂ψ
k

∂xi
dx−

K∑

k=1

∫

Ωk

3∑

i=1

mk
i θ

k ∂ψ
k

∂xi
dx = −

∫

Γψ
1

gψψdΓ, (25)

K∑

k=1

∫

Ωk

3∑

i,j=1

ηk
ij

∂θk

∂xj

∂θ
k

∂xi
dx =

∫

Ω

fθθdx−
∫

Γθ
1

gθθdΓ, (26)

where fi = fk
i , fε = fε,k, fθ = fθ,k in Ωk, v = vk, ϕ = ϕk, ψ = ψ

k, θ = θ
k on Ωk,

k = 1, ..., K.
Therefore, if uk = (uk

i )
3
i=1 : Ωk → R3, ϕk : Ωk → R, ψk : Ωk → R, and θk :

Ωk → R, k = 1, ..., K, are solutions of equations (1)-(4) and satisfy boundary
conditions (8)-(11), and rigid contact conditions (12)-(15), then uk, ϕk, ψk and
θk are solutions of equations (23)-(26). Conversely, if uk, ϕk, ψk and θk are twice
continuously differentiable solutions of integral equations (23)-(26), then by using
Green’s formula we have:

K∑

k=1

∫

∂Ωk

3∑

i,j=1

σk
ijn

k
j v

k
i dΓ−

K∑

k=1

∫

Ωk

3∑

j=1

∂

∂xj




3∑

p,q=1

ck
ijpqepq(uk) +

3∑

p=1

εk
pij

∂ϕk

∂xp

+
3∑

p=1

bk
pij

∂ψk

∂xp
− λk

ijθ
k


 vk

i dx =
∫

Ω

3∑

i=1

fividx +
∫

Γ1

3∑

i=1

gividΓ, (27)

−
K∑

k=1

∫

∂Ωk

3∑

i=1

Dk
i nk

i ϕ
kdΓ +

K∑

k=1

∫

Ωk

3∑

i=1

∂

∂xi




3∑

p,q=1

εk
ipqepq(uk)−

3∑

j=1

dk
ij

∂ϕk

∂xj

−
3∑

j=1

ak
ij

∂ψk

∂xj
+ µk

i θ
k


ϕkdx =

∫

Ω

fεϕdx−
∫

Γϕ
1

gϕϕdΓ, (28)

−
K∑

k=1

∫

∂Ωk

3∑

i=1

Bk
i nk

i ψ
k
dΓ +

K∑

k=1

∫

Ωk

3∑

i=1

∂

∂xi




3∑

p,q=1

bk
ipqepq(uk)−

3∑

j=1

ak
ij

∂ϕ

∂xj
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−
3∑

j=1

ζk
ij

∂ψ

∂xj
+ mk

i θ
k


ψ

k
dx= −

∫

Γψ
1

gψψdΓ, (29)

K∑

k=1

∫

∂Ωk

3∑

i,j=1

ηk
ij

∂θk

∂xj
nk

i θ
k
dΓ−

K∑

k=1

∫

Ωk

3∑

i,j=1

∂

∂xi

(
ηk

ij

∂θk

∂xj

)
θ

k
dx

=
∫

Ω

fθθdx−
∫

Γθ
1

gθθdΓ, (30)

where vk = (vk
i )3i=1, ϕk, ψ

k, θ
k are continuously differentiable functions on Ωk,

such that vk
i = 0 on Γ0,k, ϕk = 0 on Γϕ

0,k, ψ
k = 0 on Γψ

0,k, θ
k = 0 on Γθ

0,k, and

vk
i = vk

i , ϕk = ϕk, ψ
k = ψ

k, θ
k = θ

k on ∂Ωk ∩ ∂Ωk, i = 1, 2, 3, k, k = 1, ..., K.
By letting vk ∈ (C1

0 (Ωk))3, C1
0 (Ωk) = {v ∈ C1(Ωk) |v = 0 on ∂Ωk}, ϕk ∈ C1

0 (Ωk),
ψ

k ∈ C1
0 (Ωk), θ

k ∈ C1
0 (Ωk), from equations (27)-(30) we obtain:

