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1. Introduction
Let b € BMO(R") and T be the Calderén-Zygmund operator, the commu-
tator [b, T'| generated by b and T is defined by

[0, T](f) = 0T (f) = T(bf)-

A classical result of Coifman, Rochberb and Weiss (see [2]) proved that the
commutator [b, 7] is bounded on LP(R"), (1 < p < o0). Since BMO C
N1 CBMO? (see [3]), if we only assume b € CBMO?, or more generally
b € CBMO%" with ¢ > 1, then [b,7] may not be a bounded operator on
LP(R™). However, it has some boundedness properties on other spaces. As
a matter of fact, Grafakos, Li and Yang (see [4]) considered the commuta-
tor with b € CBMO? on Herz spaces for the first time. Alvarez, Guzman-
Partida and Lakey (see [1]) and Komori (see [6]) have obtained the A-central
BMO estimates for the commutators of a class of singular integral operators
on central Morrey spaces. Motivated by these results, in this paper, we will
establish A-central BMO estimates for the multilinear commutator related to
the Littlewood-Paley operator in central Morrey spaces. And the multilinear
commutator of the fractional maximal operator is also discussed.

2. Preliminaries and Theorem
First, let us introduce some notations. Let M;s be the fractional maximal
operator, which is

Mj(f)(x) = sup |[BP/™ / @)y, 0<b/n <1, 1)

B>z
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and M§ be the multilinear commutator of the fractional maximal operator
which is defined as follows:

Ammwﬁwa*LEwa@@mm@ 2)
For b; € CBMOP#+vA+1(R")(j = 1,--+,m), set

m
HbHCBMoﬁ,X = H HijCBMOpj+1’>‘j+1'
j=1

Given a positive integer m and 1 < j < m, we denote by C" the family of
all finite subsets o = {o(1),- - -,0(j)} of {1, --,m} of j different elements.
For o € C7", set 0 = {1,---,m} \ 0. For b = (b1, -+, by) and o = {o(1),- -

] b

70(j)} € ija set ba = (ba(l)a s 'abo(j))> ba = ba(l) o ba(j) and HbUHCBMOﬁaX =
Hbo(l)HCBMOP%& to ”bU(j)“CBMopj+l”\j+1'

Definition 1. Let 0 < A < d/n, 0 <0 <nand 1 < ¢ < co. A function

f e L] _(R") is said to belong to the A-central bounded mean oscillation space

CBMO(R") if

1 1/q
[/ |leBaoar = sup (W /B(O | |f(x) = fB(o,r)|qu> <oo. (3)

r>0

where, B = B(0,7) = {z € R" : |x| <r} and fp(,) is the mean value of f on
B(0, 7).
Remark 1. If two functions which differ by a constant are regarded

as a function in the space CBMO%* becomes a Banach space. The space
CBMO*(R") when \ = 0 is just the space CBMO(R") defined as follows:

1 1/q
wmwwzm(———/ um—mwwg o
>0 \|B(0,7)| JB0.n ()

Apparently, (3) is equivalent to the following condition (see [6]):

1 1/q
ox =supinf | ——— x) — c|ldx < Q.
I lleavors =sup it (g L 170 = clae)

~ Definition 2. Let A € R and 1 < ¢ < oco. The central Morrey space
B%*(R™) is defined by

1 1/q
v =0 (s [, V) <o @

Remark 2. It follows from (3) and (4) that B%*(R") is a Banach space
continuously included in CBMO%*(R™). We denote by CMO%*(R™) and
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B%*(R™) the inhomogeneous versions of the A-central bounded mean oscillation
space and the central Morrey space by taking the supremum over r» > 1 in Def-
inition 1 and Definition 2 instead of 7 > 0 there. Obviously, C BMO%*(R") C
CMO9(R™) for A\ < §/n and 1 < ¢ < oo, and B¥*(R™) € B?*(R") for A € R
and 1 < g < o0.

