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THE HURWITZ ACTION AND BRAID GROUP ORDERINGS

JONATHON FUNK

ABSTRACT. In connection with the so-called Hurwitz action of homeomorphisms in
ramified covers we define a groupoid, which we call a ramification groupoid of the 2-
sphere, constructed as a certain path groupoid of the universal ramified cover of the
2-sphere with finitely many marked-points. Our approach to ramified covers is based
on cosheaf spaces, which are closely related to Fox’s complete spreads. A feature of a
ramification groupoid is that it carries a certain order structure. The Artin group of
braids of n strands has an order-invariant action in the ramification groupoid of the
sphere with n + 1 marked-points. Left-invariant linear orderings of the braid group
such as the Dehornoy ordering may be retrieved. Our work extends naturally to the
braid group on countably many generators. In particular, we show that the underlying
set of a free group on countably many generators (minus the identity element) can be
linearly ordered in such a way that the classical Artin representation of a braid as an
automorphism of the free group is an order-preserving action.

Introduction

Patrick Dehornoy [8, 9] has discovered through a connection with self-distributive op-
erations that an Artin braid group carries a left-invariant linear ordering. Geometric
explanations of the ordering have subsequently appeared. Fenn, Greene, Rolfsen, Rourke
and Wiest [10] have presented such an explanation, and Thurston has suggested another
approach based on Nielsen [25, 28], which has been described and analyzed in Short and
Wiest [27]. Christian Kassel has provided a description of Dehornoy’s discovery and a
survey of all these achievements in a recent article [17].

The author’s previous interest [13] in ramified, or branched covers (in the sense of Fox
[11]) has led to the present investigation of a connection between the so-called Hurwitz
action and linear orderings of braid groups. Our explanations focus on a certain path
groupoid of a ramified cover, which we shall call a ramification groupoid. The objects of
this groupoid are taken to be the elements of the branch-point set of the ramified cover.
One of our goals is to show how these groupoids are involved in braid group orderings. In
particular, we describe an order-structure that a ramification groupoid carries.

Our approach involves cosheaf spaces [12], which we review in §2. Cosheaf spaces are
defined by an adjointness with cosheaves, but they have a topological characterization that
is almost equivalent to Fox’s notion of a complete spread. Fox had introduced complete
spreads as a framework by which to study topologically ramified covers. It may interest
the reader that a cosheaf can be equivalently regarded as a topos distribution in the
sense of Lawvere [20, 21]. We shall not pursue this connection with topos distributions,
but the reader can consult [6] (and references cited therein) for information and recent
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developments concerning topos distributions. Remark 11.4 explains another connection
with topos theory through the classifying topos for the theory of dense linear orders [26].

The role played by the Poincaré disk and its circle at infinity in Nielsen, and in Short
and Wiest, is in this investigation played by a ramified cover. Remark 6.3 explains how
the ramified cover and the Poincaré disk are related. From Nielsen [28]:

It now proves useful to close the universal covering surface by addition of its
“points at infinity”; in order to make these conveniently accessible, a conformal
mapping of the hyperbolic plane onto the interior of a disk is used. Just as
proper elements of the fundamental group are given by finite products of the
generators, the attempt to characterize individual boundary points leads us to
consider improper group elements, given by infinite sequences of generators .

The points at infinity that we require are represented by the objects of the ramification
groupoid. We can thus avoid words with infinitely many ‘edge’-symbols by introducing a
second type of symbol, a ‘vertex’-symbol, which is used to encode the groupoid objects.
But we can pass from the groupoid to the collection of infinite words by a ‘spiral’ map
(Remark 13.12).

If Y
ψ �� X is a ramified cover, then composition with a homeomorphism X

h �� X
produces another ramified cover h ·ψ. This action of homeomorphisms in ramified covers
has been called the Hurwitz action (surveyed in [4], but also see [3, 18]). If we regard
two ramified covers ψ and ψ′ to be equivalent just when there is a homeomorphism
Y �� Y ′ over X, then a ramified cover ψ is fixed under this action by a homeomorphism

h precisely when h can be lifted to a homeomorphism Y h̃ �� Y , meaning that ψ · h̃ = h ·ψ.
We are particularly interested in the question: what ψ are fixed by a given collection of
homeomorphisms h? Or can we even find one such non-trivial ψ? It is desirable to be
able to do this functorially in the sense that for a given collection of homeomorphisms

X h �� X can we find a ramified cover ψ, and a section of the monoidal functor

Σ(ψ) = {(h, h̃) | h̃ is a lifting of h over ψ} �� Aut(X) ; (h, h̃) �→ h ?

The morphisms in the monoidal1 categories Σ(ψ) and Aut(X) may vary depending on the
particular purpose one has in mind. Aut(X) acts in X (or in the fundamental groupoid
π1(X)), but notice that a section of the above functor yields an action of Aut(X) in
the map ψ (or in the homomorphism ψ∗). For example, let S denote a 2-sphere, and
suppose that in Aut(S) we take for morphisms just those isotopies in S that permute n
marked-points and pointwise fix an open neighbourhood of an n+ 1st one. The group of
isomorphism classes of objects S �� S (homeomorphisms) of this monoidal category is
isomorphic to the Artin group of braids of n strands, denoted Bn. In effect, a section of
the above functor provides a representation of Bn.

1These categories are only ‘almost monoidal’ because composition of isotopies is not associative, and
the constant isotopies are not identities for vertical composition. This technicality does not interest us
here.
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In §3 we construct a certain universal ramified cover ψm of a 2-sphere with m marked-
points as a cosheaf space. (For the reader interested in ‘exponential’ matters, this ψm

is an instance of a cosheaf space that is not exponentiable in spaces over the 2-sphere -
see Remark 3.6.) The ramification groupoid is derived from ψm. We then produce an
action of Bn in the ramification groupoid of ψn+1 in the manner we have tried to describe
in the previous paragraph. It follows that this action respects the order structure of the
ramification groupoid, so that a free element of the action provides a (left)-invariant linear
ordering of the braid group (§12).

In §13 we show that these methods extend naturally to the countably generated braid
group B∞. We obtain the following result (Corollary 13.9): the free group on countably
many generators (except the identity) can be linearly ordered in such a way that the
classical Artin action [1, 15] of B∞ in the free group is order-preserving. This ordering
of the free group is not a group ordering in the usual sense of being invariant under
multiplication on the left (or right). Although this action has no free elements, for any
n it has elements that are free for the subgroup Bn. Free elements for the whole action
may be obtained by admitting infinite words. We arrive at Corollary 13.9 by considering
another action of B∞ in the free group, which is isomorphic to Artin’s. Larue [19] has
considered this other action in connection with the “Dehornoy bracket.” Remark 13.11
explains another connection with Dehornoy [9].

An appropriate setting in which to examine paths in a ramified cover is the Sierpin-
ski fibration, as we shall call it. We shall begin in §1 by providing some details about
homotopy theory in the Sierpinski fibration.

Acknowledgements: The author has benefited greatly from discussions with several
people, and it is a pleasure to take this opportunity to thank them. Bert Wiest has
explained to the author aspects of his work with H. Short [27]. Christian Kassel and
Patrick Dehornoy have also offered the author with valuable advice and information.
Many thanks to the organizers of the Como 2000 category theory conference, and also to
the organizers of the Marshall Colloquiumfest where preliminary reports had been made.
The author would also like to thank the participants of the topology seminar at the
University of Saskatchewan. Lastly, one of the referees has offered several clarifications
that have improved the paper, for which the author is most grateful.

1. Homotopy theory over Sierpinski space

Let Tsp denote the category of topological spaces and continuous functions (henceforth
called maps). Let Sier (for Sierpinski) denote the space consisting of two elements {0, 1},
such that {1} is open and {0} is not. An object of Tsp//Sier is a map X U �� Sier, which

we also denote as XU , and a morphism XU
�� YV is a map X

f �� Y such that U ≤ V · f
in the specialization order for maps in Tsp. Equivalently, an object XU is a topological
space X together with a designated open set U , and a morphism XU

�� YV is a map

X
f �� Y such that U ⊆ f−1V . Let [XU , YV ] denote the set of such morphisms.
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We have a functor

X : Tsp//Sier �� Tsp ,

which associates with an object XU the space X (XU) = X. This functor has left and
right adjoints given by L(Z) = Zφ, where φ denotes the empty space, and respectively
R(Z) = ZZ . These adjoints are full and faithful. Furthermore, R has a right adjoint U
given by U(XU) = U . Thus, we have adjoints

L � X � R � U .

The functors U and X are related by a natural transformation t : U ⇒ X , where the
component morphism tXU

is equal to the inclusion U ⊆ X. The natural transformation
Rt is equal to the composite of the counit RU ⇒ id with the unit id ⇒ RX .

1.1. Definition. We shall refer to X (with all the adjoints, and the base and total

categories) as the Sierpinski fibration. A morphism XU
f �� YV for which U = f−1V is

said to be cartesian.