−
K∑

k=1

∫

Ωk

3∑

j=1

∂σk
ij

∂xj
vk
i dx =

K∑

k=1

∫

Ωk

3∑

i=1

fk
i vk

i dx, (31)

K∑

k=1

∫

Ωk

3∑

i=1

∂Dk
i

∂xi
ϕkdx =

K∑

k=1

∫

Ωk

fε,kϕkdx , (32)

K∑

k=1

∫

Ωk

3∑

i=1

∂Bk
i

∂xi
ψ

k
dx = 0, (33)

−
K∑

k=1

∫

Ωk

3∑

i,j=1

∂

∂xi

(
ηk

ij

∂θk

∂xj

)
θ

k
dx =

K∑

k=1

∫

Ωk

fθ,kθ
k
dx. (34)

By taking account of density of C1
0 (Ω) in L2(Ω) from (31)-(34) we obtain that

uk, ϕk, ψk and θk, k = 1, ..., K, satisfy equations (1)-(4). Now, if we assume that
functions vk, ϕk, ψ

k and θ
k are arbitrary continuously differentiable functions

on surfaces Γ1,k, Γϕ
1,k, Γψ

1,k and Γθ
1,k, which vanish on the remaining parts of the

boundary ∂Ωk, from equations (27)-(30) taking into account equations (1)-(4) we
have:

K∑

k=1

∫

Γ1,k

3∑

i,j=1

σk
ijn

k
j v

k
i dΓ =

K∑

k=1

∫

Γ1,k

3∑

i=1

giv
k
i dΓ,

−
K∑

k=1

∫

Γϕ
1,k

3∑

i=1

Dk
i nk

i ϕ
kdΓ = −

K∑

k=1

∫

Γϕ
1,k

gϕϕkdΓ,
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−
K∑

k=1

∫

Γψ
1,k

3∑

i=1

Bk
i nk

i ψ
k
dΓ = −

K∑

k=1

∫

Γψ
1,k

gψψ
k
dΓ,

K∑

k=1

∫

Γθ
1,k

3∑

i,j=1

ηk
ij

∂θk

∂xj
nk

i θ
k
dΓ = −

K∑

k=1

∫

Γθ
1,k

gθθ
k
dΓ.

From the latter equations and density of the sets of continuously differentiable
functions vanishing on the boundary of Γ1,k, Γϕ

1,k, Γψ
1,k and Γθ

1,k in spaces L2(Γ1,k),

L2(Γϕ
1,k), L2(Γψ

1,k) and L2(Γθ
1,k) we infer that uk, ϕk, ψk and θk, k = 1, ..., K, satisfy

boundary conditions (8)-(11). In order to obtain contact conditions we take func-
tions vk, ϕk, ψ

k and θ
k, which are arbitrary continuously differentiable functions

on interface ∂Ωk ∩ ∂Ωk, k, k = 1, ..., K, and vanish on the remaining part of the
boundary ∂Ωk. From equations (27)-(30) taking into account equations (1)-(4) we
obtain:

∫

∂Ωk∩∂Ωk

3∑

i,j=1

σk
ijn

k
j v

k
i dΓ +

∫

∂Ωk∩∂Ωk

3∑

i,j=1

σk
ijn

k
j v

k
i dΓ = 0, (35)

−
∫

∂Ωk∩∂Ωk

3∑

i=1

Dk
i nk

i ϕ
kdΓ−

∫

∂Ωk∩∂Ωk

3∑

i=1

Dk
i nk

i ϕ
kdΓ = 0 , (36)

−
∫

∂Ωk∩∂Ωk

3∑

i=1

Bk
i nk

i ψ
k
dΓ−

∫

∂Ωk∩∂Ωk

3∑

i=1

Bk
i nk

i ψ
k
dΓ = 0, (37)

∫

∂Ωk∩∂Ωk

3∑

i,j=1

ηk
ij

∂θk

∂xj
nk

i θ
k
dΓ +

∫

∂Ωk∩∂Ωk

3∑

i,j=1

ηk
ij

∂θk

∂xj
nk

i θ
k
dΓ = 0. (38)

The equations (35)-(38) and density of the set of continuously differentiable func-
tions vanishing on the boundary of ∂Ωk ∩ ∂Ωk in the space L2(∂Ωk ∩ ∂Ωk) imply
that uk, ϕk, ψk and θk, k = 1, ..., K, satisfy rigid contact conditions (12)-(15).

