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HOW ALGEBRAIC IS ALGEBRA?

J. ADÁMEK∗, F.W. LAWVERE AND J. ROSICKÝ∗

ABSTRACT. The 2-category VAR of finitary varieties is not varietal over CAT . We
introduce the concept of an algebraically exact category and prove that the 2-category
ALG of all algebraically exact categories is an equational hull of VAR w.r.t. all op-
erations with rank. Every algebraically exact category K is complete, exact, and has
filtered colimits which (a) commute with finite limits and (b) distribute over products;
besides (c) regular epimorphisms in K are product-stable. It is not known whether (a)
– (c) characterize algebraic exactness. An equational hull of VAR w.r.t. all operations
is also discussed.

1. Introduction

1.1. Is algebra algebraic?. The purpose of our paper is to study the non-full em-
bedding

U : VAR → CAT

of the 2-category of all finitary varieties into the 2-quasicategory of all categories. The
morphisms (1-cells) of the former are indicated by the duality between varieties and alge-
braic theories introduced in [ALR1]: they are the algebraically exact functors, i.e., finitary
right adjoints preserving regular epimorphisms. And 2-cells are the natural transforma-
tions, of course. Is U monadic in some reasonable 2-categorical sense? (This is the precise
meaning of the question in the subtitle.) The answer is negative, and we shortly explain
it below.

Well, since algebra is not algebraic, what is an “algebraic hull” of algebra? To under-
stand the question, let us use analogy with classical universal algebra: given a class C of
algebras, considered as a concrete category w.r.t. the usual forgetful functor U : C → Set ,
we can form the equational theory of C whose k-ary operations are the natural transforma-
tions Uk → U , and whose clone is obtained by composition of n-tuples of k-ary operations
(i.e., natural transformations from Uk to Un). Here the arity k is a (usually finite) set.
Now, for VAR, the arities k will be (usually small) categories, and a k-ary operation will
be a natural transformation from Uk to U – no!, this is too strict. We will have to work
with pseudonatural transformations from Uk to U . Example: for any small category k
an operation “limits of type k” is a pseudonatural transformation from Uk to U , since
(a) every variety has limits of type k and (b) every algebraically exact functor preserves
them (non-strictly, of course). Analogously, for every small filtered category k we have
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an operation on VAR “filtered colimits of type k”. And one important operation (of arity
• −→←−

−→
•) is “reflexive coequalizers”. In fact, we will see that all ranked operations are

obtained by combining the three types just mentioned.

But let us come back to the negative answer to the question in the subtitle: U :
VAR → CAT is not 2-monadic nor pseudomonadic. The argument (quite analogous
to that for the 2-category of locally finitely presentable categories in place of VAR, see
[ALR2]), is that if we take the “posetal shadow” of U , we get the forgetful functor from
the category ALat of algebraic lattices (= those posets which are equivalent to a variety)
to the category Pos of all posets. Here morphisms of ALat are maps preserving meets
and directed joins, and morphisms of Pos are order-preserving maps, of course. The
forgetful functor ALat → Pos is not varietal; in fact, the varietal hull of ALat is formed
by the category CLat of continuous lattices of D. Scott. Now take a continuous lattice
L which is not algebraic. Express L as the split coequalizer of free continuous (= free
algebraic) lattices in the standard way. This gives a split coequalizer in CAT which our
forgetful functor U : VAR → CAT fails to create. Thus, U is not pseudomonadic, see
[LV].

1.2. An equational hull of VAR. The aim of our paper is to describe an equational
hull of the category VAR of varieties over CAT . Here we refer to equations between k-ary
operations, where k is a category and a k-ary operation ω assigns to every variety V an
operation functor ωV : Vk → V in such a way that morphisms of VAR preserve ω; more
precisely: that ω becomes a pseudonatural transformation from Uk : VAR → CAT into U .
An equational hull is, roughly speaking, the smallest equationally defined quasicategory
K containing VAR; or, a largest extension K of VAR such that every operation on VAR
extends to K and all equations valid in VAR are also valid in K. Formally, K is described
as the quasicategory of algebras of a pseudomonad D∗ on CAT which we describe in the
last section of our paper.

The disadvantage of the pseudomonad D∗ is that, so far, we have not been able to
describe the category of its algebras. The same is, unfortunately, true concerning the
small-core D∗

small of that pseudomonad which we obtain by restricting ourselves to all k-
ary operations on VAR where the arity k is a small category. We therefore make a further
restriction: to operations with rank. That is, we discuss k-ary operations ω, k small,
for which there exists a cardinal λ such that each of the operation functors ωV preserves
λ-filtered colimits. (Examples: “limits of type k” is an operation with rank.) We obtain
a rank-core pseudomonad D∗

rank of D∗ whose quasicategory of algebras is an equational
hull of VAR w.r.t. all operations with rank. We also present another construction of
D∗

rank which does not start with D∗. And we are able to identify D∗
rank-algebras as a

subquasicategory of CAT consisting of so-called algebraically exact categories. That is,
we introduce the 2-quasicategory

ALG

of algebraically exact categories, algebraically exact functors, and natural transformations,
and we prove that ALG is an equational hull of VAR w.r.t. all operations with rank.
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1.3. What are algebraically exact categories?. For the theory of varieties
there is a concept of central importance generalizing filtered colimits:

sifted colimits.

A small category D is called sifted if D-colimits commute in Set with finite products.
And colimits of such types D are then called sifted colimits . Besides filtered colimits,
also reflexive coequalizers are sifted. And morphisms of VAR are precisely the functors
preserving limits and sifted colimits (see [ALR1]); in general, functors (in CAT ) with the
last property will be called algebraically exact.

We have introduced in [AR1] a free completion under sifted colimits, denoted by Sind
(to remind of Grothendieck’s free completion Ind under filtered colimits). This completion
forms a pseudomonad Sind on CAT . Also a free limit completion forms a pseudomonad
on CAT which we denote by Lim . And we prove below that Sind distributes over Lim
(in the sense of Beck’s distributive laws); thus, we obtain a composite pseudomonad

Sind ◦Lim

on CAT . The main result of our paper is that the quasicategory of all algebras of this
pseudomonad is an equational hull of VAR w.r.t. ranked operations. It is easy to identify
these algebras with categories K which

(a) have limits and sifted colimits

and

(b) sifted colimits distribute over limits in the sense that the functor

Colim : Sind K → K

(of computation of sifted colimits in K) preserves limits.

Categories satisfying (a) and (b) are called algebraically exact. All varieties are, of course,
algebraically exact, but also all essential localizations of varieties are. Recall here the
classical result of Roos [R] characterizing all essential localizations of varieties of modules:
they are complete abelian categories K with a generator such that

(1) filtered colimits commute with finite limits;

(2) filtered colimits distribute over products, i.e., given filtered diagrams Di : Di → K
(i ∈ I), then for the filtered diagram D : ΠD → K, defined by

D(xi) = ΠDxi

we have a canonical isomorphism

colimD ∼= Π
i∈I

(colimDi)
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and

(3) regular epimorphisms are product-stable.

All algebraically exact categories are proved below to fulfil (1) – (3).

Open problem Is every complete category with sifted colimits satisfying (1) – (3) alge-
braically exact ?