Every map X
f �� X (YV ) = Y has a cartesian lifting : f �(YV )

f �� YV , where f �(YV )

denotes Xf−1V . Furthermore, every morphism XU
f �� YV factors uniquely as a vertical

morphism XU
�� f �(YV ) followed by a cartesian morphism.

The functors L, X , and R preserve colimits, and X , R, and U preserve limits. We
use these facts to examine limits and colimits in Tsp//Sier. For instance, the product
XU × YV must be isomorphic to (X × Y )U×V , but an infinite product may not exist.

We next investigate exponentials in the Sierpinski fibration. For the following proposi-
tion, recall that if an exponential Y X exists in Tsp, then its underlying set must be equal
to the collection of maps X �� Y .

1.2. Proposition. If YV
XU exists, then Y X exists, given by X (YV

XU ), and the desig-
nated open set U(YV XU ) is equal to [XU , YV ]. Conversely, if Y X exists in Tsp and if
[XU , YV ] is an open set of Y X , then YV

XU exists, given by Y X with designated open set
[XU , YV ].

Proof. The adjoint pair L � X satisfies

L(Z ×X (YV )) ∼= L(Z)× YV . (1)

Therefore, we have

X (YV
XU ) ∼= X (YV )

X (XU ) = Y X .

Of course, the elements of the open set U(YV XU ) are in bijection with maps 1 �� U(YV XU ),
which are in bijection with morphisms R(1) �� YV

XU . In turn, these correspond to
morphisms XU

�� YV . The converse is just as easily established.
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1.3. Remark. R � U does not satisfy condition (1), and U does not preserve exponen-
tials.

We are going to consider homotopy theory in the Sierpinski fibration. Let I denote
the real unit interval [0, 1].

1.4. Definition. A homotopy between two morphisms in the Sierpinski fibration is a
morphism

H : XU ×R(I) �� YV ,

where XU ×R(I) = (X × I)U×I . An isotopy is a homotopy H such the pairing

XU ×R(I) �� YV ×R(I)

of H with the projection XU×R(I) �� R(I) is an isomorphism in the Sierpinski fibration.

If YV
XU exists, then by transposing, a homotopy may be equivalently given as a map

Ĥ : I �� U(YV XU ) .

Let (I) denote the open unit interval, and consider the object I(I). By a path p in XU

we shall mean a morphism
p : I(I)

�� XU

in the Sierpinski fibration.

1.5. Example. Let S denote a 2-sphere, and let U denote an open subset of S. Then
SU is an object of the Sierpinski fibration. When S −U is a finite set we refer to SU as a
finitely marked 2-sphere. A path in SU is a path in S that maps (I) into U .

Since the inverse operation in Aut(S) (= homeomorphisms S �� S) is continuous for
the compact-open topology, it follows that an isotopy in SU is equivalently given as a map
H : S × I �� S such that each map H( , t) is a homeomorphism of S that permutes the
marked-points.

Let Path(XU) denote the set of paths in XU , which is [I(I), XU ] in our previous no-
tation. It is well-known that the exponential XI always exists in Tsp: it is the set of
paths in X, endowed with the compact-open topology. Thus we may always consider
Path(XU) as a topological space by regarding it as a subspace of X

I . By Proposition 1.2,
if Path(XU) is an open set of XI , then XU

I(I) exists and we have Path(XU) = U(XU
I(I)).

Then by adjointness, the bijection expressed in the following proposition must hold. This
bijection holds even when XU

I(I) does not exist. We omit the straightforward proof.

1.6. Proposition. We have a functor

Path : Tsp//Sier �� Tsp .

There are natural bijections

Z �� Path(XU)
I(I) ×R(Z) �� XU

between maps in Tsp and morphisms in the Sierpinski fibration. Thus, Path has a left
adjoint. In particular, Path preserves limits.
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1.7. Remark. Our concept of path in the Sierpinski fibration is apparently flawed be-
cause there may not be a way to compose paths (as in SU). For our purposes this apparent
flaw is really a valuable feature because for a particular object XU a natural composition
for (homotopy classes of) paths in XU may be available. The universal ramified cover of
SU provides an illustration of this (§3).
1.8. Definition. A homotopy of paths in XU is a morphism

H : I(I) ×R(I) �� XU

in the Sierpinski fibration.

By Proposition 1.6, a homotopy may be equivalently regarded as a map

Ĥ : I �� Path(XU) .

We may speak of paths in the Sierpinski fibration with common endpoints by using
the domain and codomain natural transformations: Path ⇒ X . Then we may consider
homotopy equivalence classes of paths with common endpoints, in the sense of Definition
1.8.

1.9. Definition. Let us denote the collection of homotopy classes of paths in XU with
common endpoints by π1(XU). Its objects (or vertices) are the points of X, while U
supplies the morphisms (or edges).

1.10. Remark. The collection π1(XU) is a directed graph with an involution, but as we
have said it may not have a law of composition.

When we use π1(X) with no subscript on X, we shall mean the ordinary fundamental
groupoid.

2. Review of cosheaf spaces and complete spreads

We review the notion of cosheaf space [12] and the slightly more general notion of complete
spread, due to R. Fox. Our terminology is a mixture coming from [2, 11, 12]. We first
review complete spreads. Following [11], a spread is a continuous map ϕ : Y �� X,
where Y is locally connected, such that the components of sets ϕ−1(U), for U open in X,
are a base for the topology on Y . We shall assume throughout that the domain space
of a spread is locally connected, even though the notion can be sensibly generalized to
the case of an arbitrary domain space by using quasi-components [11, 22]. In order to
formulate completeness we recall that a cogerm of a map ϕ : Y �� X at x ∈X (with Y
locally connected) is a consistent choice of components α = {αU ⊆ ϕ−1(U)}, where U
ranges over all neighbourhoods of x. By consistent, we mean that U ⊆ V ⇒ αU ⊆ αV .
Then a spread over a space X is complete if for every x ∈X, and every cogerm α at x, the
intersection

⋂
x ∈ U αU is non-empty.
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We next turn to cosheaf spaces. For a given map ϕ : Y �� X (with Y locally con-
nected) consider the collection

Ỹ = {(x, α) | α is a cogerm of ϕ at a point x ∈X} .

Ỹ is topologized by the basic sets

(U, β) = {(x, α) | x ∈U, αU = β} ,

where U is an open set of X, and β is a connected component of ϕ−1(U). We refer to the
topological space Ỹ as the display space associated with the cosheaf U �→ π0(ϕ

−1(U)),
where π0 denotes connected components. Ỹ is continuously fibered over X in the obvious
way. A fiber over a given x0 ∈X is sometimes called a costalk ; it consists of the collection
of pairs {(x0, α)}. A costalk may also be regarded as the limit

lim← x0 ∈ U
π0(ϕ

−1(U)) ,

taken over the filter of open neighbourhoods of x0. Ỹ is locally connected. Every element
y ∈Y determines a cogerm at ϕ(y): take αU to be the unique component of ϕ−1(U) that
contains y. This defines a continuous map from Y into Ỹ (over X), denoted

η : Y �� Ỹ ; η(y) = (ϕ(y), α) .

The inverse image set η−1(U, β) is equal to β. A cosheaf space is then a map ϕ : Y �� X
for which Y is locally connected and η is a homeomorphism. If Y is locally connected and

Y
ϕ �� X is any map, then the canonical projection Ỹ

ϕ̃ �� X is a cosheaf space. Further-
more, there are adjoint functors connecting cosheaves and cosheaf spaces, which induces
an equivalence between the category of cosheaf spaces over X and a full subcategory of
cosheaves on X (called the spatial cosheaves in [12]). The above map η is the unit of this
adjointness. The inclusion of spatial cosheaves in cosheaves has a right adjoint.

Cosheaf spaces and complete spreads are nearly the same. The space Ỹ is precisely
Fox’s construction of the completion of a spread. A map with locally connected domain
over a T1 space is a cosheaf space if and only if it is a complete spread with T1 domain
([12], 5.17). The following result from [14] may help clarify the notion of cosheaf space
and its connection with complete spreads.

2.1. Proposition. (Topological characterization of cosheaf spaces [14].) For any map
ϕ : Y �� X with locally connected domain, the following are equivalent:

1. ϕ is a cosheaf space.

2. ϕ is a spread and η is a bijection, in which case the inverse of η is given by:

η−1(x, α) = (
⋂

x ∈ U

αU) ∩ ϕ−1(x) .

3. ϕ is a spread, and for every x ∈X and every cogerm α of ϕ at x, the set

(
⋂

x ∈ U

αU) ∩ ϕ−1(x)

is equal to a singleton.
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2.2. Remark. By Proposition 2.1.3, a cosheaf space is a complete spread with locally
connected domain.

