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Dynamical problem of the antiplane strain (shear) of an isotropic non-homogeneous prismatic
shell-like body is considered when the shear modulus depending on the body projection (i.e.,
on a domain lying in the plane of interest) variables vanishes either on a part or on the entire
boundary of the projection.
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1. Introduction

We consider dynamical problems of the antiplane strain (shear) of an isotropic
non-homogeneous prismatic shell-like body. The motion equation has the following
form (see [1])

(µ(x1, x2)u3,α(x1, x2, t)),α + Φ3(x1, x2, t) = ρü3(x1, x2, t), (1)

where u3 is a displacement vector component, µ is the shear modules, ρ is the
density, Φ3 is the component of the volume force. The static problems of the an-
tiplane strain (shear) of isotropic non-homogeneous prismatic shell-like bodies are
investigated in [1], where peculiarities of the correct setting of boundary conditions
are clarified. In particular, some boundary value problems are solved in the explicit
form.

The aim of the present paper is to investigate initial boundary value problems for
the symmetric prismatic shell-like body (see [2,3]), when the shear modulus may
vanish (i.e. degenerate) on the boundary of the projection on the plane of interest
Ox1x2.

Admissible dynamical problems for cylindrical vibrations are investigated for a
plate with a strip as a middle plane and a variable shear modules which may vanish
at the edges of the strip. The setting of boundary conditions at the boundaries of
the strip depends on the kind of degeneration of the shear modules, while setting

∗Corresponding author. Email: chinchaladze@gmail.com

ISSN: 1512-0082 print
c© 2015 Tbilisi University Press



56 Bulletin of TICMI

of initial conditions is independent of it. In some cases the problem under consid-
eration leads to the second type integral equations with symmetric kernels. To this
end Hilbert-Schmidt theory is used.

2. Cylindrical vibration

Let us consider the shell-like body whose projection on x3 = 0 occupies the domain
ω

ω := {(x1;x2) : −∞ < x1 <∞; 0 ≤ x2 ≤ l}

and the shear modulus µ(x2) ∈ C1(ω) ∩ C(ω) satisfies the following conditions

µ(x2)

{
> 0, x2 ∈ (0, l);
≥ 0, at the boundaries x2 = 0 and x2 = l,

where l = const > 0 is the width of the body projection.
Since all the quantities depend only on one space variable x2, equation (1) can

be rewritten as follows

(µ(x2)u3,2(x2, t)),2 + Φ3(x2, t) = ρü3(x2, t), x2 ∈]0, l[, t > 0. (2)

Equation (2) is a degenerate hyperbolic equation which we will solve with the
following initial conditions (ICs)

u3(x2, 0) = ϕ1(x2), u3,t (x2, 0) = ϕ2(x2), (3)

where ϕi(x2) ∈ C2(]0, l[), i = 1, 2, are given functions.
Let us denote by I0 and Il the following integrals

I0 :=

ε∫
0

dξ

µ(ξ)
, ε = const > 0,

Il :=

l∫
l−ε

dξ

µ(ξ)
, ε = const > 0.

Problem 1: Let

I0 < +∞, Il < +∞.

Find

u3(·, t) ∈ C2(]0, l[) ∩ C([0, l]),

u3(x2, ·) ∈ C2(t > 0) ∩ C1(t ≥ 0), u3(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0), (4)
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satisfying equation (2), the boundary conditions (BCs)

u3(0, t) = u3(l, t) = 0 (5)

and ICs (3), where

ϕi(x2) ∈ C2(]0, l[) ∩ C([0, l]), i = 1, 2, (6)

ϕi(0) = ϕi(l) = 0, i = 1, 2. (7)

Problem 2: Let

I0 < +∞, Il ≤ +∞.

Find

u3(·, t) ∈ C2(]0, l[) ∩ C([0, l[), (µu3,2 )(·, t) ∈ C([0, l]),

u3(x2, ·) ∈ C2(t > 0) ∩ C1(t ≥ 0), u3(x2, t) ∈ C(0 ≤ x2 < l, t ≥ 0),

satisfying equation (2), BCs

u3(0, t) = (µu3,2 )(l, t) = 0, (8)

and ICs (3), where

ϕi(x2) ∈∈ C2(]0, l[) ∩ C([0, l[), (µϕi,2 )(x2) ∈ C([0, l]), i = 1, 2,

ϕi(0) = (µϕi,2 )(l) = 0, i = 1, 2.

