MAIN ARTICLES

SHARP FUNCTION INEQUALITY FOR THE MULTILINEAR COMMUTATOR OF THE LITTLEWOOD-PALEY OPERATOR

Changhong Wu, Lanzhe Liu

Department of Mathematics
Changsha University of Science and Technology
Changsha, 410076
P.R. of China
E-mail: lanzheliu@163.com

Abstract: In this paper, we obtain the sharp inequality for the multilinear commutator related to the Littlewood-Paley operator. Using the sharp inequality, the weighted L^p -norm inequality for the multilinear commutator for 1 is proved.

Key words: Multilinear commutator; Littlewood-Paley operator; Sharp inequality. MSC 1991: 42B20, 42B25.

1. Introduction

The commutators of singular integral operators have been well studied (see [1-4]). Let T be the Calderón-Zygmund singular integral operator. A classical result of Coifman, Rocherberg and Weiss (see [3]) states that commutator [b,T](f)=T(bf)-bT(f) (where $b\in BMO(R^n)$ (see below)) is bounded on $L^p(R^n)$) for $1< p<\infty$. In [8-10], the sharp estimates for some multilinear commutators of the Calderón-Zygmund singular integral operators are obtained. The Littlewood-Paley operator is an important operator in the harmonic analysis (see [12]). The main purpose of this paper is to prove the sharp inequality for the multilinear commutator related to the Littlewood-Paley operator. By using the sharp inequality, we obtain the weighted L^p -norm inequality for the multilinear commutator for $1< p<\infty$.

2. Preliminaries and Theorems

First let us introduce some notations (see [4], [9], [11]). In this paper, Q will denote a cube of \mathbb{R}^n with sides parallel to the axes. For a cube \mathbb{Q} and a locally integrable function b, let $b_Q = |Q|^{-1} \int_Q b(x) dx$, the sharp function of b

is defined by

$$b^{\#}(x) = \sup_{Q(x \in Q)} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| dy.$$

It is well-known that (see [4])

$$b^{\#}(x) = \sup_{Q(x \in Q)} \inf_{c \in C} \frac{1}{|Q|} \int_{Q} |b(y) - c| dy.$$

We say that b belongs to $BMO(\mathbb{R}^n)$ if $b^{\#}$ belongs to $L^{\infty}(\mathbb{R}^n)$ and define $||b||_{BMO} := ||b^{\#}||_{L^{\infty}}$. It is known as well (see [11]) that

$$||b - b_{2^k Q}||_{BMO} \le Ck||b||_{BMO}.$$

For $b_j \in BMO(\mathbb{R}^n)$ $(j = 1, \dots, m)$, set $\tilde{b} = (b_1, \dots, b_m)$ and

$$\|\tilde{b}\|_{BMO} := \prod_{j=1}^{m} \|b_j\|_{BMO}.$$

For a given a positive integer m and $1 \leq j \leq m$, we denote by C_j^m the family of all finite subsets $\sigma := \{\sigma(1), \dots, \sigma(j)\}$ of $\{1, \dots, m\}$ of j different elements. For $\sigma \in C_j^m$, set $\sigma^c := \{1, \dots, m\} \setminus \sigma$. For $\tilde{b} = (b_1, \dots, b_m)$ and $\sigma := \{\sigma(1), \dots, \sigma(j)\} \in C_j^m$, set $\tilde{b}_{\sigma} = (b_{\sigma(1)}, \dots, b_{\sigma(j)})$, $b_{\sigma} := b_{\sigma(1)} \dots b_{\sigma(j)}$ and $\|\tilde{b}_{\sigma}\|_{BMO} := \|b_{\sigma(1)}\|_{BMO} \dots \|b_{\sigma(j)}\|_{BMO}$.

Let M be the Hardy-Littlewood maximal operator, i.e.,

$$M(f)(x) := \sup_{Q(x \in Q)} \frac{1}{|Q|} \int_{Q} |f(y)| dy;$$

further $M_p(f) := (M(|f|^p))^{\frac{1}{p}}$ for 1 .