The display space construction applies to any map Y �� X for which Y is locally
connected. Thus, we may always factor such a map as

Y
η �� Ỹ

ψ �� X ,

where ψ is a cosheaf space. The map η is pure in the sense that for every non-empty,
connected open set U , η−1(U) is again non-empty and connected. (In particular, η is
dense.) This factorization of a map with locally connected domain into its pure and
cosheaf space parts (such that the middle space is also locally connected) is unique up to
unique homeomorphism.

3. The universal ramified cover of a marked sphere

Consider the finitely marked 2-sphere regarded as an object SU of the Sierpinski fibration
(Eg. 1.5). We refer to the open set U as a punctured sphere. Let us denote the universal
covering space of U by P : Y �� U . If m = |S − U |, let ψm : Ỹ �� S denote the cosheaf

space factor of the map Y P �� U �� S (as in §2). We have

U S�� ��

Y

U

P

����

Y Ỹ
η �� Ỹ

S

ψm

����

where the first factor η is pure. The open inclusion U �� S is also pure. The cosheaf
space ψm is a ramified, or branched covering space in the sense of [11]. We shall call ψm

the universal ramified cover of the m-marked 2-sphere.
The following is an instance of a general fact about the pure, cosheaf space factorization

of a map such as Y P �� U �� S ([13], Lemma 4.2).

3.1. Proposition. The above square is a pullback, so that η : Y �� Ỹ is an open
inclusion, and Y is homeomorphic to ψ−1

m (U).

3.2. Proposition. The space Ỹ is connected, simply connected, locally path-connected,
and locally simply connected.

Proof. By using Proposition 3.1 and well-known properties of Y , the stated connect-
edness properties of Ỹ can be argued directly from the definition of the cosheaf space
topology that Ỹ carries. Another way to see that Ỹ has these properties is to use the
Poincaré disk with its boundary at infinity. Let D denote this space. Topologically, D is
a closed disk in the plane, but with the following additional open sets: in the following
diagram, B ∪ {p} is also a basic open set in D, where B is an open disk with tangent
point p.
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✫✪
✬✩��D B p

Then (for m ≥ 3) Ỹ is homeomorphic to a subspace of D in such a way that (only) the
branch-points of Ỹ correspond to points on the boundary of D.

A fact that may be of independent interest is that ψm is an open map. We have the
following explanation of this fact. For any given element c of a Heyting algebra (H,≤,⇒)
one may define a ‘thinner’ partial order on the elements of H:

a ≤c b if a ≤ b and a ⇒ c ≤ b ⇒ c .

Consider our situation where H is the open set lattice of S, and c is taken to be U . Since
S − U is a closed set that lies discretely in S, for any two open sets V and V ′ of S we
have

V ⊆U V ′ iff V ⊆ V ′ and V ∩ (S − U) = V ′ ∩ (S − U) .

Let Cψm denote the cosheaf associated with ψm. By definition, for any open setW ⊆ S
we have

Cψm(W ) = π0(P
−1(U ∩W )) .

If W ⊆ W ′, then there is an obvious transition map Cψm(W ) �� Cψm(W
′). The proof

of Proposition 3.4 depends on the following lemma. By convention, a connected set is
always non-empty.

3.3. Lemma. The cosheaf Cψm has the following property: for any two connected, simply
connected open subsets V, V ′ of S, we have

V ⊆U V ′ ⇒ Cψm(V ) �� Cψm(V
′) is an isomorphism .

3.4. Proposition. The universal ramified cover ψm is an open surjection.

Proof. The collection of (non-empty) connected, simply connected open subsets of S is
a base for S. Let (V, β) be a basic open subset of Ỹ , where V is connected and simply
connected, and β is a component of P−1(U ∩ V ). By definition, we have

ψm(V, β) = {y ∈V | there is a cogerm α at y for which αV = β} ⊆ V .

We shall show that ψm(V, β) is equal to V , hence open. Let y ∈V . If y ∈U , then clearly
there is a cogerm α at y for which αV = β because we have only to work with the cover
P , and not with ψm. On the other hand, if y is a marked-point, it suffices to define
a cogerm α at y on the connected, simply connected open subsets B ⊆ S that satisfy
B ∩ (S − U) = {y}. For any two such B,B′ obviously we have B ⊆ B′ iff B ⊆U B′.
Choose one such B and any member of Cψm(B), which we denote αB, such that αB goes
to β under Cψm(B) �� Cψm(V ). Then we are able to define an α at y because if B ⊆ B′,
then by Lemma 3.3 the transition map Cψm(B) �� Cψm(B

′) is an isomorphism.
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We have the object ỸY = ψ�
m(SU) and the morphism ψm : ỸY �� SU in the Sierpinski

fibration, which is a cartesian morphism in the sense of fibrations (Definition 1.1).

3.5. Remark. The closed complement Ỹ − Y is discrete in Ỹ , and countable. Further-
more, for m ≥ 2, the space Ỹ is not locally compact (m = 1 is an exception because
ψ1 is a homeomorphism). Indeed, local compactness fails at every point of Ỹ − Y . In
particular, Ỹ is not a topological manifold, m ≥ 2.

3.6. Remark. The cosheaf space ψm cannot be exponentiable [23, 24, 7] in the category
of topological spaces over S (in contrast with sheaf spaces, which are always exponen-
tiable). Indeed, if ψm were exponentiable, then Ỹ would be exponentiable in topological
spaces because S is exponentiable and such things compose. Hence, Ỹ would be locally
compact. All assertions made here about exponentiability are explained in [23]. In this
connection, Susan Niefield’s [24] recent example of a poset morphism that is a discrete
opfibration, and whose induced essential geometric morphism is not exponentiable, pro-
vides another example of a cosheaf space that is not exponentiable. Indeed, a discrete
opfibration of posets is a cosheaf space when regarded as a continuous map with respect
to the down-closed topology (use Prop. 2.1 to see this).

4. The ramification groupoids πr
1(S,m)

For each natural number m we now define a groupoid, which we shall call a ramification
groupoid of the m-marked 2-sphere, denoted πr

1(S,m). Here m = |S − U | denotes the
number of marked-points on S. By definition, πr

1(S,m) is the full subgraph of π1(ỸY )
whose vertices are the elements of Ỹ − Y (Definition 1.9 and §3).

We make πr
1(S,m) into a groupoid as follows. Suppose that we have paths

u
p �� x

q �� v

in ỸY , where u, x, v ∈ Ỹ − Y . It is possible to find an open set V ⊆ Ỹ that contains x,
such that V −{x} ⊆ Y , and such that V −{x} is connected and simply connected. There
is a t such that p(t, 1] ⊆ V and q[0, 1 − t) ⊆ V . Choose s such that t < s < 1. There
is a path γ in V − {x}, which is unique up to homotopy in V − {x}, joining the points
p(s) and q(1− s). We use γ to connect p and q, producing a path u �� v in ỸY . This is

a well-defined associative composition for homotopy classes of paths in ỸY . Furthermore,
it is readily verified that this composition has identities and inverses.

4.1. Example. πr
1(S, 1) has a single object, and is equal to the trivial group.

4.2. Remark. The groupoid πr
1(S,m) is connected and simply connected in the sense

that between any two objects there is exactly one isomorphism. It may seem that we
could have saved ourselves the trouble of doing homotopy theory in the Sierpinski fibra-
tion because πr

1(S,m) is isomorphic to the full subgroupoid of the ordinary fundamental
groupoid π1(Ỹ ) determined by the elements of Ỹ − Y . However, we wish to emphasize
that one of our aims is to describe an order structure that πr

1(S,m) carries. We shall do
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this not in terms of Y or even in terms of Ỹ , but rather in terms of the object ỸY of the
Sierpinski fibration.

5. A combinatorial presentation of πr
1(S, n+ 1)

Our later description of an order structure carried by the groupoid πr
1(S, n+1) is in terms

of the following combinatorial presentation of πr
1(S, n+1). (Our change in notation in this

section from m to n+1 is convenient for our later purposes.) First consider the following
presentation of the ordinary fundamental groupoid π1(U) of the n + 1-punctured sphere
U , as we have been denoting it. Let

v0
e1 �� v1

e2 �� v2 · · · vn−1
en �� vn

denote pairwise disjoint line segments connecting n + 1 marked-points vi on the sphere,
which when deleted gives U . Up to homotopy, we may encode any path in U (whose
endpoints do not lie on a line segment) as a word in the names ei of the line segments,
and their ‘inverses’ e−1

i . We also call ei an edge-symbol, or just an edge. We build such
a word from a path in U by including ei just when the path crosses the line segment ei
going up the page, and e−1

i when the path crosses the line segment ei going down the
page. Thus, we have the well-known fact that we may present any homotopy class of
paths in U as an element of the free group on the symbols e1, . . . , en. (Perhaps it should
be emphasized that we are describing the fundamental groupoid of U , so it makes sense
to describe paths in U using line segments without equal endpoints as generators.)