1.4. A comparison to the case LFP. In [ALR2] we have studied the analogous
question for the non-full embedding U : LFP → CAT . Here LFP is the Gabriel-Ulmer
2-category of all locally finitely presentable categories, all finitary right adjoints, and all
natural transformations. The functor U is not (pseudo-)monadic. An equational hull of
LFP has been described in [ALR2]. Let us shortly recall the result here. Free completions
under filtered colimits form a pseudomonad Ind on CAT which distributes over Lim and
thus yields a composite pseudomonad Ind ◦Lim . Algebras of that pseudomonad form an
equational hull of LFP w.r.t. ranked operations. These algebras are called precontinuous
categories and they are precisely the categories K such that

(i) K has limits and filtered colimits

and

(ii) filtered colimits distribute over limits in the sense that the functor Colim : IndK →
K preserves limits.

Recall that K is continuous (in the sense of [JJ]) if Colim has a left adjoint. An important
tool for this result was a description of a “free LFP category” on a given small category
k : it is

Lex (Set k) ,

the category of all accessible functors from Set k to Set preserving finite limits. We have
shown in [ALR2] that ranked k-ary operations on LFP are essentially encoded by objects
of Lex (Set k). This has raised the following question: are there, for k small, functors
preserving finite limits from Set k to Set which are not accessible? More precisely, is the
following statement

(∗) every functor Set k → Set , k small, preserving finite limits is accessible
consistent with set theory ? This has been answered affirmatively in [AK]. Thus, instead
of “ranked operations” we may say “operations of small arity” — well, in some set theory
at least.

Now below we make a similar identification by constructing a “free variety” on a small
category k : it is

Mod (Set k) ,

the category of all accessible functors from Set k to Set preserving finite products. Here
the analogous problem arises which has not been solved so far:

Open problem Is the following statement
(∗∗) every functor Set k → Set , k small, preserving finite products is accessible con-

sistent with set theory ?
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1.5. Set-theoretical foundations. In the present paper we are not concerned with
set theory beyond the open problem above, but here we want to make clear what (very
meager) requirements are needed below. A chosen universe of small sets is assumed
satisfying the Axiom of Choice (AC). In a higher universe categories (not assumed locally
small in general) live. And when “categories” outside of this universe are considered,
they are called quasicategories; example : CAT . Analogously with 2-categories and 2-
quasicategories. But where a 2-quasicategory is biequivalent to a 2-category (such as
LFP, due to Gabriel-Ulmer duality, or VAR, due to the duality of [ALR1]), we call them
2-categories. And we assume that every category is an ∞-filtered union of its small
subcategories (i.e., a large union which is λ-filtered for every cardinal λ). All limits and
colimits are meant to be small (unless explicitly stated large).

It is an open problem to what extent our results apply without the assumption of AC;
or even over an arbitrary base topos.

2. Operations on VAR

2.1. In the present section we introduce operations on the 2-category VAR of varieties,
and give some examples of operations and equations among them. In the subsequent
sections we will show that the operations introduced here generate all ranked operations
on VAR and lead to a description of the equational hull of VAR w.r.t. ranked operations.

Recall from [Law1] the concept of a k-ary operation on a concrete category, i.e. cat-
egory K equipped by a faithful functor U : K → Set : a k-ary operation ω is a natural
transformation ω : Uk → U , i.e., to every object K of K an operation-map ωK of ar-
ity k on the underlying set UK is assigned in such a way that all mappings Uf , where
f : K → L is a morphism of K, preserve the operation maps in the expected sense:
Uf · ωK = ωL · (Uf)k. Observe that k can, in general, by any set, but we often want to
restrict ourselves to k finite.

By analogy, we might at first want to introduce k-ary operations ω on VAR as natural
transformations from Uk to U , where

U : VAR → CAT

is the (non-full) inclusion functor; here k is an arbitrary category. Such ω would assign to
every variety V an “operation” functor ωV : Vk → V in such a way that every algebraically
exact functor F : V → W preserves the operation functor in the strict sense, i.e., F ·ωV =
ωW ·F k. However, this is too strict. We have, for example, an important k-ary operation
“limits of type k” for any small category k : the operation functor ωV : Vk → V assigns to
every diagram of type k in V a limit in V . Since algebraically exact functors F : V → W
preserve limits, we have a natural isomorphism F ·ωV ∼= ωW ·F k, but not an equality. We
thus have to work with pseudonatural transformations:

2.2. Definition. For every category k the pseudonatural transformations from Uk to U
are called k-ary operations on VAR.
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remark. Explicitly, a k-ary operation ω assigns

(i) to every variety V an “operation” functor

ωV : Vk −→ V
and

(ii) to every algebraically exact functor F : V → W a natural isomorphism ω̂F :

Vk
ω̂F⇒Fk

��

ωV �� V
F

��
Wk

ωW
�� W

such that the expected coherence conditions are satisfied: (a) ω̂id = id and (b) if F =
F2 · F1 then ω̂F = (F2 ∗ ω̂F1) · (ω̂F2 ∗ F k1 ).
2.3. Examples. of operations on VAR.

(a) Limit operations. For every small category k we have a k-ary operation

k- lim (1)

of formation of limits of type k in varieties: to every variety V this assigns a functor

ωV : Vk −→ V

choosing, for every diagram D : k → V , a limit ωV(D) in V . To every algebraically exact
functor F : V → W (which, being a right adjoint, preserves limits) it assigns the natural
isomorphism

ω̂F : ωW · F k → F · ωV
defined as expected: given a diagram D : k → V , we have two limits of FD in W ,
viz, ωW(FD) and F (ωWD), and the connecting isomorphism of these two limits is the
D-component of ω̂F

In case k is discrete, we use the notation

Π
k

(2)

instead of k-lim (for the operation of k-ary products).
(b) Filtered-Colimit Operations. For every small filtered category f we have an

f -ary operation
f -colim

→
(3)

of formation of filtered colimits of type f in varieties: to every variety V it assigns a
functor ωV choosing colimits of diagrams of type f in V . Since algebraically exact functors
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F : V → W preserve filtered colimits, ω̂F is defined as above: the D-component is the
connecting isomorphism of the colimits

ωW(FD) and F (ωVD) of the diagram FD in W .

(c) The Reflexive-Coequalizer Operation. This is one operation of arity r, the
finite category given by the following graph

ϕ1 ��

1 • • 2
ψ��

ϕ2

��

and the commutativity conditions

ϕ1ψ = id = ϕ2ψ .

We denote by
r-coeq (4)

the operation ω whose operation functors are

ωV : Vr → V , D �−→ coeq(Dϕ1, Dϕ2) (for D : r → V) .

Then for every algebraically exact functor F : V → W (which preserves reflexive co-
equalizers, see [ALR2]) we have the natural isomorphism ω̂F : ωW · F k → F · ωV whose
D-component is the following isomorphism:

coeq(FDϕ1, FDϕ2) = ωW(FD)

∼=

��

FDϕ1 ��

FDϕ2

��

�����������

���
��

��
��

��

F (coeq(Dϕ1, Dϕ2)) = F (ωWD)

2.4. Remark. As mentioned above, in set-based (universal) algebra we can work with
k-ary operations for any set k, but in a number of situations we want to restrict ourselves
to k finite.

Analogously, we can (and will, in Section 6 below) work with k-ary operations for
any category k. However, as already mentioned in the introduction, we have not been
able to describe the corresponding category of algebras over CAT . We therefore restrict
ourselves here to operations which (a) have small arities k and (b) the operation functors
ωV : Vk → V are accessible in a coherent sense, i.e., the accessibility rank is the same for
all varieties V . Than we say that ω has a rank:
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Definition. An operation ω on VAR is called ranked provided that its arity k is small
and there exists an infinite regular cardinal λ such that ωV : Vk → V preserves λ-filtered
colimits for every variety V. (We call λ a rank of ω.)