Solution (of the Problem 1). We use the Fourier method and, consequently, we
are looking for u3(x2, t) in the following form

u3(x2, t) = X(x2)T (t). (9)

Let first Φ3 ≡ 0. Then from (2) we get

(µ(x2)X ′(x2))′

ρX(x2)
=
T ′′(t)

T (t)
= −λ = const,

Hence,

T ′′(t) + λT (t) = 0 (10)

and

(µ(x2)X ′(x2))′ = −λρX(x2). (11)
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Now, in view of (4), (5) we have to solve the following BVP:
Find

X(x2) ∈ C2(]0, l[) ∩ C([0, l]), (12)

which satisfies equation (11) and BCs

X(0) = X(l) = 0. (13)

After two times integration of (11) and using BCs (13) for X(x2), we obtain

X(x2) = λ

∫ l

0
K(x2, ξ)X(ξ)dξ, (14)

where

K(x2, ξ) =



ρ

∆

l∫
x2

dη

µ(η)

ξ∫
0

dη

µ(η)
, 0 ≤ ξ ≤ x2,

ρ

∆

l∫
ξ

dη

µ(η)

x2∫
0

dη

µ(η)
, ξ ≤ x2 ≤ l.

(15)

Evidently,

∆ :=

∫ l

0

dη

µ(η)
6= 0.

Proposition 2.1: K(x2, ξ) is a symmetric with respect to x2 and ξ.

Proposition 2.2: Number of eigenvalues λn is not finite.

Proof : Let it be finite, and n = 1,m. Then we can express K(x2, ξ) as follows
(see, e.g., [4])

K(x2, ξ) =

m∑
n=1

Xn(x2)Xn(ξ)

λn
,

where Xn(x2) ∈ C2(]0, l[), i.e.,

K(x2, ξ) ∈ C2(]0, l[×]0, l[). (16)

On the other hand, by virtue of (15),

K ′x2
(x2, ξ)|ξ→x2− −K ′x2

(x2, ξ)|ξ→x2+ = − ρ

µ(x2)
,
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then kernel

K(x2, ξ) 6∈ C2(]0, l[×]0, l[). (17)

But, (16) and (17) contradict to each other, thus the number of λn cannot be finite.
�

Proposition 2.3: All of λn are positive.

Proof : Let Xn be orthonormalized eigenfunctions (it can be assumed without loss
of generality) and let us multiply both sides of the following equation

(µ(x2)X ′n(x2))′ = −λnρXn(x2), (18)

by Xn and integrate the obtained from 0 to l, then by virtue of BCs (13), we get

−λnρ =

∫ l

0
(µ(x2)X ′n(x2))′Xn(x2)dx2

= µ(x2)X ′n(x2)Xn(x2)
∣∣l
0
−
∫ l

0
µ(x2)X ′n(x2)X ′n(x2)dx2

= −
∫ l

0
µ(x2)

[
X ′n(x2)

]2
dx2 ≤ 0.

Hence, λn > 0 for any n, provided Xn 6≡ 0. �

The solution of (10) can be written as follows

Tn(t) = bn1 sin
(√

λnt
)

+ bn2 cos
(√

λnt
)
, bni = const, i = 1, 2.

Now, we can formally represent the solution of the Problem 1 in the following
form

u3(x2, t) =

∞∑
n=1

Xn(x2)
(
bn1 sin

(√
λnt
)

+ bn2 cos
(√

λnt
))

. (19)

In view of the initial conditions (3), we formally have

∞∑
n=1

Xn(x2)bn2 = ϕ1,

∞∑
n=1

√
λnXn(x2)bn1 = ϕ2. (20)

If ψi(x2) := (µ(x2)ϕ′i(x2))′ is an integrable function on [0, l], taking into account
symmetry of K(x2, ξ) ∈ C([0, l] × [0, l]), we get absolutely and uniformly conver-
gence of the series (see, e.g. [4,5])

ϕi(x2) =

∞∑
n=1

l∫
0

ϕi(ξ)Xn(ξ)dξ ·Xn(x2), i = 1, 2,
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i.e., of the series (20) on [0, l], and

bn1 =
1√
λn

l∫
0

Xn(x2)ϕ2(x2)dx2, bn2 =

l∫
0

Xn(x2)ϕ1(x2)dx2. (21)

Therefore, the series (19) can be estimated as follows

|u3(x2, t)| ≤
∞∑
n=1

|Xn(x2)bn1 |+
∞∑
n=1

|Xn(x2)bn2 |.

Since there exists positive minimum of the eigenvalues, from the convergence of
(20) we obtain that (19) converges absolutely and uniformly on [0, l].