Remark 3. When \; < ), it follows from the property of monotone
functions that B (R") C B%*2(R") and CMO"(R") C CMO%**(R")
for 1 < g < co. If1 < g1 < ¢ < oo, then by Holder’s inequality, we
know that B2A(R") ¢ B®*(R") for A € R and CBMO%* ¢ CBMO?"*,
CMO®2A(R") C CMO%A(R") for 0 < X\ < §/n.

Definition 3. Let 1 < ¢ < oo, @ € R. The central Campanato space is
defined by/(see [17])

OLa q(Rn) - {f € Lloc( n) : ||f||CLa, q < OO}’

where

1
|B(O7 ’I")| B(0,r)

Definition 4. Fix 6 > 0. Let ¢ be a fixed function which satisfies the
following properties:

1) [ ¥(2)dx = 0;

D] 2 0Lt k)41,

() + ) — ¥(@)] < Clyl“(1 + 2y~ when 2ly| < [a.

We denote that I'(x) = {(y,t) € R} : | — y| < ¢} and the characteristic
function of I'(z) by Xxr@). The Littlewood—Paley multilinear commutator is

defined by o
dydt
[/ / wl* A ’ (5)

@)= [ H Dinly — ()i ©

1/q
Iflles.., =sup B0 ( )~ faanlidr)
>

where

and 9y (x) = t "0 (x/t) for t > 0. We also define that

~(f [ e wris ) g

which is the Littlewood-Paley operator(see [16]).

Let H be the space H = h: ||h]| = ([ fRiﬂ |h(y,7§)|2%)1/2 < 00, then,

for each fixed = € R, th(f)(x, y) may be viewed as a mapping from [0, +00)
to H, and it is clear that

Ss(f)(@) = [Ixr@ F(f)(@)]]
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and B .
Ss(f)(x) = lIxe@ F (f) (2, y)]|-

Note that when b; = - - - = b,,, Sg is just the commutator of order m.
It is well known that commutators are of great interest in harmonic analysis
and have been widely studied by many authors(see [5][7-10][12-15]). Our main
purpose is to study the boundedness properties for the multilinear commutator
on central Morrey spaces.

Now we state our theorems as following.

Theorem 1.Let0<d<n,1<p<n/d 1/g=1/p—36/n. If\; < =5/n
and Ay = \; 4 6/n, then S; is bounded from BPM (R™) to B9*2(R™).

Theorem 2. Let0<d<n, 1<p<n/d 1/g=1/p—36/n. If N\ < =§/n
and Ay = A\; + 0/n, then M; is bounded from BPM(R™) to B9 (R™).

Theorem 3. Let 0 <§ <n, 1 <p, <n/d(1 <u<m+1), 1/p+
1/ps+ - 1/pms1 < land 1/¢g=1/p1 +1/ps+ -+ + 1/pmy1 — §/n. Suppose
0< N < (S/TL(Z = 2,3,-~-,m+ 1), Al < —Ag — )\3 — e = )\m—l—l —5/71 and
A=X+ X+ Apy1 +/n. I b; € CBMOPH+ A+ (RY), for j = 1,--+,m,
then S§ is bounded from BPt(R") to B¥*(R™), and the following inequality
holds:

155 ()1 gar < ClBll e prronsl | fl] o

Theorem 4. Let 0 <d <n, 1 <p, <n/d(1 <u<m+1),1/p +
Ups+---1/ppmi1 < land 1/qg=1/py +1/ps+ -+ 1/ppi1 — 0/n. Suppose
0< N <d/n(i =2,3,---;m+1), \y < =Ag— A3 — -+ — A1 —d/n and
A=+ X+ Apg1 +0/n. If bj € CBMOPi+Ai+1(R™), for j = 1,---,m,
then M § is bounded from BPtM(R™) to B (R™), and the following inequality
holds:

HMg(f)HBq,A < C||b||CBMoﬁ,X||f||BP1A1-

3. Proof of Theorems.

To prove the theorems, we need the following lemmas.

Lemma 1.(see [16]) Let 0 < 0 <n, 1 <p <n/d and 1/¢ = 1/p — §/n.
Then Ss is bounded from LP(R") to L1(R™).

Lemma 2.(see [11]) Let 0 < d <n, 1 <p <n/d and 1/¢ = 1/p —d/n.
Then Mj is bounded from LP(R"™) to LY(R").