For our later purposes we need a presentation of just the isomorphisms with common
domain x ∈ Ỹ − Y . We denote this collection of isomorphisms by x/πr

1(S, n + 1). Let us
fix such an x. As above, we label the n + 1 marked-points on the sphere by v0, . . . , vn,
such that

ψn+1(x) = vn . (2)

We introduce vertex-symbols v+
i and v−i , which are not to be confused with the marked-

points vi on the sphere. Consider all words of the form

v±i wvn ; i ∈ {0, . . . , n} ,

where w is an element of the free group on the edge-symbols e1, . . . , en, and where v±i
means either v−i or v+

i , subject to the following ‘codomain winding relations:’

v+
i−1e

−1
i ∼ v−i−1

v+
i e

−1
i ∼ v−i

v−i−1ei ∼ v+
i−1

v−i ei ∼ v+
i

 i = 1, . . . , n .

The meaning of these relations is clarified in the proof of Proposition 5.5. We also identify
the ‘ends’ by including the relations:

v+
0 ∼ v−0
v+
n ∼ v−n .
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5.1. Remark. We shall write v0 = v+
0 = v−0 , and vn = v+

n = v−n , which should not lead
to any confusion.

5.2. Proposition. Every such equivalence class of words v±i wvn has a unique member
of least length (up to exchanging v+

n with v−n , or v
+
0 with v−0 ).

Thus, there is no need to make a distinction in the notation between an equivalence
class and a representing word, since we can assume it is the word of least length. Let us
call these words of least length reduced words.

5.3. Example. For instance, we have vnenvn ∼ vnvn. But vnen−1envn is a reduced word.

In the proof of the next proposition we shall consider leaves of the universal cover
P : Y �� U . A leaf of P is a connected component of P−1(U − ⋃

ei). Thus, each leaf of
P is canonically identified with U −⋃

ei. An edge of a leaf of P is the part of the closure
of the leaf in Y that is mapped by P to a line segment ei. The edges and branch-points
of the closure in Ỹ of a leaf of P may be labelled by edge and vertex-symbols in a circular
fashion illustrated by Figure 1 (§6). A leaf of a point y ∈ Ỹ is a leaf of P whose closure in
Ỹ contains y.

5.4. Remark. If a path exits a leaf across an edge eνi , ν = ±1, then the adjacent leaf
it enters is labelled so that the edge just crossed is now named e−ν

i . The endpoints of eνi
also change sign.

5.5. Proposition. With x as in (2), every isomorphism x ∼= x′ in πr
1(S, n+ 1) may be

uniquely presented by a reduced word v±i wvn, where ψn+1(x
′) = vi (without ±) for some

i ∈ {0, . . . , n}. The identity on x is presented by the reduced word vnvn. Conversely, every
such reduced word presents such an isomorphism.

Proof. We shall establish a bijection between reduced words and homotopy classes of
paths by first arbitrarily fixing a leaf of x. Suppose we have a path p : x �� x′ in ỸY .

There is a connected and simply connected open neighbourhood B ⊆ Ỹ of x, such that
B−{x} ⊆ Y is open, connected and simply connected, and contained in the union of the
leaves of x. By suitably winding finitely many times around x in B − {x}, the homotopy
class of p can be represented by a path that exits x via the fixed leaf. The winding around
x is recorded in the word v±i wvn by the power of en occurring as the rightmost symbols
of w. For instance, if w = ze2

n, then the ‘path’ v±i wvn exits x via the fixed leaf and cycles
around x crossing en twice. But we cannot identify e2

nvn with vn in v±i wvn, for then we
would identify two possibly different homotopy classes of paths in ỸY .

Now consider the codomain x′ of the path p. Again we may find a neighbourhood
B′ as above such that B′ − {x′} is contained in the union of the leaves of x′. There is
a 0 < t0 < 1 such that p[t0, 1] lies in B′, and furthermore p crosses only finitely many
leaf edges between leaving B and reaching the point p(t0). The word we are building
to represent the homotopy class of p may be ended with a vertex-symbol v±i that labels
x′. This vertex-symbol is determined by the labelling of the leaf of x′ in which p(t0) lies.
The codomain winding relations arise because any path from any point in B′ into x′ is
presented by the vertex-symbol that labels x′.
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6. The order structure carried by πr
1(S, n+ 1)

From the point of view of analytic topology a circle is a continuum that is disconnected
by the omission of any two of its points ([29], Chap. 3, §7). A linear order is a reflexive,
transitive, and anti-symmetric relation, which is total. Consider the following property
of a connected groupoid G: for every object A ∈G, the collection

(A/G)� = { isomorphisms g : A ∼= B | g �= idA }
forms a linear order. If for any object A we denote the linear ordering in (A/G)� by ≤A,
then we furthermore require that the composition of the groupoid cooperates with the
linear orderings as follows: for any two distinct isomorphisms g : A ∼= B and h : A ∼= C
other than idA, we have

g ≤A h ⇒ hg−1 ≤B g−1 . (3)

The picture below may help explain this rule. In this picture regard ≤A and ≤B as
increasing in the clockwise direction (so that g ≤A h starting from A).

✫✪
✬✩

✁
✁
✁✁✕

❆
❆

❆❆❑
✲

A

B C

g h

hg−1

G is thus a ‘circle.’
The groupoid πr

1(S,m) carries an order structure such as defined above. (Since
πr

1(S,m) is connected and simply connected, x/πr
1(S,m) is in bijection with the objects

of πr
1(S,m) (= elements of Ỹ − Y ), but really it is the collection of isomorphisms with

domain x, excluding idx, that are linearly ordered.) In Definition 6.1 we define a linear
ordering of (x/πr

1(S, n+1))� in terms of the reduced words v±i wvn (except vnvn, although
w may be empty in which case v±i may not be vn, for this would give vnvn). A word is a
right subword of another word if the former appears in the latter regarded from the right.

6.1. Definition. Let v±i wvn and v±j w
′vn be two reduced words as above. Let eνk, ν = ±1,

be the leftmost symbol of the greatest common right subword of w and w′ (the right-
hand vn in the word has an inert role in this ordering criteria). Let a and b be the next
symbols to the left of eνk in v±i w, respectively v±j w

′. Starting from the edge-symbol that
immediately follows e−ν

k (see Remark 5.4) clockwise in the circular list in Figure 1, we
declare v±i wvn < v±j w

′vn if a occurs before b (clockwise). (See Remark 5.1 about v0 and
vn.)

6.2. Remark. In Definition 6.1 it may happen that w is a right subword of w′ so that
a = v±i (or that w′ is a right subword of w so that b = v±j ), and hence we must compare
the vertex v±i with an edge of w′, but the list in Figure 1 accounts for this. (If w = w′

and a = b, then of course the two words v±i wvn and v±j w
′vn are identical.) It may happen

that the greatest common right subword of w and w′ is empty, in which case by definition
we start with e−1

n when finding the positions of a and b in the circular list.
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v0

e−1
1

v−1
e−1
2

e1

v+
1

e2

vn

en

v+
n−1

en−1

e−1
n

v−n−1

e−1
n−1

·· ·
· ·

·· ·
· ·

Figure 1: The circular list of vertex and edge-symbols.

6.3. Remark. From a geometric point of view, the term “hyperbolic” for the above
ordering seems appropriate because the space Ỹ is a subspace of the Poincaré disk and
its circle at infinity (as described in the proof of Prop. 3.2) such that certain geodesics
map to the ‘combinatorial geodesics’ v±i wvn. An analysis of this connection with hyper-
bolic geometry is given in [27]. The ordering imposed by Definition 6.1 might also be
called warped, or twisted-lexicographical (Franz-Victor Kuhlmann’s suggestion) because
although the ordering has a lexicographical aspect, the order of the alphabet varies (by a
rotation) depending on the last common letter encountered when comparing two words.

The following is not difficult to establish.

6.4. Proposition. The ordering of (x/πr
1(S, n+1))� given by Definition 6.1 is a dense

linear order (“dense” means that between any two isomorphisms p < q with domain x
there is another one p < r < q).

6.5. Proposition. The order structure in πr
1(S, n+ 1) has property (3).

We omit a proof of Proposition 6.5. In any case, we do not use (3) to obtain linear
orderings of a braid group.

6.6. Remark. There is a one-to-one function into x/πr
1(S, n+1) from the subset of the

free group on e1, . . . , en consisting of all reduced words not beginning on the left with en
or with e−1

n , which sends such a word w to vnwvn. The word w should not begin on the
left with en or e−1

n because of the codomain winding relations vnen ∼ vn and vne
−1
n ∼ vn.