Examples. (a) The operation k-lim is ranked: any infinite regular cardinal λ such that
k has less than λ morphism is a rank of k-lim. In fact, k-limits commute with λ-filtered
colimits in Set . Therefore, they commute in each variety V (in fact, in every locally
finitely presentable category), i.e., the k-limit functor ωV : Vk → V preserve λ-filtered
colimits.

(b) The operations k-colim
→

and r-coeq have rank ω since colimits commute with col-

imits.

Remark. As stated in the Introduction (1.4) we do not know at this moment whether
it is consistent with set theory to assume that every operation of small arity on VAR
is ranked. Let us remark that, however, this statement is not true absolutely: in any
theory such that Set contains a proper class of measurable cardinals J. Reiterman has
constructed in [Re] a functor F : Set → Set which is not accessible but preserves finite
limits. This functor defines a non-ranked unary operation ω on VAR as follows:

Given a variety V = Mod T (where T is an algebraic theory for V) let ωV : V → V be
the functor which precomposes every model M : T → Set with F , i.e., ωV :M �−→MF .
Since F preserves finite products, MF is a model, and it is easy to see that ωV is indeed
an operation of arity 1 on VAR. It is not ranked because ωSet is not accessible.

2.5. Composed operations. Besides operations as described above we want to work
with composed operations, e.g., a limit of filtered colimits. Recall that in the classi-
cal case mentioned above the discovery of [Law1] was that one can work with natural
transformations

Uk → Un

(which, since Un = U × U × · · · × U , are just n-tuples of k-ary operations). This makes
the task of composing operations very easy: they were just composites of natural trans-
formations between powers of U .

Analogously in our case of U : VAR → CAT : we work with n-tuples of k-ary opera-
tions (where n and k are categories), which are pseudonatural transformations

ω : Uk → Un

2.6. Examples. (a) Morphisms of operations. Let n =→ (the chain of length 1).
A pseudonatural transformation

ω : Uk → U→

consists of two k-ary operations
ω1, ω2 : Uk → U

obtained by composing ω with the obvious natural transformation Ud, U c : U→ → U .
(Here d, c : 1 → (→) are the domain and codomain functors, respectively.) Plus a
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modification
ω1 ⇒ ω2

which is formed by the values of ωV : Vk → V→ at the unique nonidentity arrow of
→. Thus, the pseudonatural transformation ω is what we will call a morphism of k-ary
operations from ω1 to ω2. Notation: ω : ω1 ⇒ ω2. The constant functor t : (→) → 1 gives

identity morphisms Uk → U
Ut

−→ U→.

(b) Composing morphisms. Let n =→→ (the chain of length 2). A pseudonatural
transformation

ω : Uk −→ U→→

consists of three k-ary operations ω1, ω2, ω3 : Uk → U (obtained by composing ω with the
three canonical projections U→→ → U) together with three modifications u : ω1 ⇒ ω2,
v : ω2 ⇒ ω3 and w = vu : ω1 ⇒ ω3 corresponding to the three non-identity morphisms
of →→. Thus, the pseudonatural transformation ω is what we will call a composite w of
morphisms u and v of k-ary operations.

(c) Kernel pair is an example of an r-tuple of operations of arity →, where r denotes
the category of 2.3 (c). More precisely, we have a pseudonatural transformation

ker : U→ → U r

whose components ker V : V→ → Vr assign to every morphism of V a kernel pair. Given
an algebraically exact functor F : V → W then F preserves (limits thus) kernel pairs

which yields a unique invertible 2-cell k̂erF : F
r · kerv → kerw · F→.

(d) Trivial operations. As in any category of “two-dimensional” algebras, we have
a trivial n-tuple of k-ary operations associated with an arbitrary functor H : n → k: to
every variety V assign the functor VH : Vk → Vn of precomposition with H.

2.7. Equations. between k-ary operations on VAR. We want to investigate an equa-
tional hull of VAR. What do we understand as equation ω ≈ ω′ (for operations ω, ω′ :
Uk → U) ? Certainly not the strict equality: ωV = ω′

V for all varieties V . We of course

mean the non-strict variant of natural isomorphisms ωV
∼=−→ ω′

W satisfying the appropri-
ate coherence conditions. Our concept of morphism and composition above makes this
quite formal as follows:

2.8. Definition. By an equation between k-ary operations on VAR is meant an invert-
ible morphism ω1 ⇒ ω2.

2.9. Examples of equations. (1) Filtered colimits commute with finite limits. This
is a property that all varieties have. The commutation of f -colim

→
(f small, filtered) with

k-lim (k finite) can be expressed by an equation as follows: we can form an operation of
arity f × k by composing the k-tuple

(f -colim
→

)k : (Vf )k → Vk
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with k-lim. And another operation of the same arity f × k by composing the f -tuple

(k- lim)f : (Vk)f → Vf

with f -lim. The fact that f -colimits commute with k-limits is expressed by the following
equation

(k- lim) · (f -colim
→

)k ≈ (f -colim
→

) · (k- lim)f (f filtered, k finite) (E1)

since the required naturality conditions are easy to verify.
(2) Filtered colimits distribute over (infinite) products. This, less famous, property

of all varieties (in fact, of all locally finitely presentable categories) has been observed
already in [AGV]: given a set Di : fi → K (i ∈ k) of filtered diagrams in K, denote by
D : Π

i∈k
fi → K the diagram obtained by forming products in K:

(di)i∈k �−→ Ddi .

then the canonical morphism colimD → Π
i∈k

colimDi is invertible.

To express this as an equation, denote by f the product of the categories fi (for i ∈ k)
and by g their coproduct; observe that f is filtered (due to the Axiom of Choice).

The passage from (Di)i∈k to Π colimDi is the composite of the product operation
Π
k

: Vk → V (k considered as a discrete category) with the product of the operations

fi-colim:

Vg ∼= Π
i∈k
Vfi

Π(fi-colim→ )

−−−−−−→ Vk
Π
k−→ V

And the passage to colimD is expressed by using the trivial operations oi : Vfi → Vf
corresponding to the i-th projection of f , and composing them with f -colim

→
: Vf → V :

Vg ∼= Π
i∈k
Vfi

(oi)i∈k−−−→ Vf
f-colim→−−−−→ V

This gives an equation expressing distributivity of filtered colimits over products as follows

Π
k
· Π
i∈k

(fi-colim→
) ≈ ( Π

i∈k
fi-colim→

) · (oi)i∈k (k a set, fi filtered for i ∈ k) . (E2)

Again, the naturality conditions for the above canonical morphisms are easy to verify.
(3) Regular epimorphisms are product-stable. That is, given regular epimorphisms

ei : Ai → Bi (i ∈ k, k a set) in a variety, the product morphism

Π
i∈k
ei : Π

i∈k
Ai → Π

i∈k
Bi
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is a regular epimorphism. The reason why this holds in every variety is that products
commute with coequalizers of equivalence relations: form a kernel pair Ei ⇒ Ai of ei,
then a product ΠEi ⇒ ΠAi yields a kernel pair of Π

i∈k
ei whose coequalizer is Π

i∈k
ei.