After formal differentiation of (19) with respect to t we get

u3,t (x2, t) =

∞∑
n=1

Xn(x2)
√
λn

(
bn1 cos(

√
λnt)− bn2 sin(

√
λnt)

)
, (22)

u3,tt (x2, t) = −
∞∑
n=1

Xn(x2)λn

(
bn1 sin(

√
λnt) + bn2 cos(

√
λnt)

)
. (23)

Theorem 2.4 : The series (22) – (23) are convergent absolutely and uniformly
on any [a, b] ∈]0, l[ if

ψi(0) = ψi(l) for i = 1, 2, (24)

and

χi(x2) :=
(
µ(x2)ψ′i(x2)

)′
, i = 1, 2, are integrable ones on ]0, l[. (25)

Proof : Substituting into (21) the function Xn(x2) found from (18), we get

bn1 =
1

ρλn
√
λn

l∫
0

(µ(x2)X ′n(x2))′ϕ2(x2)dx2

=
1

ρλn
√
λn

(µ(x2)X ′n(x2))ϕ2(x2)|l0 −
l∫

0

µ(x2)X ′n(x2)ϕ′2(x2)dx2


=

1

ρλn
√
λn

−µ(x2)Xn(x2)ϕ′2(x2)
∣∣l
0

+

l∫
0

Xn(x2)(µ(x2)ϕ(x2)′2)′dx2


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=
1

ρλn
√
λn

l∫
0

Xn(x2)ψ2(x2)dx2. (26)

Analogously,

bn2 =
1

ρλn

l∫
0

Xn(x2)ψ1(x2)dx2. (27)

From (25), in view of (24), ψi(x2) can be expressed as follows

ψi(x2) =

l∫
0

K(x2, ξ)χi(ξ)dξ, i = 1, 2.

The following series (see, e.g., [4,5])

∞∑
n=1

βni Xn(x2),

where

βni =

l∫
0

Xn(x2)ψi(x2)dx2, i = 1, 2,

is convergent absolutely and uniformly on ]0, l[, i.e.,

∞∑
n=1

|βni ||Xn(x2)| < +∞, i = 1, 2. (28)

Further, from (22)

|u3,t (x2, t)| =

∣∣∣∣∣
∞∑
n=1

Xn(x2)
√
λn

(
bn1 cos(

√
λnt)− bn2 sin(

√
λnt)

)∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
n=1

Xn(x2)
√
λnb

n
1 cos(

√
λnt)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
n=1

Xn(x2)
√
λnb

n
2 sin(

√
λnt)

∣∣∣∣∣
≤
∞∑
n=1

∣∣∣Xn(x2)
√
λnb

n
1

∣∣∣+

∞∑
n=1

∣∣∣Xn(x2)
√
λnb

n
2

∣∣∣ . (29)

According to Proposition 2.3, all of λn are positive. Therefore, we can find λ0 such
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that λ0 ≤ min
1≤i≤∞

{λi}, and, by virtue of (26)-(28), we obtain

∞∑
n=1

∣∣∣Xn(x2)
√
λnb

n
2

∣∣∣ =

∞∑
n=1

∣∣∣∣Xn

√
λn

1

λn
βn1

∣∣∣∣ ≤ 1√
λ0

∞∑
n=1

|Xn||βn1 | <∞,

∞∑
n=1

∣∣∣Xn(x2)
√
λnb

n
1

∣∣∣ =

∞∑
n=1

∣∣∣∣Xn

√
λn

1

λn
√
λn
βn2

∣∣∣∣ ≤ 1

λ0

∞∑
n=1

|Xn||βn2 | <∞, x2 ∈]0, l[.

Hence, the series in (29) are convergent. Thus, (22) is convergent absolutely and
uniformly on ]0, l[. Similarly, we get the absolute and uniform convergence of (23)
on ]0, l[. �

Let us now differentiate (19) formally i-times with respect to x2 and consider
the following expressions

∂i

∂xi2
u3(x2, t) =

∞∑
n=1

di

dxi2
Xn(x2)

(
bn1 sin(

√
λnt) + bn2 cos(

√
λnt)

)
, i = 1, 2, (31i)

Theorem 2.5 : The series (31i) (i = 1, ..., 4) are convergent absolutely and uni-
formly on any [a, b] ∈]0, l[.