So, the boundary value problem (1)-(15) corresponding to the static three-
dimensional model of multilayer anisotropic inhomogeneous thermoelastic piezo-
electric solid with regard to magnetic field is equivalent to integral equations (23)-
(26) in spaces of twice continuously differentiable functions. Note that if functions
vk belong to H1(Ωk), k = 1, ..., K, and on the common interfaces ∂Ωk ∩ ∂Ωk we
have tr∂Ωk∩∂Ωk

(vk) = tr∂Ωk∩∂Ωk
(vk), then there exists the function v ∈ H1(Ω)

such that v = vk in Ωk, k = 1, ..., K. Therefore, on the basis of integral equations
(23)-(26) we obtain the following variational formulation of the boundary value
problem (1)-(15): Find u ∈ V (Ω) = {v ∈ H1(Ω); trΓ(v) = 0 on Γ0}, ϕ ∈ V ϕ(Ω)=
{ϕ ∈ H1(Ω); trΓ(ϕ) = 0 on Γϕ

0 }, ψ ∈ V ψ(Ω) = {ψ ∈ H1(Ω); trΓ(ψ) = 0 on Γψ
0 },

θ ∈ V θ(Ω) = {θ ∈ H1(Ω); trΓ(θ) = 0 on Γθ
0} such that

c(u, v) + ε(ϕ,v) + b(ψ,v)− λ(θ,v) = Lu(v), ∀v ∈ V (Ω), (39)
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−ε(ϕ,u) + d(ϕ,ϕ) + a(ψ,ϕ)− µ(θ, ϕ) = Lϕ(ϕ), ∀ϕ ∈ V ϕ(Ω), (40)

−b(ψ,u) + a(ϕ,ψ) + ζ(ψ,ψ)−m(θ, ψ) = Lψ(ψ), ∀ψ ∈ V ψ(Ω), (41)

η(θ, θ) = Lθ(θ), ∀θ ∈ V θ(Ω), (42)

where

c(u, v) =
∫

Ω

3∑

i,j,p,q=1

cijpqepq(u)eij(v)dx, ε(ϕ,v) =
∫

Ω

3∑

i,j,p=1

εpij
∂ϕ

∂xp
eij(v)dx,

b(ψ,v) =
∫

Ω

3∑

i,j,p=1

bpij
∂ψ

∂xp
eij(v)dx, λ(θ,v) =

∫

Ω

3∑

i,j=1

λijθeij(v)dx,

d(ϕ,ϕ) =
∫

Ω

3∑

i,j=1

dij
∂ϕ

∂xj

∂ϕ

∂xi
dx, a(ψ,ϕ) =

∫

Ω

3∑

i,j=1

aij
∂ψ

∂xj

∂ϕ

∂xi
dx,

µ(θ, ϕ) =
∫

Ω

3∑

i=1

µiθ
∂ϕ

∂xi
dx, ζ(ψ,ψ) =

∫

Ω

3∑

i,j=1

ζij
∂ψ

∂xj

∂ψ

∂xi
dx,

m(θ, ψ) =
∫

Ω

3∑

i=1

miθ
∂ψ

∂xi
dx, η(θ, θ) =

∫

Ω

3∑

i,j=1

ηij
∂θ

∂xj

∂θ

∂xi
dx,

Lu(v) =
∫

Ω

3∑

i=1

fividx +
∫

Γ1

3∑

i,j=1

gividΓ, Lϕ(ϕ) =
∫

Ω

f εϕdx−
∫

Γϕ
1

gϕϕdΓ,

Lψ(ψ) = −
∫

Γψ
1

gψψdΓ, Lθ(θ) =
∫

Ω

fθθdx−
∫

Γθ
1

gθθdΓ,

and u = uk, ϕ = ϕk, ψ = ψk, θ = θk, cijpq = ck
ijpq, εpij = εk

pij , bpij = bk
pij , λij = λk

ij ,
dij = dk

ij , aij = ak
ij , µi = µk

i , ζij = ζk
ij , mi = mk

i , ηij = ηk
ij in Ωk, k = 1, ..., K.