We denote the Muckenhoupt weights by A_1 (see [4]), i.e.,

$$A_1 := \{w : M(w)(x) \le Cw(x), a.e.\}.$$

Throughout this paper, we will study some multilinear commutators.

Definition. Let b_j $(j=1,\dots,m)$ be the fixed locally integrable functions on \mathbb{R}^n . Let further $\varepsilon > 0$ and ψ be a fixed function which satisfies the following properties:

- $(1) \quad \int\limits_{R^n} \psi(x) dx = 0,$
- (2) $|\psi(x)| \le C(1+|x|)^{-(n+1)}$,
- (3) $|\psi(x+y) \psi(x)| \le C|y|^{\varepsilon} (1+|x|)^{-(n+1+\varepsilon)}$ when 2|y| < |x|;

Denote $\Gamma(x) := \{(y,t) \in R^{n+1}_+ : |x-y| \le t\}$ and the characteristic function of $\Gamma(x)$ by $\chi_{\Gamma(x)}$. The Littlewood-Paley multilinear commutator is defined by

$$S_{\psi}^{\tilde{b}}(f)(x) := \left[\int_{\Gamma(x)} |F_t^{\tilde{b}}(f)(x,y)|^2 \frac{dydt}{t^{n+1}} \right]^{\frac{1}{2}},$$

where

$$F_t^{\tilde{b}}(f)(x) = \int_{R^n} \left[\prod_{j=1}^m (b_j(x) - b_j(z)) \right] \psi_t(y - z) f(z) dz$$

and $\psi_t(x) = t^{-n}\psi\left(\frac{x}{t}\right)$ for t > 0. Set $F_t(f)(x) := \int_{R^n} \psi_t(x-y)f(y)dy$, we also introduce

$$S_{\psi}(f)(x) := \left[\int_{\Gamma(x)} \left| F_t(f)(x) \right|^2 \frac{dydt}{t^{n+1}} \right]^{\frac{1}{2}},$$

which is the Littlewood-Paley S operator (see [12]).

Let *H* be the space
$$H = \left\{ h : ||h|| = \left(\int_{R_{+}^{n+1}}^{\int} |h(y,t)|^{2} \frac{dydt}{t^{n+1}} \right)^{\frac{1}{2}} < \infty \right\}$$
, then

for each fixed $x \in \mathbb{R}^n$, $F_t^{\tilde{b}}(f)(x,y)$ may be viewed as a mapping from $[0,+\infty)$ to H, and it is clear that

$$S_{\psi}(f)(x) = \left\| \chi_{\Gamma(x)} F_t(f)(y) \right\|$$

and

$$S_{\psi}^{\tilde{b}}(f)(x) = \left\| \chi_{\Gamma(x)} F_t^{\tilde{b}}(f)(x,y) \right\|.$$

Note that when $b_1 = \cdots = b_m$, $S_{\psi}^{\bar{b}}$ is just the m order commutator(see[1], [6], [7]). It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see [1-3], [5-10]). Our main purpose is to establish the sharp inequality for the multilinear commutator.

Now we state our theorems as follows.

Theorem 1. Let $b_j \in BMO(\mathbb{R}^n)$ for $j = 1, \dots, m$. Then for any $1 < r < \infty$, there exists a constant C > 0 such that for any $f \in C_0^{\infty}(\mathbb{R}^n)$ and any $x \in \mathbb{R}^n$,

$$(S_{\psi}^{\tilde{b}}(f))^{\#}(x) \leq C \|\tilde{b}\|_{BMO} \left(M_r(f)(x) + \sum_{j=1}^m \sum_{\sigma \in C_j^m} M_r \left(S_{\psi}^{\tilde{b}_{\sigma^c}}(f) \right) (x) \right).$$

Theorem 2. Let $b_j \in BMO(\mathbb{R}^n)$ for $j = 1, \dots, m$. Then $S_{\psi}^{\tilde{b}}$ is bounded on $L^p(w)$ for $w \in A_1$ and 1 .