Proof : Obviously, in view of (11) and (15), we get

X ′n(x2) = λn

l∫
0

K1(x2, ξ)Xn(ξ)dξ, (32)

where

K1(x2, ξ) =


− ρ

∆

∫ ξ
0

dη
µ(η)

µ(x2)
, 0 < ξ ≤ x2,

ρ

∆

∫ l
ξ

dη
µ(η)

µ(x2)
, x2 ≤ ξ < l,

and

K1(x2, ξ) ∈ C(]0, l[×]0, l[), (33)

because of I0, Il < +∞.
Substituting (32) into (311), we obtain

∂

∂x2
u3(x2, t) =

∞∑
n=1

λn

l∫
0

K1(x2, ξ)Xn(ξ)dξ
(
bn1 sin(

√
λnt) + bn2 cos(

√
λnt)

)
=
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=

l∫
0

K1(x2, ξ)

[ ∞∑
n=1

Xn(ξ)λn

(
bn1 sin(

√
λnt) + bn2 cos(

√
λnt)

)]
dξ, (34)

since (23) is absolutely and uniformly convergent on ]0, l[, in view of (33) and
Xn(x2) ∈ C([0, l]), we conclude that the corresponding integral in (34) is absolutely
convergent on ]0, l[. Similarly, we can prove the convergence of the series (312), on
]0, l[. �

Thus, (19) is the solution of the Problem 1 for Φ3(x2, t) ≡ 0.
Now, let us consider Problem 1 when Φ3(x2, t) 6≡ 0, ϕi = 0, i = 1, 2, and let

Φ3(x2, t) be represented as a convergent series in C(0, l) (see, e.g. [4]):

Φ3(x2, t) =

∞∑
n=1

(Φ3(x2, t), Xn)Xn =

∞∑
n=1

(Φ3, Xn)Xn, (35)

then,

Φ3(x2, t) =

∞∑
n=1

Xn(x2)Φ3n(t), Φ3n(t) :=

l∫
0

Φ3(x2, t)Xn(x2)dx2.

Further, we are looking for a solution in the form

u3(x2, t) =

∞∑
n=1

u3n(x2, t),

where u3n(x2, t) is a solution of the Problem 1 with Φ3(x2, t) replaced by
Xn(x2)Φ3n(t). Using the method of separation of variables, we can write

u3n(x2, t) = Xn(x2)T1n(t),

where

T ′′1n(t) + λnT1n(t) = Φ3n(t)

and Xn(x2) satisfies (18).
Therefore, u3(x2, t) can be expressed as follows

u3(x2, t) =

∞∑
n=1

1√
λn
Xn

t∫
0

sin(
√
λn(t− τ))Φ3n(τ)dτ. (36)

Now, similarly to the proofs of Theorems 2.4 and 2.5, because of (35) we get the
absolute and uniform convergence of the series (36) on [0, l], and the absolute and
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uniform convergence of the series

∂i

∂xi2
u3(x2, t) =

∞∑
n=1

di

dxi2
Xn(x2)T1n(t), i = 1, 2,

∂i

∂ti
u3(x2, t) =

∞∑
n=1

Xn(x2)
di

dti
T1n(t), i = 1, 2,

on any [a, b] ∈]0, l[.

Remark 1 : If Φ3(x2, t), ϕi(x2) 6≡ 0, then the solution of the Problem 1 can be
expressed as follows

u3(x2, t) =

∞∑
n=1

u3n(x2, t),

where

u3n(x2, t) = Xn(x2)(T1n(t) + Tn(t)),

Xn(x2)T1n(t) is given by the right hand side of (36) and Xn(x2)Tn(t) is given by
the right hand side of the formula (19).

Remark 2 : Similarly, we can solve Problem 2 for Φ3(x2, t) 6≡ 0.

Remark 3 : In case µ(x2) has we following form

µ(x2) = µ0x
α
2 (l − x2)β, µ0, l = const > 0,

α, β = const ≥ 0, x2 ∈ [0, l],

the conditions

I0 :=

ε∫
0

dξ

µ(ξ)
< +∞, Il :=

l∫
l−ε

dξ

µ(ξ)
< +∞

are equivalent to

α < 1, and β < 1,

respectively.

The sufficient conditions (24)-(25) will be fulfilled if

dj

dxj2
ϕi(x2) = O(x

γij
2 ), γij = const ≥ 3− j − 2α, x2 → 0+ i = 1, 2, j = 1, 4,



Vol. 19, No. 2, 2015 65

dj

dxj2
ϕi(x2) = O((l− x2)δij ), δij = const ≥ 3− j − 2β, x2 → l−, i = 1, 2, j = 1, 4.
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