Since functions v ∈ V (Ω), ϕ ∈ V ϕ(Ω) and ψ ∈ V ψ(Ω) are independent of each
other, problem (39)-(42) is equivalent to the following problem: Find (u, ϕ, ψ) ∈
V(Ω) = V (Ω)× V ϕ(Ω)× V ψ(Ω), θ ∈ V θ(Ω) such that

A((u, ϕ, ψ), (v, ϕ, ψ)) = L(θ, (v, ϕ, ψ)), ∀(v, ϕ, ψ) ∈ V(Ω), (43)

η(θ, θ) = Lθ(θ), ∀θ ∈ V θ(Ω), (44)

where L(θ, (v, ϕ, ψ)) = Lu(v) + Lϕ(ϕ) + Lψ(ψ) + Λ(θ, (v, ϕ, ψ)),

Λ(θ, (v, ϕ, ψ)) = λ(θ,v) + µ(θ, ϕ) + m(θ, ψ),

A((u, ϕ, ψ), (v, ϕ, ψ)) = c(u, v) + d(ϕ,ϕ) + a(ψ,ϕ) + a(ϕ,ψ)

+ ζ(ψ,ψ) + ε(ϕ,v)− ε(ϕ,u) + b(ψ,v)− b(ψ,u).
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3. Existence and uniqueness of solution

Note that if the parts Γ0, Γϕ
0 , Γψ

0 and Γθ
0 of the body Ω, where displacement vector-

function, electric and magnetic potentials, and temperature vanish, are empty sets,
then the homogeneous problem (43), (44) has non-trivial solutions. Hence, the solu-
tion of problem (43), (44) is not unique in the first order Sobolev spaces mentioned
in the variational formulation and it is necessary to introduce suitable factor spaces,
where solution of problem (43), (44) will be unique.

Let us determine the structure of the set R of solutions of the homogeneous
problem (43), (44), where Lu(v) = 0, Lϕ(ϕ) = 0, Lψ(ψ) = 0, Lθ(θ) = 0, for all
(v, ϕ, ψ) ∈ V(Ω) and θ ∈ V θ(Ω). We assume that cijpq, εpij , bpij , dij , ζij , aij , λij ,
µi, mi, ηij ∈ L∞(Ω), i, j, p, q = 1, 2, 3, satisfy the following positive definiteness
conditions

3∑

i,j,p,q=1

cijpqξijξpq ≥ αc

3∑

i,j=1

(ξij)2,
3∑

i,j=1

ηijξjξj ≥ αη

3∑

i=1

(ξi)2, (45)

3∑

i,j=1

dijξjξi +
3∑

i,j=1

aij ξ̃jξi +
3∑

i,j=1

aijξj ξ̃i +
3∑

i,j=1

ζij ξ̃j ξ̃i ≥ α
3∑

i=1

((ξi)2 + (ξ̃i)2), (46)

for all ξij ∈ R, ξij = ξji, ξi, ξ̃i ∈ R, where αc, αη, α are positive constants.
We denote by (urθr

, ϕrθr

, ψrθr

, θr) ∈ V(Ω)× V θ(Ω) solution of the homogeneous
problem (43), (44). From positive definiteness condition (45) for the tensor (ηij)3i,j=1

we obtain that θr ∈ Rθ = {v ∈ V θ(Ω); v = αθ, αθ = const}. Hence from the
equation (43) we have:

A((urθr

, ϕrθr

, ψrθr

), (v, ϕ, ψ)) = Λ(θr, (v, ϕ, ψ)), ∀(v, ϕ, ψ) ∈ V(Ω). (47)