Therefore, we may linearly order this particular subset of non-empty reduced words in
e1, . . . , en The action of a braid group restricts to this subset, and it is order-preserving.
By admitting countably many generators ei it is possible to avoid the codomain winding
relations. In effect we may work without the vertex-symbols. The details are provided in
§13.
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7. Lifting a homeomorphism of SU to one of ỸY

In this section we show how to lift a homeomorphism of SU to one of ỸY = ψ�
m(SU) in the

Sierpinski fibration, where m = |S − U |. (As we were saying in the Introduction, such a
lifting exists just when ψm is fixed under the Hurwitz action.) Much of what we do holds
in greater generality, but we shall work only with the universal ramified cover ψm. Later
we shall derive, by lifting homeomorphisms, an action of the braid group on n strands in
the ramification groupoid πr

1(S, n+ 1).

Recall that we denote the universal covering space of U by P : Y �� U . We shall use
P∗ to denote the induced functor of fundamental groupoids. By definition, for any y ∈Y ,
the object P∗(y) is equal to the point P (y).

7.1. Proposition. Let h be a homeomorphism of SU . Then a point b on Y , and an
isomorphism γb : P (b) ∼= h(P (b)) of the groupoid π1(U) define a homeomorphism h̃γb

of
ỸY , which furthermore is a lifting of h. Moreover, if γc : P (c) ∼= h(P (c)) is another
isomorphism such that h∗(P∗(ρ)) · γb = γc · P∗(ρ) in π1(U), where ρ : b ∼= c is the unique
isomorphism of π1(Y ), then h̃γb

= h̃γc (so we may denote the lifting as h̃γ).

SU SUh
��

ỸY

SU

ψm

����

ỸY ỸY
h̃γ �� ỸY

SU

ψm

����

If there is isotopy between h and h′ in SU (Example 1.5) with induced natural isomorphism
i : h∗ ∼= h′

∗, and if for some b ∈Y , we have isomorphisms γb and γ′
b such that γ′

b = iP (b) ·γb,
then the given isotopy lifts to one of h̃γ and h̃γ′.

Proof. By the well-known procedure of path-lifting, there is a homeomorphism h̄γ such
that the following diagram commutes.

U U
h

��

Y

U

P

����

Y Y
h̄γ �� Y

U

P

����

(Here we mean the restriction of h to U , or U(h) in the notation of §1.) Indeed, given

y ∈Y , we define h̄γ(y) by lifting the path P (b)
γb �� h(P (b))

h(P (!))�� h(P (y)) in U to a path

b �� h̄γ(y) in Y such that P (h̄γ(y)) = h(P (y)), where b
! �� y denotes the unique path in

Y (up to homotopy in Y ). The stated uniqueness property is straightforward to establish.
We may lift isotopies in U along P in essentially the same manner, but working over I.
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Any homeomorphism h̄ of Y over a homeomorphism h : SU
�� SU may be uniquely

completed to one of ỸY over h, as depicted in the following diagram.

Ỹ Ỹ
h̃

��

Y

Ỹ

��
η

��

Y Y
h̄ �� Y

Ỹ

��
η

��

S S
h

��S

ψm

����
S

ψm

����

The reason that there is such an h̃ is explained by the following simple fact about factor-
ization systems, applied in our case to the pure, cosheaf space factorization. Suppose we
have a commutative diagram

B BB B

A

B

e

��

A A
f �� A

B

e

��

C Cg
��C

m

��
C

m

��

where e and m are orthogonal, and where f and g are isomorphisms. Then because g ·m
and e · f are orthogonal, there is a unique isomorphism B

g̃ �� B making both squares
commute.

Finally suppose we have an isotopy H̄ : Y ×I �� Y over an isotopyH : SU×II �� SU .
The previously mentioned fact about factorization systems also applies for completing H̄
to an isotopy H̃ : ỸY ×II �� ỸY over H. This fact applies because the pure, cosheaf space
factorization is stable under pullback along a locally 0-acyclic map. A locally 0-acyclic
map f : A �� B is an open map with the property that A has a base of open sets each of
which meet any fiber of f in a connected or empty set. This pullback stability property
has a topos theory proof: a locally 0-acyclic map induces what is usually called a locally
connected geometric morphism of sheaf toposes [16]. The pullback stability of the pure,
cosheaf factorization along a locally connected geometric morphism has been established
in [5]. The projection map S × I �� S is locally 0-acyclic, so that ψm × I is a cosheaf
space and η × I is pure.

Lifting a homeomorphism and lifting a braid are not exactly the same matter because
a braid is really an isotopy-equivalence class of homeomorphisms. We review this in the
next section.
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8. Artin braids as homeomorphisms of SU

Let Bn denote the Artin group of braids of n strands. Let Dn denote the closed disk with
n interior marked-points. Consider the collection of homeomorphisms and isotopies of Dn

that pointwise fix the boundary and permute the marked-points. The group of isotopy-
equivalence classes of this collection is called a mapping class group2 Mcg(Dn) [3]. It is
well-known that Bn is isomorphic to Mcg(Dn). Generators of Mcg(Dn), which we denote
by σ1, . . . , σn−1, may be described as follows. The well-known Dehn twist about a circle is
defined by choosing a cylinder that contains the circle so that the cylinder is parameterized
by (y, θ), for −1 ≤ y ≤ 1 with the circle at y = 0. Then the Dehn twist about this circle
is the function ( y, θ + π(1 − y) ) on the cylinder. To describe σi, let v0, . . . , vn−1 denote
the n marked-points of the disk. Consider the homeomorphism defined to be the Dehn
twist about the circle on which vi−1 and vi lie diametrically opposed (with vi at (0, 0)) in a
cylinder that contains no other marked-point, and defined to be the identity elsewhere on
the disk. This homeomorphism exchanges vi−1 with vi and leaves the other marked-points
fixed. Let σi denote the isotopy class of this homeomorphism.

We shall want to regard a braid β ∈Bn as an isotopy-equivalence class β = [h] of
homeomorphisms h : SU

�� SU , where n + 1 = |S − U |. This introduces a complication
because isotopies on the sphere are not the same as on the disk, but we feel that it is
worth the trouble because working with ramified covers seems better suited to the sphere.
We shall say that an isotopy H : S × I �� S fixes an open neighbourhood V ⊆ S if

S × I S
H

��

V × I

S × I

��

��

V × I V�� V

S

��

��

commutes, where the top horizontal arrow denotes the projection map. (This also makes
sense for isotopies in the Sierpinski fibration.) In other words, an isotopy fixes an open
set V if every homeomorphism of the isotopy fixes V . (Note: by fix we shall always mean
fix pointwise.) Now consider SU , where S − U = {v0, . . . , vn−1, vn}. There are n ‘Dehn
twist’ generators σ1, . . . , σn of the mapping class group of SU . An Artin braid may always
be represented by a homeomorphism of SU that fixes an open neighbourhood of vn. (Such
a homeomorphism necessarily preserves orientation.) Represented this way, the Artin
braids are generated by the Dehn twists σ1, . . . , σn−1, just as on the disk. Furthermore,
two such homeomorphisms represent the same Artin braid if and only if they are isotopic
in SU under an isotopy that fixes an open neighbourhood of vn.

8.1. Remark. The notions of isotopy in SU and isotopy in SU fixing an open neighbour-
hood are not equivalent. For instance, if S−U = {v0, v1, v2}, with Dehn twist generators
σ1, σ2, then the square of the Dehn twist that represents σ1 is isotopic to the identity

2A member of a mapping class group is required to preserve orientation, but in the case of Dn, a
homeomorphism that pointwise fixes the boundary necessarily preserves orientation.
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homeomorphism of SU ;
3 however, σ2

1 is not equal to the identity Artin braid. I.e., the
square of this Dehn twist is homotopic to the identity through orientation-preserving
homeomorphisms that permute (in this case, fix) v0, v1, v2, but this homeomorphism is
not isotopic to the identity under an isotopy that fixes an open neighbourhood of v2.

9. The action of Bn in πr
1(S, n+ 1)

9.1. Proposition. Depending on a chosen isomorphism γb : P (b) ∼= h(P (b)) of π1(U)
(as in Prop. 7.1), a homeomorphism h of SU induces a groupoid automorphism of πr

1(S,m),
m = |S−U |. (How this automorphism depends on the isotopy-equivalence class of h and
on the isomorphism γb is explained in Prop. 7.1.)

Proof. From Proposition 7.1, two isotopic homeomorphisms of SU have liftings to iso-
topic homeomorphisms of ỸY . Since the branch-point set Ỹ −Y (= objects of πr

1(S,m)) is
a discrete subspace of Ỹ , it follows that two isotopic homeomorphisms of ỸY must induce
the same automorphism of the branch-point set. Further, two homotopic paths (in the
Sierpinski fibration) are homotopic under isotopic images. We omit further details.

By Proposition 9.1, a braid of n strands induces an automorphism of πr
1(S, n + 1),

but when working with braid homeomorphisms and the restricted notion of ‘fixed open
set’ isotopy in SU we can do better: for any given object x of πr

1(S, n+ 1) we may define
a covariant (or left) action of Bn in πr

1(S, n + 1) by groupoid automorphisms, such that
every braid fixes x. We now explain how to do this. Let x be any object of πr

1(S, n+ 1).
We label S − U = {v0, . . . , vn−1, vn} such that

ψn+1(x) = vn .

