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1. Introduction

The commutators of singular integral operators have been well studied (see
[1-4]). Let T be the Calderén-Zygmund singular integral operator. A classi-
cal result of Coifman, Rocherberg and Weiss (see [3]) states that commutator
b, T)(f) = T(bf) — bT(f) (where b € BMO(R™) (see below)) is bounded
on LP(R")) for 1 < p < oo. In [8-10], the sharp estimates for some multi-
linear commutators of the Calderén-Zygmund singular integral operators are
obtained. The Littlewood-Paley operator is an important operator in the har-
monic analysis (see [12]). The main purpose of this paper is to prove the sharp
inequality for the multilinear commutator related to the Littlewood-Paley op-
erator. By using the sharp inequality, we obtain the weighted LP-norm in-
equality for the multilinear commutator for 1 < p < oo.

2. Preliminaries and Theorems

First let us introduce some notations (see [4], [9], [11]). In this paper, Q
will denote a cube of R™ with sides parallel to the axes. For a cube Q and a
locally integrable function b, let by = |Q|™! f b(x)dz, the sharp function of b

is defined by

b (z) = sup /|b — boldy.

It is well-known that (see [4])

v (x) = sup inf — 1] /|b(y) — c|dy.

-’EGQ) ceC
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We say that b belongs to BMO(R") if b# belongs to L>*(R") and define
16|l Bazo := ||b¥||p. It is known as well (see [11]) that

b = bargllBrro < Ck|b|| Baro-

For b; € BMO(R™) (j =1,---,m), set b= (by,---,b,,) and

18]l 53s0 == T [ 1s]l s0-

J=1

For a given a positive integer m and 1 < j < m, we denote by C}" the
family of all finite subsets ¢ := {o(1),---,0(j)} of {1,---,m} of j different
elements. For o € C7*, set 0¢ := {1,---,m} \ 0. For b = (by,--,by) and
o= {U( ), ,J(])} € jm, set b, = (bg(l), ‘e ,ba(j)), by := bg(l) . --bg(j) and

105 | as0 = Ilbor)ll Brz0 * - - [1boiy | Br10-
Let M be the Hardy-Littlewood maximal operator, i.e.,

M) = s o / F)ldy;

Q(z€Q)

further M, (f) := (M(|f[P))? for 1 < p < oc.
We denote the Muckenhoupt weights by A; (see [4]), i.e.,

Ay i=A{w: M(w)(z) < Cw(x),a.e.}.

Throughout this paper, we will study some multilinear commutators.

Definition. Let b; (j = 1,---,m) be the fixed locally integrable func-
tions on R". Let further ¢ > 0 and v be a fixed function which satisfies the
following properties:

(1) fnwatd:v:O,

R
(2) [e(x)] < O+ [a])=*D,
(3) [0l +y) - (@)| < ClyF(L+ [2)~+149) when 2ly| < |al;
Denote I'(z) := {(y,t) € R : |x —y| < t} and the characteristic function
of I'(x) by Xr(z)- The Littlewood—Paley multilinear commutator is defined by

2

dydt
b
51/’ / / | F tn+1 ’

where
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and ¢, (z) = ™ < ) for t > 0. Set Fy(f f bi(z — y)f(y)dy, we also

introduce )
2

/ / BO@ |

which is the Littlewood-Paley S operator (see [12]).

N

tn+l

dydt
Let H be the space H =< h: ||h|| = //|h y, t)|? Y < 00 ¢, then

Rn+1

for each fixed x € R", Fti’(f)(a:, y) may be viewed as a mapping from [0, +00)
to H, and it is clear that

Su(N)(@) = ||[xr@ E(f) ()]

and

SH(N) @) = |[xrewF ) @)

Note that when by = - -+ = by, S}, is just the m order commutator(see[1],
6], [7]). It is well known that commutators are of great interest in harmonic
analysis and have been widely studied by many authors (see [1-3], [5-10]). Our
main purpose is to establish the sharp inequality for the multilinear commu-
tator.

Now we state our theorems as follows.

Theorem 1. Let b; € BMO(R") for j = 1,---,m. Then for any 1 <
r < 00, there exists a constant C > 0 such that for any f € C§°(R") and any
r € R,

(SHNH(a) < Clbllawo | M(N) + Y 3 M, (S5(5) (@

j=1 UEC’"

Theorem 2. Let b; € BMO(R"™) for j = 1,---,m. Then S;bb is bounded
on LP(w) forw € Ay and 1 < p < 0.

3. Proof of Theorems

To prove the theorems, we need the following lemmas.

Lemma 1. (see [12]) Let w € A, and 1 < p < co. Then Sy is bounded on
LP(w).