From conditions (45), (46) it follows that the solution (urθr

, ϕrθr

, ψrθr

) of the latter
equaion for θr = 0 is a rigid displacement for uθr

and constants for ϕθr

and
ψθr

, i.e. (ur0, ϕr0, ψr0) ∈ RV = {(vr, ϕr, ψ
r) ∈ V(Ω);vr = ~α + ~β × −→

Ox, ~α, ~β ∈
R3,ϕr = αϕ, αϕ = const, ψ

r = αψ, αψ = const}. Hence, in order to study the
equation (47) we introduce the factor space V(Ω)/RV , consisting of the following
equivalence classes (v, ϕ, ψ)RV = {(v, ϕ, ψ) + (vr, ϕr, ψ

r); (vr, ϕr, ψ
r) ∈ RV } for

each (v, ϕ, ψ) ∈ V(Ω), which is a Hilbert space with respect to the norm

∥∥∥(v, ϕ, ψ)RV

∥∥∥
V(Ω)/RV

= inf{||(v, ϕ, ψ) + (vr, ϕr, ψ
r)||(H1(Ω))5 ; (v

r, ϕr, ψ
r) ∈ RV }.

In the factor space V(Ω)/RV the nonhomogeneous equation (47) is equivalent to
the following equaion: Find (urθr

, ϕrθr

, ψrθr

)RV ∈ V(Ω)/RV ,

ARV ((urθr

, ϕrθr

, ψrθr

)RV , (v, ϕ, ψ)RV ) = ΛRV (θr, (v, ϕ, ψ)RV ), (48)

for all (v, ϕ, ψ)RV ∈ V(Ω)/RV , where ARV ((urθr

, ϕrθr

, ψrθr

)RV , (v, ϕ, ψ)RV ) =
A((urθr

, ϕrθr

, ψrθr

), (v, ϕ, ψ)), ΛRV (θr, (v, ϕ, ψ)RV ) = Λ(θr, (v, ϕ, ψ)). The equa-
tion (48) has a unique solution. The uniqueness of solution of (48) directly follows
from the construction of the factor space, so it is sufficient to show the existence.
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Sience cijpq, dij , aij , ζij , εpij , bpij , λij , µi, mi ∈ L∞(Ω), i, j, p, q = 1, 2, 3, we infer
that the bilinear forms c(., .), d(., .), a(., .), ζ(., .), ε(., .) and b(., .), and linear forms
λ(θ, .), µ(θ, .), m(θ, .), θ ∈ H

1(Ω), are continuous in the corresponding first order
Sobolev spaces, and thus we have:

ARV ((w, ϕ̃, ψ̃)RV , (v, ϕ, ψ)RV )

≤ cA

∥∥∥(w, ϕ̃, ψ̃)RV

∥∥∥
V(Ω)/RV

∥∥∥(v, ϕ, ψ)RV

∥∥∥
V(Ω)/RV

, (49)

ΛRV (θ, (v, ϕ, ψ)RV ) ≤ cΛ

∥∥∥(v, ϕ, ψ)RV

∥∥∥
V(Ω)/RV

, (50)

for all (w, ϕ̃, ψ̃)RV , (v, ϕ, ψ)RV ∈ V(Ω)/RV . From positive definiteness conditions
(45), (46) we obtain:

A((v, ϕ, ψ), (v, ϕ, ψ)) = c(v, v) + d(ϕ,ϕ) + a(ψ,ϕ) + a(ϕ,ψ) + ζ(ψ,ψ)

≥ αc

∫

Ω

3∑

i,j=1

(eij(v))2dx + α

∫

Ω

3∑

i=1

((
∂ϕ

∂xi

)2

+
(

∂ψ

∂xi

)2
)

dx.

Applying corollary from Korn’s inequality in factor spaces [3] and generalized
Poincare’s inequality [2] we have:

∫

Ω

3∑

i,j=1

(eij(v))2dx ≥ c1 inf{‖v + ur‖2
H1(Ω) |(ur, ϕr, ψr) ∈ RV },

∫

Ω

3∑

i=1

(
∂v

∂xi

)2

dx ≥ c1




∫

Ω

v2dx−
∣∣∣∣∣∣

∫

Ω

vdx

∣∣∣∣∣∣

2
 = c1 inf{‖v + c‖2

L2(Ω) |c ∈ R}, (51)

for all v ∈ H1(Ω). Consequently, the bilinear form ARV : V(Ω)/RV ×V(Ω)/RV → R
satisfies the following inequality