Once (pairwise disjoint) line segments ei joining the vi have been chosen, we may define

leaves of the cover Y P �� U . (A leaf of P is a connected component of P−1(U − ⋃
ei).)

Let A ⊆ Y be a leaf of x, i.e., a leaf of P whose closure in Ỹ contains x. Let β = [h]
denote an arbitrary member of Bn, where h is a homeomorphism of SU that fixes an open
neighbourhood V ⊆ S of vn. Let b ∈A be any point such that P (b) ∈V , so that h fixes
P (b). Then, as in Prop. 9.1, we may define an induced automorphism of πr

1(S, n + 1)
taking for γb the identity on P (b). The definition of this automorphism does not depend
on the point b ∈A chosen such that P (b) ∈V . If h′ is another homeomorphism that is
isotopic to h under an isotopy that fixes an open neighbourhood of vn, then the same
automorphism of πr

1(S, n+1) is induced. Thus, we may denote this automorphism as β∗.
It is clear that β∗(x) = x. We denote the action by

β · g = β∗(g) ,

3This can be seen using the system of generators and relations for the mapping class group of the
marked sphere given in [3]. It can also be seen directly: rotate one revolution, and in opposite directions,
the two closed disks that are disjoint from the open cylinder in which the Dehn twist for σ1 (squared) is
defined, whilst keeping v0 and v1 fixed.



Theory and Applications of Categories, Vol. 9, No. 7 139

where g is an isomorphism of the groupoid πr
1(S, n + 1). It may be verified that the

automorphism (ββ′)∗ is equal to the composite automorphism β∗ · β′
∗. The definition of

this action depends (only) on x and on the leaf of x chosen.

9.2. Remark. Since x is fixed under this action, we may pass to an action of Bn in
x/πr

1(S, n+ 1) that fixes the identity isomorphism idx : x ∼= x.

10. A presentation of the action of Bn in πr
1(S, n+ 1)

The order structure of πr
1(S, n) has been defined combinatorially, so in order to show (in

§11) that the action of Bn in πr
1(S, n+ 1) respects this order structure we shall provide a

combinatorial presentation of the action (which is (4) below). This action is isomorphic
to the Artin action (Proposition 13.8). Larue [19] has considered (4) in his study of the
‘Dehornoy bracket.’

In §5 we have described a geometric representation of a free group(oid) using line
segments and edge-symbols. In order to prescribe the action of Bn in π1(U) precisely, let
σi, 1 ≤ i ≤ n− 1, denote the braid group generators. We have previously explained in §8
that σi may be represented by a Dehn twist (on the sphere), which permutes vi−1 and vi,
where S−U = {v0, . . . , vn}. From this geometric representation of σi we are led to define
the action of the σi on the generators ej of π1(U) as follows:

σi · ei = ei−1e
−1
i ei+1

σi · ej = ej ; j �= i

}
i = 1, . . . , n− 1 . (4)

The first identity in (4) arises by observing what the Dehn twist σi does to a simple path
that crosses the line segment ei+1 going up the page (which we regard as the positive
direction). When i = 1, the first identity does not make sense because there is no edge
e0. In this case, we define

σ1 · e1 = e−1
1 e2 .

The braid relations are easily seen to hold for the above definitions, so that we have a
well-defined action of Bn in π1(U). This action is faithful in the sense that for any braid
β, if for every member w of the free group on the ei, we have β · w = w, then β = id.

We complete the presentation of the action of Bn in πr
1(S, n+1) by defining the effect

on the vertex-symbols v0, v
±
1 , . . . , v

±
n−1, vn.

σi · v+
i−1 = v+

i

σi · v+
i = v−i−1ei+1

σi · v−i−1 = v+
i e

−1
i−1

σi · v−i = v−i−1

 i = 1, . . . , n− 1 (5)

The third line above does not make sense when i = 1 again because there is no edge e0.
We define

σ1 · v−0 = v+
1 .
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This is consistent with the other definitions. For instance, since v+
0 ∼ v−0 , we have

σ1 · v−0 = σ1 · v+
0 = v+

1 ,

where the second equality is by the first identity in (5). In all other cases, we set σi · v±k =
v±k . The definition extends to arbitrary words v±i wvn, and braids β in the obvious way.
For instance, we have σi · vn = vn for i = 1, . . . , n − 1, so that every braid fixes the
word vnvn. Also, the action of σ−1

i on the vertex-symbols may be inferred from the above
definitions and the codomain winding relations. For instance, we have

σ−1
i · v−i = v+

i−1e
−1
i+1 .

This completes the combinatorial presentation of the action of Bn in πr
1(S, n+ 1).

11. The action of Bn in πr
1(S, n+ 1) respects order

We shall prove the following.

11.1. Theorem. The action of Bn in πr
1(S, n + 1) respects the order structure carried

by πr
1(S, n + 1): for every object x of πr

1(S, n + 1), isomorphisms g, h ∈ (x/πr
1(S, n + 1))�,

and braid β ∈Bn, we have
g ≤x h ⇒ β · g ≤x β · h ,

where the action is defined in §9 (depending on x and a choice of leaf of x), and where
≤x denotes the linear ordering in (x/πr

1(S, n+ 1))� (given by Definition 6.1).

Our argument for Theorem 11.1 is combinatorial in nature since that is how we have
defined the order structure of πr

1(S, n + 1). For this argument only, we shall write the
words v±i wvn just as v±i w since the right-hand vn is inert anyway. We begin with some
terminology.

11.2. Definition. Let 1 ≤ k ≤ n.

1. We shall say that a reduced word b in the ei is k-positive definite if only positive
exponents of ek appear in b, and if the first and last symbol of b is ek. Similarly, we
define k-negative definite.

2. Let sgnk(w) denote the sum of the exponents of ek in w. Let |w| denote the positive
word obtained from w by replacing every exponent by its absolute value.

3. Obviously any reduced word w in the ei can be written uniquely as

w0b1w1 · · · bmwm ,

where each bj is either k-positive definite or k-negative definite, sgnk(bj) alternates
between positive and negative, and sgnk(|wj|) = 0. We shall call this the k-definite
form of w.

An examination of the definitions (4) and (5) reveals the following. As always, σi
denotes a braid group generator.
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11.3. Lemma. Fix h ∈ {1, . . . , n− 1}, and let v±k z denote σh · v±i w.

1. If sgnh(|w|) = 0, then either z = e−1
h−1w, z = eh+1w, or z is a (possibly empty) right

subword of w.

2. Assume that sgnh(|w|) �= 0, and write w in its h-definite form w0b1w1 · · · bmwm

(each bj is either h-positive definite or h-negative definite, sgnh(bj) alternates be-
tween positive and negative, and sgnh(|wj|) = 0). Then v±k z has a similar form
v±k z0c1z1 · · · cmzm, where sgnh(|zj|) = 0, and sgnh(cj) = −sgnh(bj). Furthermore, if
wm is empty, then zm = eνh+1, where ν is equal to the sign of sgnh(bm).

We proceed with the proof of Theorem 11.1. Assume that v±k z < v±i w. We may assume
that the rightmost symbols of these two words are different, so that the start-symbol in
the circular list in Figure 1 is e−1

n . There must be vertex-symbols v±j , v
±
j′ such that

v±k z ≤ v±j ≤ v±j′ ≤ v±i w ,

where in the circular list v±j is clockwise adjacent to the rightmost symbol of v±k z, and v±j′
is clockwise adjacent to the rightmost symbol of v±i w. We thus have three cases to argue:
when w is empty and z is not, when both w and z are empty, and when z is empty and
w is not. We shall argue only the case when z is empty and w is not: this is the case
v±k < v±i w, where v

±
k is clockwise adjacent to the rightmost symbol of v±k w. This symbol is

an edge-symbol since we are assuming that w is non-empty. Furthermore, we shall assume
that v±k = v−n−1 (the general case is similarly argued), so that the rightmost symbol of
v±k w is therefore e−1

n−1. To summarize: we are assuming that v−n−1 < v±i w (starting from
e−1
n ), and that the rightmost symbol of w is e−1

n−1. We must show that σh · v−n−1 < σh · v±i w
and σ−1

h · v−n−1 < σ−1
h · v±i w, for h = 1, . . . , n− 1.

First we consider the case h �= n − 1, so that σ±1
h · v−n−1 = v−n−1. The word v±i w may

be uniquely expressed as

v±i w0e
p1
n w1 . . . e

pm
n wm ; m ≥ 0 , (6)

where every subword wj does not contain e−1
n , and the pj’s are negative integers. For

j ≥ 1, wj is non-empty, but w0 may be empty, in which case we must have m ≥ 1. For
h �= n − 1, the action of σ±1

h (on vertex or edge-symbols) does not introduce or remove
e±1
n , and we have σ±1

h · e±1
n = e±1

n . Hence, for j ≥ 1, σ±1
h · wj is non-empty and contains

no e−1
n , so that no change in m or in the pj in (6) can occur under the action of σ±1

h . In
particular, the rightmost symbol of σ±1

h · v±i w (= rightmost symbol of σ±1
h · wm) cannot

be e−1
n . Hence, v−n−1 < σ±1

h · v±i w (starting from e−1
n ).