Lemma 2. Let 1 <r < oo, b € BMO(R") for j=1,---,k and k € N.
Then, we have

el /H|b oldy < CT[ I llowio

j=1
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and )
k v k
ol /Hm aldy | < CTT sl
j=1
. 1 1
Proof. Choose 1 < p; < 00, j = 1,---,m, such that — + -+ — = 1,
b1 Pm

by virtue of Holder’s inequality, we obtain

|@|/H'b bilaldy - < (Q/b ijdy)

< CH 165l a0

j=1
and
Lk g 5 on
(5 Q/ ]Hlbj@)(bjwdy) < I (Q Jaze chzy)

< CHHijBMO-

Proof of Theorem 1. It suffices to prove that for f € C§°(R") and some
constant Cp, the following inequality:

Jj=1oeC"

Fix a cube Q = Q(x,d) and T € Q. Set f; = fxag and fo = fx2qe.
We first consider the case m = 1. Evidently,
P (f)@,y) = (bu(2) = (b1)2) F(F)(y) = Fi((br = (b1)20) f1)(y)
—Fy((by — (b1)20).f2)(y)-

Then,
|SI(F) (@) = Sy (((b1)ag — b1) fo) (o)
= |lIxr@E" ()@, )| = |xreo Fr ((b)2g — b1) f2) ()][]
< e FPHOH) (@, y) = X Ft(((bl)%) —b) f2) (v)|]
< |xr@) (@) = (01)20) (/) @) + [|xr@ Fi((br — (b1)2q) f1) (¥)]]
+ HXF(z)Ft(<b1 (b1)2Q)f2) (y) XF(acg)Ft((bl (bl 2Q f2 Yy H

= A(x)+ B(z) + C(x).
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For A(z), in view of Holder’s inequality with the exponent 1/r +1/r' =1, we

get
7/
— [ A(x)dx
Q|

= ]Q|/‘b1 = (b1)20]|5%(f)(@)|dz

: (2@/ )= Bukel d“””) (@/ sl ng“")

< ClbillBroM (S (f))().

3=

For B(z), choose 1 < p < r, by the boundedness of Sy on LP(R"™) and because
of Holder’s inequality, we obtain

1
@/B x)dx
Q
(Q / 1S((by — (b)) fi) >pd:c)
< (Q [1b16a) = b0 1 <x>pdx>
1 T rp/(r—p "
< C (T@/f(xn d:c> (2@ /|b1 — (by) 20|/ )dx)
2Q

< Cbil[Bmo M (f)(Z).

IA

RS

For C(z), by virtue of Minkowski’s inequality, we obtain

C(z) <
2 3
dyd
// / IXT () = XT(o)|[01(2) = (b1)20][¥e(y — 2)|[f(2)] tfz/Jrlt
ri\@Q)

tirdydt
<C [ o) - Bollf(e) // (RSP

(2Q)° lz—yl|<t



6 Bulletin of TICMI

N

// t"dydt p
Z
t+ |y _ Z| 2n+2

lzo— y|<t
< [me-oelsel | [ e
Z) — z
S e
2Q)° ly|<t,|z+y—z|<t

1
C(t+ |x0 +y — z])#t2

/ b1(2) — (b1)aelI£(2)]

1
dydt\ 2
Y ) dz

tnl

|z — ot
x dydt | dz.
// (t+Jo+y— s @

ly|<t,|z+y—z|<t

Note that 2t + |z +y — z| > 2t + |x — z| — |y| > t + |z — 2| when |y| < ¢ and

o

_ —on—1
/t—i—]x 2n+3—C’|x—z\ net
0

Then, for x € Q,

Clx) < C / b1(2) — (b)agllf(2)]

// 2203 po — x|t dydt p
z

2t 4+ 2|z +y — z[)2+3

ly|<t

< /|b1 — B0)s0llf ()] — 2o}

/ / ti="dydt i
(2t + |z +y — 2])?t3

< c / b1(2) — (b)agl 1 ()] — o/

/ / ti="dydt iz
(t + |z — z[)2n+3

N|=

VI
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< c / b3(2) — (b)sgl | F ()] — o

(2Q)¢
7 tdt ’
(/ <t+a:z>2n+3) ”
X XTl2
< ¢ [ ) - Gillre2=0
|z — 2|" "2

2o — x| |zg — 2|~ by (2) — (b1)agl|£(2)]dz

-
&

FlarnQzig

O3 2t / b1(2) = (b)aqll (=) d2
k=1

2k+1Q

CZQ k)2 (2k+1Q| / 1£(2) dz)

2k+1Q

(|2k+1Q / |b1(2) — (b1) 2Q| dz)