ARV ((v, ϕ, ψ)RV , (v, ϕ, ψ)RV ) ≥ c1

∥∥∥(v, ϕ, ψ)RV

∥∥∥
V(Ω)/RV

, (52)

for all (v, ϕ, ψ)RV ∈ V(Ω)/RV . Hence ARV is continuous and bounded below,
and from Lax-Milgram theorem [6] we have that equation (48) possesses a unique
solution in V(Ω)/RV . Therefore, solution (urθr

, ϕrθr

, ψrθr

, θr) ∈ V(Ω) × V θ(Ω) of
the equation (47) corresponding to θr ∈ Rθ exists.

Thus, the set R of solutions of the homogeneous problem (43), (44) is of the
following form:

R = {(vrθr

, ϕrθr

, ψ
rθr

, θr) ∈ V(Ω)× V θ(Ω); vrθr

= ~α + ~β ×−→Ox + urθr

, ~α, ~β ∈ R3,

ϕrθr

= αϕ + ϕrθr

, αϕ = const, ψ
rθr

= αψ + ψrθr

, αψ = const, θr ∈ Rθ}.

Applying the set R we can define the factor space (V(Ω) × V θ(Ω))/R, which
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consists of the following elements (v, ϕ, ψ, θ)R = {(v, ϕ, ψ, θ) + (vrθr

, ϕrθr

,
ψ

rθr

, θr); (vrθr

, ϕrθr

, ψ
rθr

, θr) ∈ R}, which is the Hilbert space equipped with the
following norm:

∥∥∥(v, ϕ, ψ, θ)R
∥∥∥
∗

= inf{||(v, ϕ, ψ, θ) + (vrθr

, ϕrθr

, ψ
rθr

, θr)||(H1(Ω))6 ;

(vrθr

, ϕrθr

, ψ
rθr

, θr) ∈ R}.

Remark 1. If Γθ
1 6= ∂Ω, then the area of the surface Γθ

0 is positive and, hence, the
homogeneous equation (44) has only trivial solution, Rθ = {0}and R = RV ×{0}.

Remark 2. If the areas of the surfaces Γ0, Γϕ
0 , Γψ

0 , Γθ
0 are positive, then the

homogeneous equations (43), (44) have only trivial solution, RV = {(0, 0, 0)}, Rθ =
{0} and R = {(0, 0, 0, 0)}.

Note that if (u, ϕ, ψ, θ) is a solution of the problem (43), (44), then any function
(u, ϕ, ψ, θ) + (vrθr

, ϕrθr

, ψ
rθr

, θr), where (vrθr

, ϕrθr

, ψ
rθr

, θr) ∈ R is a solution of
(43), (44). Therefore, we say that (u, ϕ, ψ, θ)R is a solution of the problem (43),
(44), if any function from the equivalence class (u, ϕ, ψ, θ)R is a solution of the
problem (43), (44).

For the problem (43), (44), which is equivalent to the boundary value problem
(1)-(15) in the spaces of classical smooth enough function, we have the following
existence, uniqueness and continuous dependence theorem.

Theorem 3.1 : Suppose that the parameters characterizing thermo-mechanical
and electro-magnetic properties of the elastic body Ω satisfy the symmetry
and positive definiteness conditions (16)-(18) and (45), (46), and cijpq, εpij,
bpij,dij , ζij , aij , λij , µi, mi, ηij ∈ L∞(Ω), i, j, p, q = 1, 2, 3. If f ∈ L6/5(Ω), g ∈
L4/3(Γ1), fε ∈ L6/5(Ω), gϕ ∈ L4/3(Γϕ

1 ), gψ ∈ L4/3(Γψ
1 ), fθ ∈ L6/5(Ω),

gθ ∈ L4/3(Γθ
1), and Lθ(θr) = 0 and L(vr) + Lϕ(ϕr) + Lψ(ψr) = 0, for all

(vr, ϕr, ψ
r) ∈ RV , θr ∈ Rθ , then the problem (43), (44) possesses a unique solution

(u, ϕ, ψ, θ)R ∈ (V(Ω)× V θ(Ω))/R, which continuously depends on the given data,
i.e., the mapping (f , g, fε, gϕ, gψ, fθ, gθ) → (u, ϕ, ψ, θ)R is linear and continuous
from the space L6/5(Ω) × L4/3(Γ1) × L6/5(Ω) × L4/3(Γϕ

1 ) × L4/3(Γψ
1 ) × L6/5(Ω) ×

L4/3(Γθ
1) to the space (V(Ω)× V θ(Ω))/R.