3. Proof of Theorems

To prove the theorems, we need the following lemmas.

Lemma 1. (see [12]) Let $w \in A_p$ and $1 . Then <math>S_{\psi}$ is bounded on $L^p(w)$.

Lemma 2. Let $1 < r < \infty$, $b_j \in BMO(\mathbb{R}^n)$ for $j = 1, \dots, k$ and $k \in \mathbb{N}$. Then, we have

$$\frac{1}{|Q|} \int_{Q} \prod_{j=1}^{k} |b_j(y) - (b_j)_Q| dy \le C \prod_{j=1}^{k} ||b_j||_{BMO}$$

and

$$\left(\frac{1}{|Q|} \int_{Q} \prod_{j=1}^{k} |b_{j}(y) - (b_{j})_{Q}|^{r} dy\right)^{\frac{1}{r}} \leq C \prod_{j=1}^{k} ||b_{j}||_{BMO}.$$

Proof. Choose $1 < p_j < \infty$, $j = 1, \dots, m$, such that $\frac{1}{p_1} + \dots + \frac{1}{p_m} = 1$, by virtue of Hölder's inequality, we obtain

$$\frac{1}{|Q|} \int_{Q} \prod_{j=1}^{k} |b_{j}(y) - (b_{j})_{Q}| dy \leq \prod_{j=1}^{k} \left(\frac{1}{|Q|} \int_{Q} |b_{j}(y) - (b_{j})_{Q}|^{p_{j}} dy \right)^{\frac{1}{p_{j}}} \\
\leq C \prod_{j=1}^{k} ||b_{j}||_{BMO}$$

and

$$\left(\frac{1}{|Q|} \int_{Q} \prod_{j=1}^{k} |b_{j}(y) - (b_{j})_{Q}|^{r} dy\right)^{\frac{1}{r}} \leq \prod_{j=1}^{k} \left(\frac{1}{|Q|} \int_{Q} |b_{j}(y) - (b_{j})_{Q}|^{p_{j}r} dy\right)^{\frac{1}{p_{j}r}} \leq C \prod_{j=1}^{k} ||b_{j}||_{BMO}.$$

Proof of Theorem 1. It suffices to prove that for $f \in C_0^{\infty}(\mathbb{R}^n)$ and some constant C_0 , the following inequality:

$$\frac{1}{|Q|} \int_{Q} |S_{\psi}^{\tilde{b}}(f)(x) - C_{0}| dx \le C||b||_{BMO} \left(M_{r}(f)(x) + \sum_{j=1}^{m} \sum_{\sigma \in C_{j}^{m}} M_{r} \left(S_{\psi}^{\tilde{b}_{\sigma^{c}}}(f)(x) \right) \right).$$

Fix a cube $Q = Q(x_0, d)$ and $\tilde{x} \in Q$. Set $f_1 = f\chi_{2Q}$ and $f_2 = f\chi_{2Q^c}$. We first consider the case m = 1. Evidently,

$$F_t^{b_1}(f)(x,y) = (b_1(x) - (b_1)_{2Q})F_t(f)(y) - F_t((b_1 - (b_1)_{2Q})f_1)(y) - F_t((b_1 - (b_1)_{2Q})f_2)(y).$$