To express this as an equation, combine the above operations Π
k

: Uk → U , coeq :

U r → U and ker : U→ → U r as follows: we first multiply ei, then form kernel pair and
finally a coequalizer:

(Uk)→
(Π

k
)→

−→ U→ ker−→ U r
coeq−→ U .

This is an operation of arity (→)×k on VAR. Or we first form kernel pairs, then multiply
and then form a coequalizer:

(U→)k
kerk

−−−→ (U r)k ∼= (Uk)r
(Π

k
)r

−−→ U r
coeq−−−→ U .

Thus, product-stability of regular epimorphisms is expressed by the following equation

coeq · ker · (Π
k
)→ ≈ coeq · (Π

k
)r · kerk (k a set) . (E3)

(4) There is a collection (E4) of equations which stem from the general fact that limits
commute with limits, and colimits commute with colimits.

Remark. We will later see our reasons for believing it possible that

(1) there are no other ranked operations on VAR than those obtained by composing
the three types above: k-lim, f -colim

→
and coeq,

and

(2) there are no other equations between ranked operations on VAR than those which
follow from (E1) – (E4).

We will see that the process of composition of the three types of operations has a par-
ticularly simple structure due to the fact, proved below, that both filtered colimits and
reflexive coequalizers distribute over limits in varieties.

3. Limits and Sifted colimits

In the present section we consider two pseudomonads on CAT : Lim , the pseudomonad
of free limit-completions of categories, and Sind , the pseudomonad of free completions
under sifted colimits. The first one is well-known and the second one is closely related to
Grothendieck’s free completion Ind under filtered colimits. The main result is that

Sind distributes over Lim ,

which implies, as proved in [M3], that the composite Sind ◦Lim obtains a structure of
a pseudomonad on CAT . In subsequent sections we show that algebras of that pseu-
domonad form an equational hull of VAR with respect to ranked operations.
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3.1. Pseudomonads and Algebras. (1) Recall the concept of a pseudomonad on a
2-category K, as introduced by B. Day and R. Street [DS]; we use the notation of F.
Marmolejo [M2]. A pseudomonad D = (D, d,m, η, β, µ) consists of a bifunctor

D : K → K

with 1-cells
d : idK → D and m : D ·D → D

together with invertible 2-cells

D
dD ��

IdD

���
��

��
��

��
��

��
��

��
DD

⇐
β m

��

D

⇐
η

Dd��

IdD

����
��

��
��

��
��

��
��

�

D

DDD

⇐
η

Dm ��

mD

��

DD

m

��
DD m

�� D ,

such that the following two equalities are satisfied:

DDDD

Dµ⇐

µD⇐

mDD

��

DmD

���
��

��
��

�
DDm �� DDD

Dm

		��������

DDD

µ⇐

Dm
��

mD

��

DD =

m

��

DDD

mD ���
��

��
��

�

DD m
�� D

DDDD

m−1
m⇐mDD

��

DDm �� DDD

µ⇐

mD

��

Dm



���������

DD

m

��

DDD
µ⇐

Dm
��

mD ������������ DD
m



���������

DD m
�� D ,

DD

µ ⇓

m

										

DD
DdD �� DDD

Dm
��










mD 

��������� D

DD

m



��������

DDD

Dβ ⇓ Dm



���������

= DD

DdD
������������

DdD ������������
�� DD

m �� D .

DDD

ηD ⇓
mD

��










(2) Recall further the concept of an algebra for a pseudomonad D : it is a quadruple

(X, x, ψ, χ)

consisting of
an object (0-cell) X,
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a morphism (1-cell) x : DX → X

and

invertible 2-cells

X
dX ��

IdX

���
��

��
��

��
��

��
��

��
DX

ψ⇐
x

��
X

DDX

χ⇐

Dx ��

mX

��

DX

x

��
DX x

�� X ,

This data must satisfy the following two equations

DDDX

Dχ⇐

µX⇐

mDX

��

DmX

��













DDx �� DDX
Dx

		��
��

��
��

�

DDX

χ⇐

Dx
��

mX

��

DX =

x

��

DDX

mX ��













DX x
�� X

DDDX

m−1
x⇐mDX

��

DDx �� DDX

χ⇐

mX

��

Dx



���������

DX

x

��

DDX
χ⇐

Dx
��

mX ������������ DX
x



���������

DX x
�� X ,

DX

χ ⇓

x

										

DX
DdX �� DDX

Dx
��










mX 

��������� X

DX

x



��������

DDX

Dψ ⇓ Dx



���������

= DX

DdX
������������

DdX ������������
�� DX

x �� X .

DDX

ηX ⇓
mX

��










We denote by

KD

the 2-category of D-algebras. Its 1-cells, called homomorphisms , from (X, x, ψ, χ) to
(Z, z, ξ, θ) are pairs (h, +) where

h : X → Z

is a 1-cell of K and
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DX

ρ⇐

Dh ��

x

��

DZ

x

��
X

h
�� Z

is an invertible 2-cell, such that the following two equations are satisfied.

X
dX ��

IdX ����
��

��
��

DX
ρ⇐x

ψ⇐
��

Dh �� DZ

z

��

DX
Dh

		��������

X
h

�� Z = X
dh ⇓

dX
����������

h ����
��

��
��

DZ
z

ζ ⇓ ��













Z
IdZ

��

dZ


���������

Z

DDX

χ⇐

mX

����
��

��
�

Dx

���
��

��
��

DDh �� DDZ

Dρ⇐
Dz

���
��

��
��

DDX

m−1
h⇐

mX

����
��

��
�

DDh �� DDZ

θ⇐

mZ

����
��

��
�

Dz

���
��

��
��

DX

x
���

��
��

��
DX

x
����

��
��

�

Dh �� DZ
ρ⇐ z

����
��

��
�

= DX
ρ⇐x

���
��

��
�� Dh

�� DZ

z
���

��
��

��
DZ

z
����

��
��

�

X
h

�� Z X
h

�� Z .

The 2-cells of KD are defined as follows:
Given homomorphisms (h, ρ), (h′, ρ′) : (X, x, ψ, χ) −→ (Z, z, ζ, θ), a 2-cell

ξ : (h, ρ) −→ (h′, ρ′)

is a 2-cell ξ : h −→ h′ of K such that (ξ ◦ x) · ρ = ρ′ · (z ◦Dξ). Vertical composition is the
obvious one.

Horizontal composition: for (h, ρ) : (ψ, χ) −→ (ζ, θ) and (k, π) : (ζ, θ) −→ (τ, σ) we
define (k, π) ◦ (h, ρ) = (k ◦ h, (k ◦ ρ) · (π ◦Dh)).
3.2. Example: Free limit completion Lim . This is a well-known pseudomonad on
CAT of freely completing categories under limits. In fact, A. Kock has described it as a
strict 2-monad in [K]. Recall that for small categories we have

Lim K = (Set K)op.

The pseudomonad Lim is a co-KZ-doctrine (see [K], [M1]), i.e.

µLim
K � Lim ηLim

K (5)

for every category K.
If K is locally small then Lim K is well-known to be equivalent to the closure of

representable functors in (Set K)op under limits.
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3.3. Sifted colimits play a very analogous role in the theory of varieties to the role of
filtered colimits in the theory of locally finitely presentable categories, see [ALR1].

The following has been introduced by C. Lair [L] under the name tamisante:

Definition. A small category D is called sifted if D-colimits commute in Set with finite
products.

Colimits of diagrams with sifted domains are called sifted colimits .