Proof : Note that from the linearity of the problem (43), (44) it follows that the
solution is unique in the factor space (V(Ω) × V θ(Ω))/R. Hence, let us prove the
existence and continuous dependence on the given data.

From the conditions of the theorem cijpq, dij , aij , ζij , εpij , bpij , ηij ∈
L∞(Ω), i, j, p, q = 1, 2, 3, we infer that the bilinear forms c(., .), d(., .), a(., .),
ζ(., .), ε(., .), b(., .) and η(., .) are continuous in corresponding spaces, and
hence the bilinear forms ARV ((u, ϕ, ψ)RV , (v, ϕ, ψ)RV ) = A((u, ϕ, ψ), (v, ϕ, ψ)) :
V(Ω)/RV×V(Ω)/RV → R and ηRθ(θr, θ

r) = η(θ, θ) : V θ(Ω)/ Rθ×V θ(Ω)/ Rθ → R
are continuous, where V θ(Ω)/ Rθ is the factor space consisting of the equivalence
classes θ

Rθ = {θ + θr; θr ∈ Rθ} for each θ ∈ V θ(Ω), which is a Hilbert space with
respect to the norm ||θRθ ||V θ(Ω)/Rθ

= inf{∥∥θ + θr
∥∥

H1(Ω)
; θr ∈ Rθ}.

Because f ∈ L6/5(Ω) and g ∈ L4/3(Γ1) by applying Holder’s inequality, and
continuity of the embedding H1(Ω) → L6(Ω) and the trace operator tr : H1(Ω) →
L4(Γ) [2] we have:
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|L(v)| ≤ ∣∣(f , v)L2(Ω)

∣∣ +
∣∣∣(g, trΓ1(v))L2(Γ1)

∣∣∣ ≤ ‖f‖L6/5(Ω) ‖v‖L6(Ω)

+ ‖g‖L4/3(Γ1)
‖trΓ1(v)‖L4(Γ1)

≤ c1 ‖f‖L6/5(Ω) ‖v‖H1(Ω) + c2 ‖g‖L4/3(Γ1)
‖v‖H1(Ω) ,

for all v ∈ H1(Ω). Therefore, the linear form L : H1(Ω) → R is continuous. From
f ε ∈ L6/5(Ω), gϕ ∈ L4/3(Γϕ

1 ), gψ ∈ L4/3(Γψ
1 ), fθ ∈ L6/5(Ω), gθ ∈ L4/3(Γθ

1) we
similarly obtain that the linear forms Lϕ : H1(Ω) → R, Lψ : H1(Ω) → R, and
Lθ : H1(Ω) → R are continuous.

Taking into account that Lθ(θr) = 0, for all θr ∈ Rθ, we have:

|Lθ(θR)| = |Lθ(θ+θr)| = |Lθ(θ)| ≤ c1 inf{||θ+θr||H1(Ω)|θr ∈ Rθ} = c1||θR||V θ(Ω)/Rθ
,

for all θ
Rθ ∈ V θ(Ω)Rθ → R. From positive definiteness conditions (45) for (ηij)3i,j=1

applying inequality (51) we obtain:

η(θ, θ) ≥ αη

∫

Ω

3∑

i=1

(
∂θ

∂xi

)2

dx ≥ c1||θR||2V θ(Ω)/Rθ
, ∀θ ∈ V θ(Ω).