Then,

$$\begin{aligned} & \left| S_{\psi}^{b_{1}}(f)(x) - S_{\psi}\left(\left((b_{1})_{2Q} - b_{1} \right) f_{2} \right) (x_{0}) \right| \\ &= \left| \left\| \chi_{\Gamma(x)} F_{t}^{b_{1}}(f)(x,y) \right\| - \left\| \chi_{\Gamma(x_{0})} F_{t}\left(\left((b_{1})_{2Q} - b_{1} \right) f_{2} \right) (y) \right\| \right| \\ &\leq \left\| \chi_{\Gamma(x)} F_{t}^{b_{1}}(f)(x,y) - \chi_{\Gamma(x_{0})} F_{t}\left(\left((b_{1})_{2Q} - b_{1} \right) f_{2} \right) (y) \right\| \\ &\leq \left\| \chi_{\Gamma(x)}(b_{1}(x) - (b_{1})_{2Q}) F_{t}(f)(y) \right\| + \left\| \chi_{\Gamma(x)} F_{t}\left((b_{1} - (b_{1})_{2Q}) f_{1} \right) (y) \right\| \\ &+ \left\| \chi_{\Gamma(x)} F_{t}\left((b_{1} - (b_{1})_{2Q}) f_{2} \right) (y) - \chi_{\Gamma(x_{0})} F_{t}\left((b_{1} - (b_{1})_{2Q}) f_{2} \right) (y) \right\| \\ &= A(x) + B(x) + C(x). \end{aligned}$$

For A(x), in view of Hölder's inequality with the exponent 1/r + 1/r' = 1, we get

$$\frac{1}{|Q|} \int_{Q} A(x)dx$$

$$= \frac{1}{|Q|} \int_{Q} |b_{1}(x) - (b_{1})_{2Q}||S_{\psi}(f)(x)|dx$$

$$\leq C \left(\frac{1}{|2Q|} \int_{2Q} |b_{1}(x) - (b_{1})_{2Q}|^{r'}dx\right)^{\frac{1}{r'}} \left(\frac{1}{|Q|} \int_{Q} |S_{\psi}(f)(x)|^{r}dx\right)^{\frac{1}{r}}$$

$$\leq C ||b_{1}||_{BMO} M_{r}(S_{\psi}(f))(\tilde{x}).$$

For B(x), choose $1 , by the boundedness of <math>S_{\psi}$ on $L^{p}(\mathbb{R}^{n})$ and because of Hölder's inequality, we obtain

$$\frac{1}{|Q|} \int_{Q} B(x)dx$$

$$\leq \left(\frac{1}{|Q|} \int_{R^{n}} |S_{\psi}((b_{1} - (b_{1})_{2Q})f_{1})(x)|^{p}dx\right)^{\frac{1}{p}}$$

$$\leq C \left(\frac{1}{|Q|} \int_{2Q} |(b_{1}(x) - (b_{1})_{2Q})f(x)|^{p}dx\right)^{\frac{1}{p}}$$

$$\leq C \left(\frac{1}{|2Q|} \int_{2Q} |f(x)|^{r}dx\right)^{\frac{1}{r}} \left(\frac{1}{|2Q|} \int_{2Q} |b_{1}(x) - (b_{1})_{2Q}|^{rp/(r-p)}dx\right)^{\frac{r-p}{rp}}$$

$$\leq C ||b_{1}||_{BMO} M_{r}(f)(\tilde{x}).$$

For C(x), by virtue of Minkowski's inequality, we obtain

$$C(x) \leq \left[\int \int_{R_{+}^{n+1}} \left(\int_{(2Q)^{c}} |\chi_{\Gamma(x)} - \chi_{\Gamma(x_{0})}| |b_{1}(z) - (b_{1})_{2Q}| |\psi_{t}(y - z)| |f(z)| \right)^{2} \frac{dydt}{t^{n+1}} \right]^{\frac{1}{2}}$$

$$\leq C \int_{(2Q)^{c}} |b_{1}(z) - (b_{1})_{2Q}| |f(z)| \left| \int \int_{|x-y| \leq t} \frac{t^{1-n}dydt}{(t+|y-z|)^{2n+2}} \right|$$

$$-\int_{|x_0-y| \le t} \frac{t^{1-n} dy dt}{(t+|y-z|)^{2n+2}} \bigg|^{\frac{1}{2}} dz$$