3.4. Example. (1) Filtered categories are sifted.
(2) The category r of 2.3 (c) is sifted – that is, reflexive coequalizers are sifted colimits.
(3) Every small category with finite coproducts is sifted, see [AR1].

3.5. Lemma. (see [ALR1]) A functor between varieties is algebraically exact iff it pre-
serves limits and sifted colimits.

Remark. For categories other than varieties we extend the terminology and call a functor
algebraically exact if it preserves limits and sifted colimits. Observe that due to 3.4 (2)
every algebraically exact functor is exact.

3.6. Example. of an operation on VAR: for every small sifted category s we can form
the operation

s-colim

of colimits of type s, analogously to 2.3 (b) above (and generalizing 2.3 (c), of course).

3.7. Example: Free completion Sind under sifted colimits. This is a pseu-
domonad on CAT quite analogous to Grothendieck’s free completion IndK under filtered
colimits. The latter can be identified, for locally small categories K, with the category of
all flat presheaves in Set Kop

(i.e., a closure of representable functors under filtered colimits

in Set Kop
), with the universal map ηIndK : K → IndK being a codomain restriction of the

Yoneda embedding YK : K → Set Kop
. And whenever K is small and has finite colimits,

then

IndK = LexKop

is the category of all presheaves preserving finite limits. In general IndK can be, for any
category K, described as a suitable category of all filtered diagrams in K, see [JJ].

Quite analogously, we can introduce a free completion

ηSind
K : K → Sind K

of any category K under sifted colimits.

3.8. Lemma. (1) For every locally small category K, Sind K can be identified with the
category of all presheaves in Set Kop

which are sifted colimits of representables (where
ηSind
K is a codomain restriction of YK).

(2) If Kop is locally presentable, then Sind K can be identified with the category of all
accessible presheaves in Set Kop

preserving finite products.
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Proof. The proof of (1) for K small has been performed in [AR1], the generalization to
K locally small is straightforward.

For (2), observe that a sifted colimit of representables preserves finite products (since
they commute in Set Kop

with sifted colimits) and is accessible. Conversely, given a λ-
accessible functor F : Kop → Set where Kop is locally λ-presentable, then in the usual
diagram El(F ) of elements of F (i.e., pairs (K,x) with K ∈ objK and x ∈ FK) all
objects (K,x) withK λ-presentable obviously form a cofinal, essentially small subdiagram
Elλ(F ). If F preserves finite products, then El(F ) has finite coproducts, and a closure of
Elλ(F ) under finite coproducts yields an essentially small diagram of representables with
colimit object F ; that diagram is sifted by 3.4 (3).

3.9. Lemma. ([AR1]) For every algebraic theory K, Sind Kop is a variety. Conversely,
every variety is a free sifted-colimit completion of the dual of any of its algebraic theories.

3.10. Sifted Colimits Distribute Over Limits. A crucial fact that enables us to
describe an equational hull of VAR w.r.t. ranked operations is that the 2-monad Sind
distributes over the 2-monad Lim . Recall that for “ordinary” (1-dimensional) monads
T and S over a category K, a distributive law of J. Beck [B] is, equivalently, one of the
following structures:

(i) a natural transformation from S ◦ T to T ◦ S compatible with the units and multi-
plications of T and S,

or

(ii) a lifting T̂ of the monad T to the category KS of algebras of S.

Given (i) or (ii), the composite T ◦ S obtains a structure of a monad, say T ◦ S, whose

category of algebras is equivalent to the category of algebras of the lifted monad T̂, i.e.,

KT◦S is equivalent to (KS)T̂ over K .

We now want to apply all this to T = Sind and S = Lim : we prove below that Sind lifts
to the quasicategory CAT Lim of algebras of Lim (= the quasicategory of all complete
categories and functors preserving limits). And we would like to conclude that the com-
posite Sind ◦Lim is a pseudomonad over CAT whose algebras are precisely the algebras
of Sind lifted to complete categories.

Distributive laws for pseudomonads have been studied by F. Marmolejo in [M2] and
[M3]. We want to apply his results to a distributive law of Sind (a KZ-doctrine) over
Lim (a co-KZ-doctrine). In that case there exists at most one distributive law, as proved
in [M2], so that we can formulate the result by saying that

Sind distributes over Lim .

The form we prove this is by exhibiting a lifting of Sind from CAT to CAT Lim :
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3.11. Theorem. (Sind distributes over Lim )

(1) For every complete category K the category Sind K is complete.

(2) For every functor F : K → L preserving limits, where K and L are complete, the
functor Sind F : Sind K → Sind L also preserves limits.

(3) Both ηSind
K and µSind

K preserve limits (for any category K).

Proof. I. We first prove the statements (1) and (2) for the case that K = Lim K0 is a free
completion of a category K0 under limits, and analogously L = Lim L0, and F = Lim F0

for some F0 : K0 → L0.

(I.A) Suppose that K0 and L0 are small. Then Lim K0
∼= (Set K0)op is locally pre-

sentable, therefore, Sind K is the category of all accessible functors in Set Kop
preserving

finite products. Having a diagram D : D → Sind K, there is a cardinal λ such that D
has less than λ morphisms and, for each object d ∈ D, the functor Dd is λ-accessible.
Since limits over categories having less than λ morphisms commute in Set with λ-filtered
colimits, limD is λ-accessible. We have proved that limits of accessible functors from Kop

to Set are accessible. Consequently, Sind K is closed under limits in Set Kop
, see 3.7,

thus, Sind K is complete.
For every functor F0 : K0 → L0 the functor Lim F0 : (Set K0)op → (Set L0)op is

right adjoint to (Set F0)op : (Set L0)op → (Set K0)op. Sind is a pseudofunctor, thus,
Sind (Lim F0) is a right adjoint to Sind (Set F0)op; consequently, Sind F = Sind (Lim F0)
preserves limits.

(I.B) Let K0 and L0 be arbitrary categories. Express K0 as an ∞-filtered colimit of
small categories K0i ⊆ K0 (i ∈ I), see Introduction, 1.5. The connecting morphisms
of that colimit are the inclusions Eij : K0i ↪→ K0j for i ≤ j. Both Lim and Sind
obviously preserve ∞-filtered colimits (in fact, any free completion functor dealing with
small diagrams does). Thus,

Sind (Lim K0) = colim
i∈I

Sind (Lim K0i)

is an ∞-filtered colimit of categories Sind (Lim K0i) which are complete, due to I.A,
with the connecting functors Sind (Lim Eij) preserving limits, also by I.A. It follows that
Sind (Lim K0) is complete.

Analogously do we derive that Sind (Lim F0) preserves limits: express K0 and L0 as
∞-filtered colimits of small subcategories

K0i ⊆ K0 and L0i ⊆ L0 (i ∈ I)

such that F0 restricts to
F0i : K0i → L0i (i ∈ I) .

Then F0 = colim
i∈I
F0i implies Sind (Lim F0) = colim

i∈I
Sind (Lim F0i). The latter is an

∞-filtered colimit of functors Sind (Lim F0i) which, by I.A, preserve limits. And the
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connecting functors of that colimit also preserve limits. Consequently, Sind (Lim F0)
preserves limits.

II. We prove (1) generally: let K be complete, and let

LK : Lim K → K

be a functor of computation of limits in K. Then

LKη
Lim
K

∼= id and ηLim
K � LK .