Next assume that h = n − 1. We shall show that σ−1
n−1 · v−n−1 < σ−1

n−1 · v±i w, leaving
σn−1 · v−n−1 < σn−1 · v±i w for the reader. We have σ−1

n−1 · v−n−1 = v+
n−2e

−1
n . Let v±k z denote

σ−1
n−1 · v±i w. If the rightmost symbol of v±k z is not e−1

n , then the largest common right
subword of v+

n−2e
−1
n and v±k z is empty, which means that we begin from e−1

n in Figure
1. But then v+

n−2e
−1
n < v±k z. Hence, we can assume that the rightmost symbol of v±k z is
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e−1
n . Then the greatest common right (edge) subword of v±k z and σ−1

n−1 · v−n−1 = v+
n−2e

−1
n

is e−1
n . Thus, we determine the order of v+

n−2e
−1
n and v±k z by comparing v+

n−2 with the
right-penultimate symbol of v±k z, starting from the edge-symbol that immediately follows
en clockwise in the circular list, which is again e−1

n . By assumption, the rightmost symbol
of v±i w is e−1

n−1. Hence sgnn−1(|w|) �= 0, so that when we consider v±i w written in its
n − 1-definite form, we have m ≥ 1. Moreover, in this case wm is empty. So according
to Lemma 11.3.2 (for σ−1

n−1), we have zm = e−1
n , and that the right-penultimate symbol

of v±k z is en−1 (= rightmost symbol of cm). This concludes the argument because v+
n−2

comes before en−1 starting from e−1
n .

11.4. Remark. Kassel [17] notes that Nielsen [25, 28] gives an action of Bn in the unit
circle that preserves circular order and has a fixed point. Furthermore, this action has
free elements. We have the following topos theory version of Nielsen’s result. Let Bn

denote the topos of (left) Bn-sets. Let A denote the topological group of order preserving
bijections of the rationals in (0, 1). It is well-known that the topos A of continuous
(left) A-sets classifies dense linear orders without endpoints [26]. Thus, corresponding
to the dense linear order that we have constructed in Bn there is a geometric morphism
Bn

�� A.

12. Linear orderings of Bn

A preorder is a reflexive and transitive relation. A partial order is a preorder that is also
anti-symmetric. If a preorder (A,≤) is equipped with an order-preserving (left) action by
a group G, then an element a ∈A induces a left-invariant preorder ≤a in G by:

g ≤a h if g · a ≤ h · a ,

for any g, h ∈G. Moreover, if (A,≤) is a partial order, then ≤a is anti-symmetric if and
only if a is free (meaning that the stabilizer of a is trivial). We shall also use the symbol
<, which means ≤ and not equal. For our purposes, we are only interested in total or
linear orders. Everything we have said about preorders and partial orders applies equally
well to linear preorders and orders.

Thus, we may produce left-invariant linear orderings of Bn by producing free elements
of the left Bn-set (x/π

r
1(S, n+ 1))�. We have the following.

12.1. Proposition. For any n, the isomorphism x ∼= x′ of πr
1(S, n+1) presented by the

word
dn = vne

−1
n−1en · · · e−1

2 e3e
−1
1 e2e1vn

is free under the action of Bn. (Note: we have ψn+1(x) = ψn+1(x
′) = vn.)

Proof. We sketch a topological argument. Suppose that β ∈Bn fixes dn. Then we may
find a path p in ỸY that represents dn (with ψn+1(p(0)) = ψn+1(p(1)) = vn), and a
homeomorphism h of SU representing β (that fixes an open neighbourhood of vn), such
that h pointwise fixes the path ψn+1 · p in SU . Now consider the components of the open
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set S − ψn+1 · p, of which there are just finitely many. Each marked-point except vn is
an interior point of some component, while some components may contain no marked
point. The components must be permuted under h; however, further straightforward
argumentation shows that this permutation must be the identity. In particular, h must
fix the points vi (hence, the permutation of β is the identity). To each component we may
now apply a classical result due to Alexander (called the Alexander trick - proof provided
in [15]): a homeomorphism of a closed disk that pointwise fixes the boundary is isotopic
to the identity under an isotopy that also pointwise fixes the boundary. Furthermore, if
the homeomorphism fixes an interior point, then the isotopy may be chosen to fix that
point. Note: we can find a closed disk C that contains vn as an interior point, that is
fixed by h, and which meets only those components of S−ψn+1 ·p whose closure contains
vn (there is at least one such component). We now just delete the interior of C, and apply
the Alexander trick (without interior point) to the components of S − ψn+1 · p that meet
C, using the boundary of C wherever necessary. The result is that we are able to build
an isotopy of h with the identity that fixes the interior of C. After all this, we finally
conclude that the h with which we began is isotopic to the identity, under an isotopy that
fixes an open neighbourhood of vn. Thus, β = id.

Let ≤dn denote the linear ordering induced in Bn by the free element dn.

12.2. Remark. By the results of Short and Wiest [27], it may be deduced through
the connection with their work explained in Remark 6.3 that (Bn,≤dn) is the Dehornoy
ordering. A more direct link with the Dehornoy ordering is explained in Remark 13.11.

12.3. Example. We calculate the order of the braid generators σ1, σ2, σ3 in (B4,≤d4),
where d4 = v4e

−1
3 e4e

−1
2 e3e

−1
1 e2e1v4. Direct calculation yields

σ1 · d4 = v4e
−1
3 e4e

−1
2 e3e

−1
2 e1e2e

−1
1 e2v4

σ2 · d4 = v4e
−1
3 e4e

−1
3 e2e

−1
1 e3e

−1
2 e3e1v4

σ3 · d4 = v4e3e
−1
2 e4e

−1
3 e4e

−1
1 e2e1v4 ,

so that id ≤d4 σ3 ≤d4 σ2 ≤d4 σ1.

13. Ordering B∞
Our methods extend naturally to the braid group B∞. This group is the group colimit of
the Bn organized by the natural inclusions Bn

�� Bm, n < m. B∞ is also isomorphic to
the quotient of the free group in countably many generators, given by the same relations
as in the finite case (but now there are countably many). A member of B∞ may be
thought of as a braid of countably many strands for which all but finitely many strands
are unbraided.

Consider a collection of countably many marked points vi on the sphere S that has
just one limit point vω. We suppose that these marked points lie on a closed line segment
with endpoints v0 and vω.

v0
e1 �� v1

e2 �� v2 · · · vn−1
en �� vn · · · vω
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Let U denote the open set S−{v0, . . . , vn, . . . , vω}. U is connected, locally path-connected
and locally simply connected with a universal covering space P : Y �� U . Consider the

pure, cosheaf space factorization of Y P �� U �� S.

U S�� ��

Y

U

P

����

Y Ỹ
η �� Ỹ

S

ψω+1

����

The open subset U �� S is pure, the square is a pullback, and ψω+1 is a ramified covering

space. As in the case of finitely many marked-points, Ỹ is connected, locally path-
connected, semi-locally simply connected, and simply connected.

An interesting feature of Ỹ is that no branching occurs at the points in the fiber of vω,
even though these points are members of the branch-point set Ỹ −Y . A precise expression
of this fact is as follows.

13.1. Proposition. If x ∈ Ỹ lies over vω, then x lies in the closure of exactly one leaf
of P . (Whereas a point over vi, i < ω, lies in the closures of countably many leaves of P .)

The objects of the groupoid πr
1(S, ω + 1) are the elements of Ỹ − Y as in the finite

case. Morphisms and composition in πr
1(S, ω + 1) are also defined as in the finite case.

Composition at points of the fiber ψ−1
ω+1(vω) is simpler than over a vi, i < ω, because there

can be no cycling around a point over vω. On SU , we compose two paths (that can be
composed) at vω by moving their end-points appropriately to the ‘right’ of vω.

Let F (X) denote the free group on a set X. Let E denote a set of countably many
‘edge’-symbols e1, e2, . . .. Fix a point x ∈ Ỹ − Y lying over vω. The paths in ỸY with
domain x and codomain in Ỹ − Y may be encoded as words

v±i wvω ; w ∈F (E) , i ∈ {0, 1, 2, . . . , ω} = ω + 1 , (7)

where we identify v+
0 ∼ v−0 and v+

ω ∼ v−ω . There are codomain winding relations for the
v±i , i < ω, so if w ∈F (E) is a reduced word, then v±i wvω may not be reduced. But there
are no codomain winding relations for vω, so a word vωwvω is reduced if w ∈F (E) is. We
have the following.