$$\leq \int_{(2Q)^c} |b_1(z) - (b_1)_{2Q}| |f(z)| \left(\int_{|y| \le t, |x+y-z| \le t} \int \frac{1}{(t+|x+y-z|)^{2n+2}} dz \right) dz$$

$$-\frac{1}{(t+|x_0+y-z|)^{2n+2}} \bigg| \frac{dy dt}{t^{n-1}} \bigg)^{\frac{1}{2}} dz$$

$$\leq \int_{(2Q)^c} |b_1(z) - (b_1)_{2Q}| |f(z)|$$

$$\times \left(\int_{|y| \le t, |x+y-z| \le t} \frac{|x-x_0|t^{1-n}}{(t+|x+y-z|)^{2n+3}} dy dt \right)^{\frac{1}{2}} dz.$$

Note that $2t+|x+y-z|\geq 2t+|x-z|-|y|\geq t+|x-z|$ when $|y|\leq t$ and

$$\int_{0}^{\infty} \frac{tdt}{(t+|x-z|)^{2n+3}} = C|x-z|^{-2n-1}.$$

Then, for $x \in Q$,

$$C(x) \leq C \int_{(2Q)^{c}} |b_{1}(z) - (b_{1})_{2Q}||f(z)||$$

$$\times \left(\int_{|y| \leq t} \int \frac{2^{2n+3}|x_{0} - x|t^{1-n}dydt}{(2t+2|x+y-z|)^{2n+3}} \right)^{\frac{1}{2}} dz$$

$$\leq C \int_{(2Q)^{c}} |b_{1}(z) - (b_{1})_{2Q}||f(z)||x - x_{0}|^{\frac{1}{2}}$$

$$\times \left(\int_{|y| \leq t} \int \frac{t^{1-n}dydt}{(2t+|x+y-z|)^{2n+3}} \right)^{\frac{1}{2}} dz$$

$$\leq C \int_{(2Q)^{c}} |b_{1}(z) - (b_{1})_{2Q}||f(z)||x - x_{0}|^{\frac{1}{2}}$$

$$\times \left(\int \int_{|y| \leq t} \frac{t^{1-n}dydt}{(t+|x-z|)^{2n+3}} \right)^{\frac{1}{2}} dz$$

$$\leq C \int_{(2Q)^{c}} |b_{1}(z) - (b_{1})_{2Q}||f(z)||x - x_{0}|^{\frac{1}{2}}$$

$$\times \left(\int_{0}^{\infty} \frac{tdt}{(t + |x - z|)^{2n + 3}} \right)^{\frac{1}{2}} dz$$

$$\leq C \int_{(2Q)^{c}} |b_{1}(z) - (b_{1})_{2Q}||f(z)| \frac{|x_{0} - x|^{\frac{1}{2}}}{|x_{0} - z|^{n + \frac{1}{2}}} dz$$

$$\leq C \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^{k}Q} |x_{0} - x|^{\frac{1}{2}}|x_{0} - z|^{-(n + \frac{1}{2})}|b_{1}(z) - (b_{1})_{2Q}||f(z)|dz$$

$$\leq C \sum_{k=1}^{\infty} 2^{-k/2}|2^{k+1}Q|^{-1} \int_{2^{k+1}Q} |b_{1}(z) - (b_{1})_{2Q}||f(z)|dz$$

$$\leq C \sum_{k=1}^{\infty} 2^{-k/2} \left(\frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |f(z)|^{r} dz \right)^{\frac{1}{r}}$$

$$\times \left(\frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |b_{1}(z) - (b_{1})_{2Q}|^{r'} dz \right)^{\frac{1}{r'}}$$

$$\leq C \sum_{k=1}^{\infty} 2^{-k/2} k ||b_{1}||_{BMO} M_{r}(f)(\tilde{x})$$

$$\leq C ||b_{1}||_{BMO} M_{r}(f)(\tilde{x}).$$

Thus,

$$\frac{1}{|Q|} \int\limits_{O} C(x)dx \le C||b_1||_{BMO} M_r(f)(\tilde{x}).$$

Now, we consider the case $m \geq 2$. For $b = (b_1, \dots, b_m)$ we have

$$F_t^{\tilde{b}}(f)(x,y) = \int_{R^n} \left[\prod_{j=1}^m (b_j(x) - b_j(z)) \right] \psi_t(y-z) f(z) dz$$