Lemma 3. Let 0 < 0 < n, 1 < p < n/j, X > 0. Suppose b €
CBMOP*(R"), then

bokr15 — bp| < Obllcrmora k|2 B for k> 1.
Proof.

k k
1
|bas1p — bp| < ZO by — baip| < ZO o] /2 | [b(y) = barpldy
J= J=
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e 1/p k
—1 .
= OZ < |b(y) — b2j+1B|pdy) < C[blleparora E |27+ B|*

< Cllbllesamora (b + 12" BI* < Cllbllesmora k]2 B,

Proof of Theorem 1. Let f be a function in B»* (R"). For fixed r > 0,
set B = B(0,7). We consider

(g [ Isst@pas ) "

1 1/q 1
< (W/B|sg(fx,3)(x)yqu> + <w—+m/jg|sa(f><3c><x)!qdw)
=1+11I.

1/q

For I, by the boundedness of Ss from LP(R"™) to LY(R"), we have

1/p
1< clpre ([ ra)
B
< ClB VB g
< Clfllgrar

For I1, using Minkowski’s inequality, we have

1-n 1/2
Ss(fxpe)(x) < /Bcf(z) (/ /F(z) t+ |z j 2[)2n+1=9) dydt) dz
o0 tdt /2

< /cf(z) (/0 (t+|m_z|)2(n+1_5)>l dz

< | fE)r 2Tz,
BC

thus, using Holder’s inequality and note that x € B, we get

S(fxs)@)] < 30 / = 2| £(2)|de

—1 Y 2¥t1B\2FB
C |2kB|5/n71 (/

< CZ ’2kB|6/n_l|2k+lB‘1/p+)\lHfHBP;M ’2k+1B’1_1/p
k=0
< Ol fllgon (B,

IN

1/p
\f(z)lde) b B

+1B

therefore, we deduce

IT < O|lf 1] god | B2 | BI 10722 BV < C| ]| o
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This completes the proof of Theorem 1.
Proof of Theorem 2. Set

Siha) = [ o=@z,

it is easy to know the Theorem 1 is also true for the operator Ss(f)(x). Since

M;(f)(w) < S5(f)(x),

thus, Theorem 2 can be easily deduced. We omit the details here.
Proof of Theorem 3. Let f be a function in BP**(R"™). When m = 1,
set (b1)p = |B|™" [ bi(x)dz and note that

S5 (F)(@) = (bi(x) = (b1)5)S5(f)(x) = S5((br — (ba)) f) ().

We have
, 1/q
<|B|1+)\q/ ’S 1 ’qu)

1/q
|B|1+Aq/ (r(e ><Sa<fxB>><x>rqu)

+ (g / ()~ S D)

+ (e 1530~ G0 s

1/q
+ (\B[T*q /B |Ss((by — (51)B)fX(B)c)(5U)|qdil?)
= Ji+ a4+ S5+ Js

For Ji, taking 1 < p; < n/d and t such that 1/t = 1/p; — §/n, choosing
1/q = 1/p2 + 1/t, by Hélder’s inequality and the boundedness of S5 from
LP*(R™) to L'(R™), we know

Jo< (Bt ( / |b1(iv)—(b1)B|P2dx)1/p2 ( / |S(;(fXB)($)|t)1/t

1/171
OB B[P by | sasoman ( /B |f<:c>|mdx)

IN

< CIBITT MBIV [by || pasore s | BIYP | o
< Cllbullepmora el fl] goron -

For Jo, using the fact |Ss(fx:)(®)] < C||f| g | BT from the proof of
Theorem 1 and by Holder’ inequality, we get

1/p2
Jy < C|B|_1/q_/\|B|5/n+’\l||f||Bp,A1 (/ |b1($) _ (bl)B|p2dx) |B|1/q—1/p2
B



Volume 15, 2011 41

< O|B|_1/q_)\|B|5/n+/\l||f||3p,A1 ‘Byl/pﬁhHblHCBMopwz |B|1/q—l/p2
< COlbillesaorzra | fl gri -