2k+1Q

IN

IN

IA

022 k/QkHblHBMOM (f)(@)

k=1

< Clbillsao M (f)(Z).
Thus,
o / 2)dz < Clb oMy (1) (7).
Now, we consider the case m > 2. For b = (by,---,b,,) we have
Ry = / [H(bxx) - @(z))] ly =) (:)dz
- [T — (452) ~ (b)) aly — 2) ()=
Rn J=1

= > > (=1 Ib() - (b)2Q)a/(b(Z> = (0)2@)octhi(y — 2)f(2)dz

J=0 oeCi® Rn
= (b1(x) = (b1)2q) - - (bm(x) — (bm)2@) F1(f)(y)
+(=1)"Fi((by — (b1)2) = * (bm — (bin)2@) ) (v)
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£33 (17 0) — Oals [ (0:) — Heoetaly — )1 (G)

j=1 oeCy Bn
= (bi(z) = (b1)2) -+ (bin(z) = (bin)20) Fr () (y)
+(= 1)mFt((b1 (01)29) * ++ (b — (bm)2q) f) ()

+ZZ%] (0)20)s FY* () ).
j=1 UEC’]’"
Thus,

SEA) = Su (b2 = br) -+ (Bm)aq — b)) f2) (20)
< | F @) = e B (1) = 1) - (bm)aa = bu) £2) )|
< Ixr (01(2) = (Br)2q) -+ (bn() = (bm)2a) Bi(H)(®)]|
+ 3 | @) - ne)eF (), v)]

j=1 ceCcp?
+ [[xr@ F((br = (01)2q) -+ (b — (bm)20) 1) ()|
+  |XT() Fy (H 2Q f2> ( ) XF(xo)Ft (H(bj - (bj)2Q)f2) (y)

— () + L(e) + Be) + L),

For I(z), according to Holder’s inequality with the exponent 1/p; + --- +
1/pm +1/r =1, where 1 < p; < 00, j=1,---,m, we get

|C%'/Il(ﬂls)dﬂl:

:‘@/ﬁl — (b1)aa] *++ [bm(®) — (bm)a0l Sy (F)(@)|da

1

(Q/bl — (b1)20)| 1) . (Q/b m)20| mdx)

Q@/W%<XNWQT
< CllmaoM(Su(f)(E).

For Iy(x), in view of Minkowski’s inequality and Lemma 2, we get

1
@Q/Ig(x)dx

IN
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(b(x) — ()20)s |57 (f)(w)|da

IA
3
LML
=3
N
—

1
7

m—1 1 , o
02 ZC (@2 C{ (b(z) — (B)2)s d:c)
% (gl / Sivﬂ(fxxwx)

Q

T

1 -
CY 3 IbollBaoMo(Sy (£))(#).
1 UGC]T"

J

IA

IA
3

1

For I3(z), choose 1 <p <r,1<p; <oo,j=1,---,msuch that —+---+
b1

I p

— + = =1, by the boundedness of Sy on L(R") and Hélder’s inequality, we
Pm T
get
1
— I x)dx
Q ()
< (Q S ((01 = (b1)2@) - - - (bm — (bm)QQ)fl)(QT)lpdﬂ?)
< C 1l /’ (br(x) = (b1)2@) - -+ (bm () — (bm)zQ)pfl(l“)pdx)
< of o [iswras )
- 2Q]
2Q
p1
X |2Q| /|b1 b1 2Q| dl‘)
bin PPm dyx
<2Q| | bate) = G )
< ClbllzaroM, (f1)(%)-
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(2)ldz,

For I,(x), similar to the proof in the case m = 1, we obtain
L@ <C [ o= albla - o 0+ [0 = 4e0)
(2Q) 7=l

taking 1 < p; < oo j=1,---,m such that 1/p; +---+1/p,, + 1/r =1, then,
for v € Q

IN

Li(z) CZ / o — x| 2|zg — 2|72

“larrQ\2RQ
m
H 20)

C Z 2—k/2|2k+1Q|—1
k=1

(2)]d=

m

[15() = (85):20)

j=1

IN

£ (2)|d=

2k+1Q

cZ 242 | e [ s

2k+1Q

IA

1

Pj

U |2k+1Q| / |bj(z)_(bj)2Q|pde

2k+1Q

IN

C Z fmo—km H 16| Baro M, (f) (%)
st =1

Clbll saro M. (£)(%).

IN

Thus 1
|?2|Q/I4(:L’)d:c < CHBHBMOMT(f)(j:)'

This completes the proof of the theorem.

Proof of Theorem 2. Choose 1 < r < p in Theorem 1 and using Lemma
1, we may get the conclusion of Theorem 2. This finishes the proof.
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