13.2. Proposition. The following collections are in bijective correspondence (in an ob-
vious way).

1. The fiber ψ−1
ω+1(vω) = {y ∈ Ỹ | ψω+1(y) = vω}.

2. For any x such that ψω+1(x) = vω, the subset of x/πr
1(S, ω + 1) consisting of those

isomorphisms whose codomain also lies over vω.

3. The collection of reduced words vωwvω.

4. F (E).
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If G is a group, let G� denote G−{id}. For instance, F (E)� consists of all non-empty
reduced words in E. The collection of reduced words (7) (except vωvω) may be linearly
ordered just as in the finite case. Hence, the subset of the collection (7) consisting of the
reduced words vωwvω (except vωvω) can also be linearly ordered. This subset corresponds
to F (E)�. We shall use the following terminology.

13.3. Definition. We shall refer to the ordering of F (E)� given by Definition 6.1 (ig-
noring the vertex-symbols and admitting countably many edge-symbols) as the hyperbolic
ordering of F (E)�.

13.4. Remark. We can work without the vertex-symbols v±i , but we cannot ignore the
vertex-symbol vω in Definition 13.3. For instance, if we wish to compare e2e3 and e3, we
compare e2 with vω starting from the edge that is clockwise adjacent to e−1

3 , which is e−1
2 .

Then e2e3 ≤ e3 since e2 occurs before vω clockwise from e−1
2 . If the largest common right

subword of two words is empty, then we start from vω. (In the finite case we start from
the ‘least’ edge e−1

n .) How to compare the empty word with another one is not defined
because in this case we must compare an e±1

i with vω starting from vω; however, vω is
neither the top nor the bottom of the order.

13.5. Proposition. The hyperbolic ordering of F (E)� is a dense linear ordering (with-
out endpoints).

13.6. Remark. The hyperbolic ordering of F (E)� is neither invariant under left multi-
plication nor under right multiplication. For instance, we have e1 ≤ e3, but e3e

−1
2 ≤ e1e

−1
2 .

If we multiply e1 ≤ e3 on the left by e1e
−1
3 , then we have e1 ≤ e1e

−1
3 e1. Thus, the hyper-

bolic ordering is not a group ordering in the usual sense. (In anycase, the identity is left
out of the ordering.) But the hyperbolic ordering does satisfy property (3), which in the
present context reads as follows:

∀w, z ∈F (E)�, w < z ⇒ zw−1 < w−1 . (8)

For instance, we have e3e
−1
2 < e−1

4 e−1
2 . Then e−1

4 e−1
3 < e2e

−1
3 as predicted by (8).

A member of B∞ may be regarded as a homeomorphism class β = [h] of SU , where
U = S−{v0, . . . , vn, . . . , vω}, such that the homeomorphism h fixes an open neighbourhood
of vω. If x lies over vω, then we may lift such a homemorphism to a homeomorphism of
ỸY that fixes x. In this way we obtain an action of B∞ in πr

1(S, ω + 1) such that every
braid fixes the chosen x. Then we may pass to an action of B∞ in (x/πr

1(S, ω + 1))�.
(Unlike the finite case, by Proposition 13.1 we do not need to choose a leaf of x to define
the action because x has just one leaf.) This action is presented by (4) and (5) just as in
the finite case.

The action of B∞ in (x/πr
1(S, ω + 1))� is order-preserving. Moreover we may restrict

the action to those isomorphisms whose codomain also lies over vω, which we have encoded
as precisely the members of F (E)�. We have the following.
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13.7. Proposition. The following action of B∞ in F (E) (as in (4)) preserves the hy-
perbolic ordering of F (E)�.

σi · ei = ei−1e
−1
i ei+1

(σ1 · e1 = e−1
1 e2)

σi · ej = ej ; j �= i

 i = 1, 2, . . . . (9)

For any n, the only member of the subgroup Bn
�� B∞ that stabilizes the word

dn = e−1
n−1en · · · e−1

2 e3e
−1
1 e2e1

is the identity braid. (We shall say that dn is n-free.) Thus, the linear preorder ≤dn that dn
induces in B∞ is a linear order in Bn (meaning anti-symmetric). The natural inclusions
Bn

�� Bm are compatible with the linear orderings induced by dn and dm, so that all the
dn taken together induce a linear order ≤d of B∞: define id ≤d β if for some N for which
β ∈BN , we have id ≤dN

β in BN .

Let V denote a set of countably many ‘vertex’-symbols v0, v1, . . .. The classical Artin
action of B∞ in F (V ) is given by:

σi · vi−1 = vi
σi · vi = v−1

i vi−1vi

}
i = 1, 2, . . . . (10)

Of course, the map vi �→ ei+1 provides a group isomorphism of F (V ) with F (E), but we
wish to know how F (V ) and F (E) are related as B∞-sets. Proposition 13.8 has been
observed by Larue [19].

13.8. Proposition. (Larue) The group homomorphism a : F (V ) �� F (E) given by
a(v0) = e1 and a(vi) = e−1

i ei+1, i = 1, 2, . . ., is an isomorphism of B∞-sets. (The inverse
of a is given by a−1(ei) = v0v1 · · · vi−1.)

By Proposition 13.8, we may rephrase Proposition 13.7 as follows.

13.9. Corollary. F (V )� may be given the structure of a dense linear order such that
the Artin representation (10) is an order-preserving action. In this ordering (which is not
a group ordering) we have v−1

i < vi < v−1
i+1. For any n, the word vn−1 · · · v1v0 is n-free, so

that the linear preorder it induces in B∞ is a linear ordering of the subgroup Bn. All the
words vn−1 · · · v1v0 taken together induce a linear order in B∞ as explained in Proposition
13.7.

Proof. The ordering of F (V )� is given by w ≤ w′ just when a(w) ≤ a(w′) in the
hyperbolic ordering of F (E)�. For instance, we have vi < v−1

i+1 because e
−1
i ei+1 < e−1

i+2ei+1.
To see this we must first determine the starting symbol: it is the symbol clockwise adjacent
to e−1

i+1, which is e−1
i . But then e−1

i occurs before e−1
i+2 (clockwise) starting from e−1

i . The
word vn−1 · · · v1v0 = a−1(dn) is n-free by Proposition 12.1.
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13.10. Remark. It ought to be possible to explicitly describe the ordering in F (V )�

given by Corollary 13.9. We leave this as an exercise.

13.11. Remark. Dehornoy [9] has provided an analysis of his ordering in terms of the
Artin action of a braid group in a free group. Using Corollary 13.9 as a link to Dehornoy’s
analysis should provide another way to show the the ordering ≤dn in Bn coincides with
Dehornoy’s. We shall not carry out the details of this.

The action (9) of B∞ in F (E) has no free elements. We can obtain free elements by
admitting (reduced) infinite words

w = · · · eν3i3 eν2i2 eν1i1 ; νj ∈ {−1, 1} , ij ∈ {1, 2, . . .} . (11)

Let ̂F (E) denote the collection of infinite reduced words. By convention, ̂F (E) includes
all finite words as well. Geometrically, such an infinite word w can be thought of as an
‘open-ended’ path

p : [0, 1)(0,1) �� ỸY ,

where ψω+1(p(0)) = vω.

13.12. Remark. If ψω+1(x) = vω, then there are two ‘spiral’ maps (clockwise and
counter-clockwise):

x/πr
1(S, ω + 1) �� ̂F (E) .

For instance, the counter-clockwise spiral map is given by

v+
i wvω �→ · · · ei+1e

−1
i ei+1w

v−i wvω �→ · · · e−1
i ei+1e

−1
i w

}
i < ω ,

vωwvω �→ w (these are the finite words).

On the sphere, all three paths above begin at vω, but whereas the first two appear to
spiral into vi, the third one makes finitely many loops around the marked-points and then
returns to vω.

Consider the infinite word

d = · · · e−1
2 e3e

−1
1 e2e1 = a(· · · v2v1v0) .

On SU we think of d as a presentation of a ‘wild’ path pd that begins and ends at vω,
and loops once around every vi in a loop whose diameter converges to 0. Such a path
pd : [0, 1] �� SU may be lifted (uniquely) to an open-ended one

pd : [0, 1)(0,1) �� ỸY ,

provided that pd(0) is given lying over vω. However, it is not possible to continuously
define pd(1) such that ψω+1(pd(1)) = vω.

The hyperbolic ordering of F (E)� may be extended to the collection ̂F (E)� of non-
empty infinite words (11). Likewise, the action (9) of B∞ in F (E)� may be extended tôF (E)�. Although we cannot necessarily calculate this action effectively, we can effectively
compare d and β · d because d has the property that for any braid β ∈B∞, β · d differs
from d only by an effectively computable finite right subword. We have the following.
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13.13. Proposition. The infinite word d is free for the action of B∞ in ̂F (E)�. The
linear order it induces in B∞ is precisely the one ≤d obtained in Proposition 13.7. It is
the Dehornoy ordering of B∞.
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