For Js, taking 1 < [ < n/d§ and ¢ such that 1/¢ = 1/l — ¢ /n, choosing 1/l =
1/p1 + 1/p2, by the boundedness of S5 from L! to L? and Holder’s inequality,

we have
1/1
5o< B ( / 01(0) — )
1/p2 1/271
< O|B| Ya- )\|B|1/p2+/\2||b1||CBMop2,A2||f||3p1,xl|B|1/p1+>‘1
< CHblHCBMOszAz||f‘|BP17A1~

For Jy, note that x € B, using Holder’s inequality, Lemma 3, noticing that
Ay >0 and A\ < —Ag — &/n, we have

155((b1 = (b1)B) fX(B)) (%)|
o] 1/P2
C) |2¢B|o/mt b1 (2) — (b)) 5|P2dz
(L, )

1/101
% (/ |f(z)|p1dz) |2k+lB|1—1/p1—1/p2
2k+1B

ClI I gran Z |2kB|5/”’1|2k+1B|1/p1+/\1 ’2k+1B|171/p1,1/p2
k=0

IA

IN

1/p2 k+1 1/
x[(/ b1(2) = (B)awensl?dz) 4 [(br)oer s — (1) |25 B2
2k+1p

[e.9]

< Cllbllesmorzr2 |l fll o Z J2Fn A H A +0/m)| B A+ /n
k=0

< Cllllesnorsrall Il g ’B|>‘l+)\2+5/n7

thus, we get
Jo < Cllbrlcparorssa [ fl]go o | B0 BI7VaA B

< Cllbulleparora eI 1l grrn -

This completes the proof of the case m = 1.
When m > 1, set bg = ((b1)p, -, (bwm)p), where (b;)p = |B|™! [, |bj(z)|dz,
1 <5 <m, we have

y)=> > (D" 0@) — (0)s)s

j=0 seC
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[ 066 = @)ty = 2) ()
L1 = G100 + -0 A0 - 61010
=S ) — B / (b(2) — b))ty — 2) ()2
j=1 oeC:
[16:) ~ ) + -0 B0~ 6 )
=3 (k) — (D)o F (D)
j=1 oceCy"
thus,

< e ﬁ(@-(w) — G EG@I

" m >~ o 2) 01 7))
+||><F<I>Ft<f[1<bj ()N

< ﬁl@(w) — B)s)S) + <—1>msg<f:[1<bj — s N)
+m > (1 00) bl S0~ b )

We consider : j
(7 /v ‘qd‘”)w
< (|Bw / |1:I D) (S xm)a )qu)l/q

1/q
(IBllﬂq/ 'H B)(S5(fxBe ))(x)|qu>

m 1/’1
n (—|B|1+Aq /15 01 6o oo de)
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m 1/(1
1 q
+ ’B|T)\¢1/B‘S5<j1:[l(bj_(bj)B>fXBC)<x)’ dﬂﬁ)

1/q
+ |B|++)‘q\/ Z Z _bB Scs((b_bB)aCfXB)(x)‘qu
B j= 10€Cm
1/q
e 155 X 00 =m0t

J 10’€Cm
= 1+ +v3+vy+ s+ g

For vy, taking 1 < p; < n/é and ¢ such that 1/t = 1/p; — §/n, choosing
1/¢g=1/pa+ -+ 1/pms1 + 1/t, by Holder’s inequality and the boundedness
of Ss from LP*(R™) to L*(R"), we have

v < |B|7Vem A1_[ (/ b (x \p”ld:c>1/pj+1 (/ 1(Ss(fxB)) ()] dx)l/t

1/p1
C|B‘ 1/q— )\H ‘B’l/pjﬂ—”‘JHHb HC’BMOPJ-H N (/ ‘f |p1d$)

7j=1

IN

< C|B‘71/q7>\ H ‘B’l/Pj+1+/\j+1 | |ijCBMOpJ'+1’>‘J'+1 |B‘1/p1+/\1 | ’f| ’Bmm
j=1

< Clbllepprons!f1 oo

For vy, using the fact |S5(fx(n)e)(@)] < C|| f|| o |B]*™ from the proof of
Theorem 1 and the Holder’s inequality, we get