$$= \int_{R^n} \prod_{j=1}^m \left[(b_j(x) - (b_j)_{2Q}) - (b_j(z) - (b_j)_{2Q}) \right] \psi_t(y-z) f(z) dz$$

$$= \sum_{j=0}^m \sum_{\sigma \in C_j^m} (-1)^{m-j} (b(x) - (b)_{2Q})_{\sigma} \int_{R^n} (b(z) - (b)_{2Q})_{\sigma^c} \psi_t(y-z) f(z) dz$$

$$= (b_1(x) - (b_1)_{2Q}) \cdots (b_m(x) - (b_m)_{2Q}) F_t(f)(y)$$

$$+ (-1)^m F_t((b_1 - (b_1)_{2Q}) \cdots (b_m - (b_m)_{2Q}) f)(y)$$

$$+\sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} (-1)^{m-j} (b(x) - (b)_{2Q})_{\sigma} \int_{\mathbb{R}^n} (b(z) - b(x))_{\sigma^c} \psi_t(y - z) f(z) dz$$

$$= (b_1(x) - (b_1)_{2Q}) \cdots (b_m(x) - (b_m)_{2Q}) F_t(f)(y)$$

$$+ (-1)^m F_t((b_1 - (b_1)_{2Q}) \cdots (b_m - (b_m)_{2Q}) f)(y)$$

$$+\sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} c_{m,j}(b(x) - (b)_{2Q})_{\sigma} F_t^{\tilde{b}_{\sigma^c}}(f)(x,y).$$

Thus,

$$\begin{vmatrix}
S_{\psi}^{\tilde{b}}(f)(x) - S_{\psi}\left(((b_{1})_{2Q} - b_{1}) \cdots ((b_{m})_{2Q} - b_{m})\right) f_{2}\right)(x_{0}) \\
\leq \left\| \chi_{\Gamma(x)} F_{t}^{\tilde{b}}(f)(x, y) - \chi_{\Gamma(x_{0})} F_{t}\left(((b_{1})_{2Q} - b_{1}) \cdots ((b_{m})_{2Q} - b_{m}) f_{2}\right)(y) \right\| \\
\leq \left\| \chi_{\Gamma(x)}(b_{1}(x) - (b_{1})_{2Q}) \cdots (b_{m}(x) - (b_{m})_{2Q}) F_{t}(f)(y) \right\| \\
+ \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} \left\| \chi_{\Gamma(x)}(\tilde{b}(x) - (b)_{2Q})_{\sigma} F_{t}^{\tilde{b}_{\sigma^{c}}}(f)(x, y) \right\| \\
+ \left\| \chi_{\Gamma(x)} F_{t}\left((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q}) f_{1}\right)(y) \right\| \\
+ \left\| \chi_{\Gamma(x)} F_{t}\left(\prod_{j=1}^{m} (b_{j} - (b_{j})_{2Q}) f_{2}\right)(y) - \chi_{\Gamma(x_{0})} F_{t}\left(\prod_{j=1}^{m} (b_{j} - (b_{j})_{2Q}) f_{2}\right)(y) \right\| \\
= I_{1}(x) + I_{2}(x) + I_{3}(x) + I_{4}(x).$$