Since Sind is a pseudofunctor, we conclude

Sind LK Sind ηLim
K

∼= id and Sind ηLim
K � Sind LK .

Thus a limit of a diagram D : D → Sind K can be computed from a limit of Sind ηLim
K ·D

in the (complete, see I.) category Sind Lim K as follows:

Sind LK(lim[Sind ηLim
K ·D]) (6)

∼= lim[Sind LK · Sind ηLim
K ·D]

∼= limD .

Analogously we prove (2) generally: let F : K → L preserve limits, and let

LK : Lim K → K and LL : Lim L → L

be as above. Since F preserves limit, we have a natural isomorphism

Lim K

∼=⇒LK

��

Lim F �� Lim L

LL

��
K

F
�� L

This yields a natural isomorphism

Sind (Lim K)

∼=⇒Sind LK

��

Sind (Lim F ) �� Sind (Lim L)

Sind (LL)

��
Sind K

Sind F
�� Sind L
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Since Sind LL and Sind (Lim F ) preserve limits, by I., and limits in Sind K are computed
as above, see (6), we conclude that Sind F preserves limits:

Sind F (limD) ∼= Sind F
(
Sind LK(lim[Sind ηLim

K ·D])
)

∼= Sind LL · Sind (Lim F )
(
lim[Sind ηLim

K ·D]
)

∼= lim
(
Sind LL · Sind (Lim F ) · Sind ηLim

K ·D
)

∼= lim(Sind LL · Sind ηLim
L · Sind F ·D)

∼= lim(Sind F ·D) .

III. The proof of (3) is clear: if K is (locally) small then ηSind
K preserves limits because

it is a codomain restriction of the Yoneda embedding YK : K → Set Kop
and the category

Sind K is closed under limits in Set Kop
(since it contains all representable functors). In

a general case, we express K as an ∞-filtered colimit of small subcategories.
And µSind

K preserves limits because it is a right adjoint, see 3.2.

3.12. Corollary. Sind ◦Lim is a pseudomonad over CAT whose quasicategory of

algebras is equivalent to the quasicategory of algebras of Ŝind . The latter is the lifting of
Sind to the quasicategory of complete categories.

In fact, given pseudomonads S and T on a 2-category K, then a lifting Ŝ of S to the
category KT of algebras for T is equivalent to providing a pseudomonad structure S ◦T of
the corresponding composite endofunctor of K – see [M2]. And the category of algebras

for S ◦ T is biequivalent to that of Ŝ as proved in [M3].

4. Equational Hull of VAR

4.1. We are going to describe an equational hull of VAR w.r.t. all operations with rank.
Before proceeding formally, let us informally say that the basic observation is that for
every small category k we can almost form a “free variety” on k: it is the category

Mod (Set k)

of all accessible functors from Set k to Set preserving finite products. Well, that category
is not a variety (unless k = ∅) because it does not have a small regular generator. But we
have a canonical embedding

ev : k −→ Mod (Set k)

assigning to every object x of k the evaluation-at-x functor

ev(x) : Set k −→ Set .

And ev has the following universal property:
Let V be a variety, say V = Mod T for a (small) algebraic theory T . We have natural

bijections as follows:
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k
H �� V = Mod T an arbitrary functor

k × T H′
�� Set

preserves finite products

in the 2nd coordinate

T H′′
�� Set k preserves finite products

Mod (Set k)
ModH′′

�� Mod T = V algebraically exact functor

Let us explain the last step, in which ModH ′′ is the functor F �−→ F ·H ′′:

(1) The functor ModH ′′ is algebraically exact.
In fact, it is a domain-codomain restriction of the functor

− ·H ′′ : Set Set k → Set T

(which, obviously, preserves limits and colimits). Now Mod T is clearly closed under
limits and sifted colimits in Set T – recall that sifted colimits commute in Set with finite
products, thus, they commute with them in Set T too. And Mod (Set k) is closed in
Set Set k

under limits and sifted colimits. Thus our restricted functor preserves limits and
sifted colimits.

(2) Every algebraically exact functor F : Mod (Set k) → V is naturally equivalent to
ModH ′′ where H = F · ev. In fact, every object of Mod (Set k), i.e., accessible, finite-
product preserving functor D : Set k → Set , is a sifted colimit of representables, see 3.8;
say

D = colim
i∈I

Set k(Xi,−) (I small, sifted) .

And every Xi ∈ Set k is, of course, a small colimit of representables

Xi = colim
j∈Ji

k(xij,−) (Ji small) .

Since ev(xi,j) ∼= Set k
(
k(xij,−),−

)
, we obtain

D ∼= colim
i∈I

lim
j∈J

Set k
(
k(xi,j,−),−

)

∼= colim
i∈I

lim
j∈Ji

ev(xij) .

Since F preserves sifted colimits and limits, we conclude

FD ∼= colim
i∈I

lim
j∈Ji

Hxij .

It is easy to verify the same formula for ModH ′′:

ModH ′′D ∼= colim
i∈I

lim
j∈Ji

Hxij .

Consequently, F ∼= ModH ′′.
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4.2. Corollary. Ranked k-ary operations on VAR are encoded by Mod (Set k) as fol-
lows:

(i) every object D of Mod (Set k) defines a k-ary operation

D̂ : Uk → U

whose components are given by

D̂V : Vk → V : H �−→ ModH ′′(D) (H : k → V)

(ii) every morphism d : D1 → D2 of Mod (Set k) defines a morphism

d̂ : D̂1 ⇒ D̂2

of k-ary operations, i.e., a pseudonatural transformation

d̂ : Uk → U→

whose components are

d̂V : (D̂1)V → (D̂2)V , H �−→ (D1H
′′ dH′′
−→)D2H

′′

(iii) Every k-ary operation of rank is equal (in the sense of 2.7) to some D̂ for D ∈
Mod (Set k). That is, given

ω : Uk → U of rank λ

we can find D with ω ≈ D̂.

The last statement would be trivial if V = Mod (Set k) would be a variety: then we

could evaluate ωV : Vk → V in ev ∈ Vk and obtain D = ωV(ev). The equality ω ≈ D̂ then
follows from the fact that for every H ∈ Vk the functor −.H ′′ : Mod (Set k) → V , being
algebraically exact, must preserve ω.

To overcome the difficulty, denote by

Eλ : Set kλ → Set k (λ ∈ Card)

the inclusion functor of the subcategory of all functors in Set k preserving λ-filtered colim-
its. Since each Set kλ is essentially small, Vλ = Mod (Set kλ) is a variety. And Mod (Set k)
is a limit of these varieties, with a limit cone

ModEλ : Mod (Set k) → Mod (Set kλ)

formed by algebraically exact functors (and the connecting morphisms
Mod (Set kλ) → Mod (Set kµ) for µ ≤ λ are all algebraically exact). We obtain objects

Dλ = ωVλ
(ModEλ · ev) in Vλ ,

and if ω has a rank λ0, then in fact Dλ = Dλ0 for all λ ≥ λ0, and ω ≈ D̂λ0 .
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4.3. Remark. Observe that for small categories k,

(Set k)op ∼= Lim k

is a free limit-completion, and since this category is locally presentable, its free completion
under sifted colimits is precisely Mod (−), see 3.7:

Mod (Set k) ∼= Sind (Lim k) k small .