1/pit1
p7,+1 d.Q?)

vy < O\Br”q-wum|BW"**1 </ b (x

|B|1/q—1/p2—~-~—1/pm+1

X

m
CIBIY I llgonns | BI TT B2 bl o pagomen 2

=1

IN

X ’B‘l/q—l/pz—“'—l/pm+1
< C||b||CBMoﬁ,X||f||BP1v\1-

For vs, taking 1 < p; < n/é and ¢ such that 1/¢ = 1/l — §/n, choosing
1/l = 1/p1 + -+ + 1/pmy1, by the boundedness of Ss5 from L' to L7 and
Holder’s inequality, we have

" 1/1
vy < ClB| Y ( / I <>|dx)
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1/pjt+1 1/p1
C|B|” 1/q— AH (/ ]b B‘pﬁqu) (/ |f(x |p1dx)

< Bl AH|B|”“““J“HbiHCBMoWM|Brl/p1“1||f||3m
j=1

IN

< Clblleprrons!f 1o

For v4, note that © € B, by Holder’s inequality, Lemma 3 and noticing that

A >02<ji<m+1), A <—=X—-— A1 < 0/n, we have
|SJ(H(bj — (b;)B) fx(B)-)(@)]
j=1
< b:(z) — (b; z — 2|70 f(2)|dz
< Z/B\|H< () = sl = 211 (E)

IN

1/p2
b (2) — <b1>3\p2dz)

C 2kB d/n—1 /
k;| | o

1/Pm+1
( JARCCE <bm>B|pm+1dz)
2k+1 B

1/p1
< ([ pas) et
2k+1 B

o
O fllgmar 3 128B|Y/1 251 Bt bt BJ1-1/papa 1 pm
k=0
X k2B by [ paromss - RIZS B P g ommnm

C' |b| |CBM05,X | |f| |BP17>\1 |B|>\1+/\2+m+/\m+1+6/na

IN

thus, we obtain

vs < O|bllgprronsl| fll o[BI ATt Amato/n| p|=1/a=A gy 1/d

< OHbHCBMoﬁ,XHfHBPLM-

For vy, taking 1 < s < n/d and ¢ such that 1/t = 1/s — §/n, choosing 1/q =
1/ps+1/t, 1/s = 1/p1 + 1/p2, by the boundedness of Ss from L' to L* and
Holder’s inequality, we have

1/ps
i < eSS ([ e o)

j=1 aeCm

< ([ 15600 = b)) "
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1/p3
< o S5 ([ o) - bu)ova)
j= 1060’"
1/p2 1/p1
x ( [ 1o=bs). ) ( / |f(w)|’”dw)
B B
< O3 3 BV BIYP B, || apasons as | BV

j=1 ceCp
x||boc||CBMOP2v*2|B|1/p1+/\1||f||BP17*1 < C||b||CBMO@X||f||B"1”\1'

For vg, note that x € B, by Holder’s inequality , Lemma 3 and noticing that
A >02<j<m+1), \ <—Xy—3d/n, we have

S5((b = bB)oc [XxBe)(2)]

0 1/P2
< oot ([ j06) - baepa:)
k=0 26418
1/p1
> (/ |f(z)|p1dz) ’2k+lB|1*1/p171/p2
2k+1R
< C|bye camiomoa |[fllgeon Y (28 B/t [2HH B Pt o gh L Pt e
k=1

X |2 B[P < O [Byellcmasors el | | mss B,

thus, we get

m—1

CY D B A lboelloparoraral | f]] o | B 2T

j=1 UEC?’L

1/p
(/ | _ bB ’p3d$> ’ |B|1/q—1/p3

< CHb| |CBMoﬁ,X||fHBP1ﬂ>\1-

IN

Vg

This completes the total proof of the Theorem 3.
Proof of Theorem 4. Set

SH(f)(x) = / o H ) (2)\dz,

—_—~

it is easy to know the Theorem 3 is also true for the commutator Sf;;( ().
Since
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thus, Theorem 4 can be easily deduced. We omit the details here.
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