For $I_1(x)$, according to Hölder's inequality with the exponent $1/p_1 + \cdots + 1/p_m + 1/r = 1$, where $1 < p_j < \infty$, $j = 1, \cdots, m$, we get

$$\frac{1}{|Q|} \int_{Q} I_{1}(x)dx$$

$$= \frac{1}{|Q|} \int_{Q} |b_{1}(x) - (b_{1})_{2Q}| \cdots |b_{m}(x) - (b_{m})_{2Q}| |S_{\psi}(f)(x)| dx$$

$$\leq \left(\frac{1}{|Q|} \int_{Q} |b_{1}(x) - (b_{1})_{2Q}|^{p_{1}} \right)^{\frac{1}{p_{1}}} \cdots \left(\frac{1}{|Q|} \int_{Q} |b_{m}(x) - (b_{m})_{2Q}|^{p_{m}} dx \right)^{\frac{1}{p_{m}}}$$

$$\times \left(\frac{1}{|Q|} \int_{Q} |S_{\psi}(f)(x)|^{r} dx \right)^{\frac{1}{r}}$$

$$\leq C \|\tilde{b}\|_{BMO} M_{r}(S_{\psi}(f))(\tilde{x}).$$

For $I_2(x)$, in view of Minkowski's inequality and Lemma 2, we get

$$\frac{1}{|Q|} \int\limits_{Q} I_2(x) dx$$

$$\leq \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} \frac{1}{|Q|} \int_{Q} |(b(x) - (b)_{2Q})_{\sigma}| |S_{\psi}^{\tilde{b}_{\sigma^{c}}}(f)(x)| dx
\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} \left(\frac{1}{|2Q|} \int_{2Q} |(b(x) - (b)_{2Q})_{\sigma}|^{r'} dx \right)^{\frac{1}{r'}}
\times \left(\frac{1}{|Q|} \int_{Q} |S_{\psi}^{\tilde{b}_{\sigma^{c}}}(f)(x)|^{r} dx \right)^{\frac{1}{r}}
\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_{j}^{m}} ||\tilde{b}_{\sigma}||_{BMO} M_{r}(S_{\psi}^{\tilde{b}_{\sigma^{c}}}(f))(\tilde{x}).$$

For $I_3(x)$, choose $1 , <math>1 < p_j < \infty$, $j = 1, \dots, m$ such that $\frac{1}{p_1} + \dots + \frac{1}{p_m} + \frac{p}{r} = 1$, by the boundedness of S_{ψ} on $L^p(\mathbb{R}^n)$ and Hölder's inequality, we get

$$\frac{1}{|Q|} \int_{Q} I_{3}(x) dx$$

$$\leq \left(\frac{1}{|Q|} \int_{R^{n}} |S_{\psi}((b_{1} - (b_{1})_{2Q}) \cdots (b_{m} - (b_{m})_{2Q}) f_{1})(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq C \left(\frac{1}{|Q|} \int_{R^{n}} |(b_{1}(x) - (b_{1})_{2Q}) \cdots (b_{m}(x) - (b_{m})_{2Q})|^{p} |f_{1}(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq C \left(\frac{1}{|2Q|} \int_{2Q} |f(x)|^{r} dx \right)^{\frac{1}{r}}$$

$$\times \left(\frac{1}{|2Q|} \int_{2Q} |b_{1}(x) - (b_{1})_{2Q}|^{p_{1}} dx \right)^{\frac{1}{pp_{1}}}$$

$$\times \cdots \left(\frac{1}{|2Q|} \int_{2Q} |b_{m}(x) - (b_{m})_{2Q}|^{pp_{m}} dx \right)^{\frac{1}{pp_{m}}}$$

$$\leq C \|\tilde{b}\|_{BMO} M_{r}(f_{1})(\tilde{x}).$$

For $I_4(x)$, similar to the proof in the case m=1, we obtain

$$I_4(x) \le C \int_{(2Q)^c} |x_0 - x|^{\frac{1}{2}} |x_0 - z|^{-(n + \frac{1}{2})} \left| \prod_{j=1}^m (b_j(z) - (b_j)_{2Q}) \right| |f(z)| dz,$$

taking $1 < p_j < \infty$ $j = 1, \dots, m$ such that $1/p_1 + \dots + 1/p_m + 1/r = 1$, then, for $x \in Q$