Thus, ηRθ(θR
, θ̃R) = η(θ, θ̃) is continuous and bounded from below on V θ(Ω)/

Rθ, and from Lax-Milgram theorem [6] we have that the equation (44) possesses a
unique solution θRθ ∈ V θ(Ω)/ Rθ and

∥∥∥θRθ

∥∥∥
V θ(Ω)/Rθ

≤ c1

(
||fθ||L6/5(Ω) + ||gθ||L4/3(Γθ

1)

)
. (53)

As in the case of the linear form Lθ from the continuity of the linear forms
L : H1(Ω) → R, Lϕ : H1(Ω) → R, Lψ : H1(Ω) → R taking into account that
L(ur) + Lϕ(ϕr) + Lψ(ψr) = 0, for all (ur, ϕr, ψr) ∈ RV , and using (50) we obtain:

|L(θ, (v, ϕ, ψ)RV )| = |L(v) + Lϕ(ϕ) + Lψ(ψ) + Λ(θ, (v, ϕ, ψ))|

≤ c1

∥∥∥(v, ϕ, ψ)RV

∥∥∥
V(Ω)/RV

,

for all (v, ϕ, ψ)RV ∈ V(Ω)/RV and θ ∈ V θ(Ω). Therefore, because ARV is continu-
ous and bounded from below, from Lax-Milgram theorem we have that the equation
(43) for each θ ∈ θRθ possesses a unique solution (u, ϕ, ψ)RV ∈ V(Ω)/RV , and

∥∥∥(u, ϕ, ψ)RV

∥∥∥
V(Ω)/RV

≤ cLu + c1 ‖θ + θr‖H1(Ω) , ∀θr ∈ Rθ,

where cLu = ‖f‖L6/5(Ω) + ‖g‖L4/3(Γ1)
+ ‖fε‖L6/5(Ω) + ‖gϕ‖L4/3(Γϕ

1 ) + ‖gϕ‖L4/3(Γψ
1 ),

and hence

inf{||(u, ϕ, ψ)RV ||V(Ω)/RV
;θr ∈ Rθ} ≤ cLu

+ c1 inf{‖θ + θr‖H1(Ω) ; θr ∈ Rθ}. (54)
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So, solution of the problem (43), (44) exists and is unique in the space (V(Ω)×
V θ(Ω))/R, and combining estimates (53) and (54) we obtain the continuity of the
mapping (f , g, fε, gϕ, gψ, fθ, gθ) → (u, ϕ, ψ, θ)R, because

∥∥∥(u, ϕ, ψ, θ)R
∥∥∥
∗
≤ c1 inf{||(u, ϕ, ψ)RV ||V(Ω)/RV

; θr ∈ Rθ}+ c1||θRθ ||V θ(Ω)/Rθ
.

¤

From Remark 2 it follows, that if the areas of the surfaces Γ0, Γϕ
0 , Γψ

0 , Γθ
0 are

positive, then the factor space (V(Ω)×V θ(Ω))/R coincides with V(Ω)×V θ(Ω) and
from Theorem 3.1 we have the following theorem.

Theorem 3.2 : Suppose that the parameters characterizing thermo-mechanical
and electro-magnetic properties of the elastic body Ω satisfy the symmetry
and positive definiteness conditions (16)-(18) and (45), (46), and cijpq, εpij,
bpij,dij , ζij , aij , λij , µi, mi, ηij ∈ L∞(Ω), i, j, p, q = 1, 2, 3. If f ∈ L6/5(Ω), g ∈
L4/3(Γ1), fε ∈ L6/5(Ω), gϕ ∈ L4/3(Γϕ

1 ), gψ ∈ L4/3(Γψ
1 ), fθ ∈ L6/5(Ω), gθ ∈

L4/3(Γθ
1), then the problem (43), (44) possesses a unique solution (u, ϕ, ψ, θ) ∈

V(Ω) × V θ(Ω), which continuously depends on the given data, i.e., the mapping
(f , g, fε, gϕ, gψ, fθ, gθ) → (u, ϕ, ψ, θ) is linear and continuous from the space
L6/5(Ω)× L4/3(Γ1)× L6/5(Ω)× L4/3(Γϕ

1 )× L4/3(Γψ
1 )× L6/5(Ω)× L4/3(Γθ

1) to the
space V(Ω)× V θ(Ω).
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