Thus we see that ”free varieties” are precisely the free algebras of the composite pseu-
domonad Sind ◦Lim of Section 3. Moreover, for k small, all ranked k-ary operations are
encoded by Sind (Lim k), thus, they are the sifted-colimits operations applied to the limit
operations. It follows that the appropriate homomorphisms are the functors preserving
limits and sifted colimits – but these are precisely the homomorphisms (1-cells) of the 2-
quasicategory of algebras of Sind ◦Lim . All this proves that the algebras of Sind ◦Lim
form an equational hull of VAR w.r.t. ranked operations. Well, except that, strictly speak-
ing, we have not verified that this equational hull is presented by a pseudomonad; this will
be done in the last section, where we introduce that pseudomonad as the ”ranked core”
of the pseudomonad representing the equational hull w.r.t. all operations. But modulo
this result, we conclude the following

4.4. Corollary. The 2-quasicategory of algebras of the pseudomonad Sind ◦Lim is an
equational hull of VAR w.r.t. all operations with rank.

We are now ready to describe the algebras of the pseudomonad Sind ◦Lim :

4.5. Definition. A category K is called algebraically exact if it is complete, has sifted
colimits, and these distribute over limits in the following sense: the functor Colim :
Sind K → K computing sifted colimits in K preserves limits.

4.6. Remark. (1) A more precise definition of Colim is: this is the essentially unique
functor preserving sifted colimits with

Colim ·ηK = IndK .

(2) It is evident that algebraic exactness is precisely the property of being an algebra of
the lifting of Sind to the 2-quasicategory of all complete categories. Since the latter is the
2-quasicategory of all algebras of Lim , we have just described the algebras of Sind ◦Lim ,
see 3.12.

(3) We denote by

ALG

the 2-quasicategory of all algebraically exact categories, all algebraically exact functors
(i.e., functors preserving limits and sifted colimits) and all natural transformations.

This is biequivalent to the quasicategory of all algebras of the composite pseudomonad
Sind ◦Lim .
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5. Properties of Algebraically Exact Categories

5.1. Theorem. Every algebraically exact category K has the following properties:

(a) K is complete,
(b) K is exact,
(c) filtered colimits commute in K with finite products,
(d) filtered colimits distribute in K over all products (see 2.8 (2))

and
(e) regular epimorphisms in K are product-stable.

Proof. Assume at first that K is a locally small algebraically exact category. The cat-
egory Set fulfills (a)-(e) and therefore so does Set Kop

. Following 3.11, Sind K is closed
under limits and sifted colimits in Set Kop

(see part II. of the proof of 3.11). Therefore
Sind K satisfies (a)-(e) as well. Since Colim is left adjoint to ηK, K is a reflective sub-
category of Sind K and the reflector Colim preserves all limits. Hence K satisfies (a)-(e)
too.

For general algebraically exact categories K it is sufficient to prove that they are ∞-
filtered colimits of locally small algebraically exact categories with connecting functors
algebraically exact. This follows from 1.5 and the observation that given a small sub-
category A of K, then the closure of A under limits and filtered colimits in K (with
transfinitely many iterations) is locally small and algebraically exact.

5.2. Open problem. Is every category with properties (a)-(e) above algebraically ex-
act?

5.3. Examples. (1) Every variety is algebraically exact. In fact, this follows from 3.8
and the next example:

(2) Every complete category of the form Sind K is algebraically exact. In fact, here
Colim ∼= µSind

K preserves limits by 3.11 (3).

(3) Torsion-free abelian groups fulfill (a)-(d) above but not (e), thus they do not form
an algebraically exact category.

(4) Essential localizations of varieties are algebraically exact (see [ARV] for a descrip-
tion of these categories). In more generality:

5.4. Proposition. Let K be an algebraically exact category. Then all complete local-
izations of K (i.e. full reflective subcategories whose reflector preserves limits) are alge-
braically exact.

Proof. Let E : L ↪→ K be a complete localization with a reflector R : K → L; thus

R � E and RE = id .

Each of the following three functors

Sind L Sind E−−−−→ Sind K Colim−−−→ K R−−→ L (7)
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preserves sifted colimits. Hence the composite functor of (7) preserves sifted colimits. We
will show that this composite is a functor computing sifted colimits in L – for this, it is
only necessary to observe that ηSind

L composed with (7) yields the identity on L:

(R · Colim · Sind E) · ηSind
L

∼= R · Colim ·ηSind
K · E

∼= R · E
∼= id .

Thus, we are to prove that the composite functor (7) preserves limits: Sind E preserves
limits by 3.11, Colim does by assumption on K and R does by assumption on L.

5.5. Corollary. Essential localizations of the category R-Mod of right R-modules are
algebraically exact categories for every ring R.

Those essential localizations have been described in [R] as follows: Let I be an idem-
potent ideal of R. Let KI be the full subcategory of R-Mod formed by all modules
orthogonal to the embedding I ↪→ R. Then KI is an essential localization of R-Mod ,
and there are no other (up to equivalence of categories).

More about algebraically exact categories can be found in [ARV].

6. A full equational hull of VAR

6.1. In the present section we exhibit a pseudomonad D∗ on CAT , such that the category
of algebras of D∗ is an equational hull of VAR w.r.t. all operations. Here, arities are not
assumed to be small (nor the operations to have rank, of course). This is based on
the formation of dual monads on the cartesian closed 2-quasicategory CAT . The whole
procedure is completely analogous to that used in [ALR2] to describe the full equational
hull of LFP. We will first recall, as we have already done in [ALR2], the concept of a dual
monad on a cartesian closed 2-category from [Law2].

6.2. Enriched Monads in CCC. By an enriched monad D over a cartesian closed
category C we understand an enriched functor D : C → C together with enriched natural
transformations η : 1C → D and µ : DD → D satisfying the usual monad axioms. The
category

CD

of (strict) algebras and homomorphisms is then also enriched over C: the internal hom-
functor

HomD : (CD)op × CD → C

is defined by means of the following equalizer for D-algebras (A,α) and (B, β):
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HomD((B, β), (A,α))
e �� AB

Aβ
��

D



���
���

���
� A(DB)

(DA)(DB)

α(DB)

������������

The Dual Monad D∗
. We now fix a D-algebra

DS
σ−→ S

called dualizer , and observe that the enriched hom-functor

HomD(−, (S, σ)) : (CD)op → C

has a left adjoint which can be constructed as follows (see [L]): for every object C ∈ C we
denote by

eval∗C : C → (DS)D(SC)

the composite of the evaluation map C → S(SC) and the D-map S(SC) �→ DSD(SC), and
we consider the following adjunctions:

C
eval∗C �� (DS)D(SC)

C ×D(SC) �� DS

D(SC)
/C �� (DS)C

We now define a functor
S(−) : C → (CD)op

by assigning to C ∈ C the D-algebra

D(SC)
/C−→ (DS)C

σC

−→ SC

and to every morphism f : C → C̄ in C the D-homomorphism

Sf : (SC̄ , σC̄ · +C̄) → (SC , σC · +C) .

Then we get an enriched adjoint situation

S(−) → HomD(−, S)

(the argument in this general case is analogous to that in 2.2 above).

Notation. The enriched monad generated by the last adjoint situation is denoted by
D∗ = (D∗, η∗, µ∗) and is called the dual monad of D w.r.t. the dualizer (S, σ). Thus,

D∗C = HomD(S
C , S)
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Equational Hull of the category dual to CD, the category of D-algebras w.r.t. the
“forgetful” functor HomD(−, (S, σ)) : (CD)op → C) is given by the comparison functor

K : (CD)op → CD∗
.