$$\begin{split} I_{4}(x) & \leq C \sum_{k=1}^{\infty} \int\limits_{2^{k+1}Q \setminus 2^{k}Q} |x_{0} - x|^{\frac{1}{2}} |x_{0} - z|^{-(n + \frac{1}{2})} \\ & \times \left| \prod_{j=1}^{m} (b_{j}(z) - (b_{j})_{2Q}) \right| |f(z)| dz \\ & \leq C \sum_{k=1}^{\infty} 2^{-k/2} |2^{k+1}Q|^{-1} \int\limits_{2^{k+1}Q} \left| \prod_{j=1}^{m} (b_{j}(z) - (b_{j})_{2Q}) \right| |f(z)| dz \\ & \leq C \sum_{k=1}^{\infty} 2^{-k/2} \left(\frac{1}{|2^{k+1}Q|} \int\limits_{2^{k+1}Q} |f(z)|^{r} dz \right)^{\frac{1}{r}} \\ & \times \prod_{j=1}^{m} \left(\frac{1}{|2^{k+1}Q|} \int\limits_{2^{k+1}Q} |b_{j}(z) - (b_{j})_{2Q}|^{p_{j}} dz \right)^{\frac{1}{p_{j}}} \\ & \leq C \sum_{k=1}^{\infty} k^{m} 2^{-km} \prod_{j=1}^{m} \|b_{j}\|_{BMO} M_{r}(f)(\tilde{x}) \\ & \leq C \|\tilde{b}\|_{BMO} M_{r}(f)(\tilde{x}). \end{split}$$

Thus

$$\frac{1}{|Q|} \int\limits_{Q} I_4(x) dx \le C \|\tilde{b}\|_{BMO} M_r(f)(\tilde{x}).$$

This completes the proof of the theorem.

Proof of Theorem 2. Choose 1 < r < p in Theorem 1 and using Lemma 1, we may get the conclusion of Theorem 2. This finishes the proof.

Acknowledgement. The authors would like to express their gratitude to the referee for his comments and suggestions.

References

[1] Alvarez, J., Babgy, R. J., Kurtz, D. S., and Pérez, C., Weighted estimates for commutators of linear operators. Studia Math., 104 (1993), 195-209.

- [2] Coifman, R., and Meyer, Y., Wavelets, Calderón-Zygmund and Multilinear operators. Cambridge Studies in Advanced Math., Cambridge University Press, Cambridge, 48 (1997).
- [3] Coifman, R., Rochberg, R., and Weiss, G., Factorization theorems for Hardy spaces in several variables. Ann. of Math., 103 (1976), 611-635.
- [4] Garcia-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics. North-Holland Math., 16, Amsterdam, 1985.
- [5] Hu, G. and Yang, D. C., A variant sharp estimate for multilinear singular integral operators, Studia Math., 141 (2000), 25-42.
- [6] Liu, L. Z., Weighted weak type estimates for commutators of Littlewood-Paley operator. Japanese J. of Math., 29, 1(2003), 1-13.
- [7] Liu, L. Z., The continuity of commutators on Triebel-Lizorkin spaces. Integral Equations and Operator Theory, 49, 1 (2004), 65-76.
- [8] Pérez, C., Endpoint estimate for commutators of singular integral operators. J. Func. Anal., 128 (1995), 163-185.
- [9] Pérez, C., and Pradolini, G., Sharp weighted endpoint estimates for commutators of singular integral operators. Michigan Math. J., 49 (2001), 23-37. [10] Pérez, C. and Trujillo-Gonzalez, R., Sharp weighted estimates for multilinear commutators. J. London Math. Soc., 65 (2002), 672-692.
- [11] Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press, Princeton NJ, 1993.
- [12] Torchinsky, A., The Real Variable Methods in Harmonic Analysis. Pure and Applied Math., 123, Academic Press, New York, 1986.

Received March, 14, 2006; revised June, 21, 2006; accepted July, 26, 2006.