Contents
Introduction |
1 |
1. Basic elements of the pseudo-differential calculus |
3 |
1.1. Symbols and oscillatory integrals |
3 |
1.1.1. Fourier transform and Sobolev spaces |
3 |
1.1.2. Symbol spaces |
7 |
1.1.3. Elements of the standard calculus |
13 |
1.1.4. Parameter-dependent operators |
19 |
1.2. Calculus with operator-valued symbols |
22 |
1.2.1. Pseudo-differential operators |
22 |
1.2.2. Examples |
26 |
1.2.3. Remarks on classical Sobolev spaces |
29 |
2. Conormal asymptotics and meromorphic operator functions |
35 |
2.1. Operators of Fuchs type and the Mellin transform |
35 |
2.1.1. Mellin transform and associated Sobolev spaces |
35 |
2.1.2. Solutions with asymptotics |
42 |
2.1.3. A factorisation of meromorphic functions |
49 |
2.1.4. Quasi-homogeneity |
53 |
2.2. Pseudo-differential operator-valued meromorphic functions |
61 |
2.2.1. Kernel cut-off and Mellin quantisation |
61 |
2.2.2. Spaces of meromorphic operator functions |
70 |
2.2.3. Mellin pseudo-differential operators and Green operators with asymptotics |
73 |
2.2.4. The cone algebra |
77 |
2.2.5. Further remarks on Fuchs type operators |
88 |
3. Edge pseudo-differential calculus |
91 |
3.1. Edge-degenerate operators |
91 |
3.1.1. Manifolds with edges |
91 |
3.1.2. The typical differential operators |
92 |
3.1.3. Weighted wedge Sobolev spaces |
96 |
3.1.4. Discrete edge asymptotics |
101 |
3.2. The edge algebra |
103 |
3.2.1. Edge-degenerate symbols |
103 |
3.2.2. Operator-valued edge symbols |
105 |
3.2.3. Edge pseudo-differential operators |
115 |
Bibliography |
121 |
List of Symbols |
131 |
Index |
133 |
LECTURE NOTES OF TICMI
Volume 1, 2000