6.3. Doctrine of finite products. We apply the above to C = CAT and to the
pseudomonad induced by the forgetful 2-functor

U : CAT fpc −→ CAT

where CAT fpc is the 2-category of
all Cauchy complete categories with finite products (as objects),
all functors preserving finite products (as 1-cells)

and
all natural transformations.

The functor U is pseudomonadic: consider free completions of categories under finite
products and limits of idempotents (= equalizers of idA, e : A → A for idempotents
e : A → A). This, like Lim in 3.9, can be considered as a pseudomonad D on CAT .
Obviously, the 2-quasicategory CAT fpc is biequivalent to the 2-quasicategory of algebras
for D.

We denote by
D∗

the dual pseudomonad with the dualizer Set . That is, we consider the 2-adjoint situation

CAT op
fpc

�

��

CAT fpc(−,Set ) CAT (−,Set )

CAT

��

generating the pseudomonad D∗ = (D∗, η∗, µ∗) over CAT . It means that

D∗X = MOD (Set X )

for any category X , where MOD T denotes the category of all set-valued functors on T
preserving finite products. Further,

D∗F : H �−→ H · Set (H ∈ MOD (Set X ))

for each functor F : X → Y , and

(D∗ϕ)F = H · Set ϕ

for each natural transformation ϕ : F → F ′. The unit

η∗K : X → MOD (Set X )



Theory and Applications of Categories, Vol. 8, No. 9 279

is given by

X �−→ evX

where evX is the functor of evaluation-at-X, i.e.,

evX : Set X (X (X,−),−) .

The multiplication

µ∗X : MOD (SetD
∗X ) → MOD (Set X )

is defined by means of the evaluation functor

ev : Set X → Set MOD (SetX )

as

µ∗X (G) = G · ev

for each G : MOD (Set X ) → Set preserving finite products. The pseudomonad D∗ is
dual to D (when using Set as the dualizing object).

6.4. The comparison functor

K : CAT op
fpc → CAT D∗

assigns to every Cauchy-complete category A with finite products a D∗-algebra whose
underlying category is MODA. For every functor F : A → B preserving finite products
we have

K(F ) : KB → KA

defined by

K(F ) : H �−→ H · F (H ∈ MODB)

We observe that varieties are precisely the categories

KA for A in CAT fpc ,

and in fact the duality of [ALR1] is just a domain-codomain restriction ofK to CAT op
fpc −→

VAR.

6.5. Observation. The 2-category

CAT D∗

of algebras of the dual pseudomonad D∗ is an equational hull of VAR over CAT . That
is, given a pseudomonad T over CAT , and a functor

E : VAR → CAT T
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such that the composition UT · E : VAR → CAT is naturally isomorphic to the forgetful
functor U : VAR → CAT , then there exists an essentially unique pseudofunctor

E∗ : CAT D∗ → CAT T

with

E ∼= KE∗ and UD∗ ∼= UT · E∗ .

The verification is completely analogous to the case LFP (cf. [ALR2], Remark 4.7).
Every D∗-algebra is an absolute pseudocolimit of free D∗-algebras (see [LV]) and every
free D∗-algebra is a limit of varieties. The second statement follows from

MOD (Set X ) ∼= limMOD (C)

where the limit is induced by expressing Set X as a colimit of small Cauchy-complete
subcategories closed under finite products.

6.6. Open problem. Characterize D∗-algebras. Is the 2-quasicategory CAT D∗
biequiv-

alent to a (non-full) subcategory of CAT ? That is, is “to be a D∗-algebra” a property of
categories ?

6.7. The Pseudomonad D∗
small. We can introduce the small core of the pseudomonad

D∗ by defining, for every category K = colim
I

Ki (where Ki are small subcategories of K,

and I is ∞-filtered)

D∗
smallK = colim

I
D∗Ki = colim

I
MOD (Set Ki) .

In other words, for small categories K we have D∗
smallK = D∗K = MOD (Set K). For large

categories,

D∗
smallK = colim

I
MOD (Set Ki) .

This yields a pseudomonad D∗
small which preserves ∞-filtered colimits. And the quasicat-

egory

CAT D∗
small

is a small equational hull of VAR over CAT . That is, given a pseudomonad T over
CAT preserving ∞-filtered colimits, then for every functor E : VAR → CAT T with
UT ·E ∼= U there exists an essentially unique pseudofunctor E∗ : CAT D∗

small → CAT T with
E ∼= Ksmall · E∗ and UD∗

small

∼= UT · E∗ (for the comparison 2-functor Ksmall).

As in 6.6, we have not been able to characterize CAT D∗
small . Thus, we restrict further:
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6.8. The Pseudomonad D∗
rank. This is the pseudomonad corresponding to restricting

ourselves to operations on VAR with rank. Thus, for small categories K, D∗
rankK =

Mod (Set K) and for large categories K = colim
I

Ki (Ki small and I ∞-filtered)

D∗
rankK = colim

I
Mod (Set Ki) .

Lemma. D∗
rank and Sind ◦Lim are biequivalent pseudomonads, i.e., there exists a biequiv-

alence

E : ALG = CAT Sind ◦Lim → CAT D∗
rank

such that the following triangle

ALG = CatSind ◦Lim E ��

V ��������������� CAT D∗
rank

WD∗
rank������������

CAT

∼=

commutes.

This follows easily from the monadicity of the two categories, ALG and CAT D∗
rank ,

over CAT and the fact that the free algebras over K coincide for all small categories K:

(Sind ◦Lim )K ∼= Sind (Set K)op ∼= Mod (Set K)

by 3.8 (2).

6.9. ALG is not an equational hull of VAR. Let us finally observe that ALG is
not equivalent to CAT D∗

nor to CAT D∗
small provided that we assume that Set contains

arbitrarily large measurable cardinals. In fact, as recalled in 2.4, this assumption implies

Mod (Set ) � MOD (Set ) ,

i.e., there exists a non-accessible functor H : Set → Set preserving finite products.
Denote by ωH the corresponding unary operation on VAR, i.e., for every variety V =
Mod T we have the operation functor

(ωH)V : Mod T → Mod T , F �→ HF .

Lemma. The operation ωH cannot be extended from VAR to ALG.

Proof. Let Ki (i ∈ I) be an ∞-filtered collection of full subcategories of Set closed
under finite products such that Set = colimKi. Each Vi = ModKi is a variety, and if
ki : Ki → Set denotes the inclusion, then Mod (Set ) is a limit of Vi (i ∈ I) with the
limit-cone Mod ki (F �→ F/ki).
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Assuming that ωH has an extension to ALG, then for the algebraically exact category
K = Mod (Set ) we have an operation-functor (ωH) such that the squares

Mod (Set )

∼=

(ωH)K ��

Mod ki

��

Mod (Set )

Mod ki

��
ModKi

(ωH)Vi �� ModKi

commute up to isomorphism. Applied to the object Id : Set → Set of Mod (Set ), we
get

H · ki ∼= (ωh)K(Id)/ki for all i ∈ I
and we conclude that

H ∼= (ωH)K(Id) .

This is a contradiction since H is not accessible and (ωH)K takes values in Mod (Set ),
thus, (ωH)K(Id) is accessible.

Remark. If MOD (Set K) = Mod (Set K) would hold for all small categories K, then,
of course, ALG would be small-equational hull of VAR. As remarked in 1.4 we do not
know whether this assumption is consistent with set theory.
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