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SOME EPIMORPHIC REGULAR CONTEXTS

Dedicated to Joachim Lambek on the occasion of his 75th birthday

R. RAPHAEL

ABSTRACT. A von Neumann regular extension of a semiprime ring naturally de�nes
a epimorphic extension in the category of rings. These are studied, and four natural
examples are considered, two in commutative ring theory, and two in rings of continuous
functions.

1. Introduction

In this note we study certain extensions of commutative semiprime rings which we call
epimorphic regular contexts, or sometimes simply contexts. Work by Olivier shows that
there exists a universal such context for each semiprime ring. It turns out that these
extensions are \tangible" (cf. Theorem 2.2 and Remark 3.4) and this facilitates their
study in concrete situations. We present four instances of epimorphic regular contexts.
The �rst is the epimorphic hull due to Storrer, a ring that is de�ned by a universal property
whose formulation is categorical. The second is the minimal regular rings as studied by
Pierce and Burgess. The last two are topological in nature. As a detailed instance of
the �rst example one considers the epimorphic hull of a ring of continuous functions as
studied in [19]. Lastly one considers a general context (currently being studied in [7])
which can be de�ned naturally on any topological space.

The theme of this note is that categorical methods can stimulate fruitful inquiry in
other mathematical disciplines|in our case ring theory and topology. In the studies we
cite, new notions were de�ned and new examples were discovered. Sometimes the notions
are fully or partially \internal" to their discipline. Yet it seems most unlikely that they
would have been uncovered without the \external" stimulus from category theory.

There were several motivations for writing this note. There has been considerable
recent work on epimorphisms and rings of quotients in topological settings ([7], [19], [20],
[21], [22]) and non-algebraists might pro�t from an introduction to some of the ring-
theoretic and categorical aspects. As well, some of the \folklore" material is in danger of
being lost if it is not recorded. There is also the hope that others will be encouraged to
solve the open problems and to communicate additional instances of epimorphic regular
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contexts among the rings that arise naturally in mathematics. Most of the open questions
have been considered either with Storrer or in the collaborations with Henriksen, Macoosh,
and Woods. I am indebted to all of them for many stimulating conversations in algebra
and in topology.

2. Epimorphisms

Recall that a map f :R ! S is called an epimorphism if g and h must coincide if they
are maps from S ! T whose compositions with f agree. A good introduction to general
epimorphisms is found in [1]. In concrete categories, such as categories of rings, an onto
map is an epimorphism, but so is the inclusion of Z into Q. There is a substantial
literature on ring epimorphisms with many results of interest. To mention just two|
an epimorphic extension of a commutative ring must be commutative [24, 1.3], and an
epimorphic extension of a �nite ring need not be �nite [10, p. 268].

We are interested in the case of epimorphisms between rings which are commutative
with identity, and semiprime, meaning that 0 is the only nilpotent element. Regular rings
are pertinent to the study of epimorphisms as we shall presently see. A ring R is called
regular in the sense of von Neumann if for all a 2 R there is a b 2 R such that a = aba.
The element b is called a quasi-inverse for a. As pointed out in [11, p. 36 Ex. 3] each
element a has a unique quasi-inverse a� that also satis�es a� = a�aa�.

2.1. Von Neumann Regular extensions and the universal regular ring of
Olivier. Suppose that R is a semiprime subring of a general commutative regular ring
S. Let G(S) be the intersection of the commutative regular subrings of S that contain R.
From the existence of the unique quasi-inverses in the commutative case, it is easy to see
that G(S) is itself a regular ring, and it is clearly the smallest regular subring of S that
contains R. What is much less evident, and crucial to our studies, is the following:

2.2. Theorem. [Olivier, [15]]
(i) The ring G(S) is generated by R and the unique quasi-inverses of the elements

of R in S; i.e. each element of G(S) is a �nite sum of products of the form cd� where
c; d 2 R, and * denotes the unique quasi-inverse.

(ii) The embedding of R into G(S) is an epimorphism of rings.

One attractive way of seeing (ii) once one has (i) is to note that each d� satis�es a
simple form of the zig-zag condition due to Isbell [23, 3.3]. Part (i) of the theorem follows
from the following key result.

2.3. Theorem. [Olivier, [15]] Given a commutative ring R, there is a universal object
T (R) among epimorphic regular extensions of R. The ring T (R) maps (over R) canoni-
cally onto any epimorphic regular extension of R.

2.4. Remark. The functor T is the left adjoint to the inclusion of the category of von
Neumann regular rings into the category of commutative rings. Olivier's construction
of T (R) is built by adjoining to R one indeterminate for each element of R, and then
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dividing out the minimal relations needed to ensure regularity for the elements of R. A
localization argument shows that the ring T (R) is itself regular [15]. Each element of
T (R) is �nitely expressible in terms of the elements of R and their quasi-inverses. Since
T (R) maps onto G(S) over R, one has part (i) of Theorem 2.2. Notice that it also shows:

2.5. Corollary. If R is an in�nite commutative semiprime ring and S is an epimor-
phic regular extension of R, then R and S have the same cardinality.

2.6. Definition. By an epimorphic regular context we will mean a map that is both a
monomorphism and an epimorphism from a commutative semiprime ring into a regular
ring. Note that there is no suggestion that the monomorphism is regular in the (categori-
cal) sense of being a coequalizer.

It is clear from the above discussion that any extension of a semiprime ring by a
regular ring gives rise to an epimorphic regular context. We shall presently examine
several natural cases of this phenomenon.

2.7. The question of regularity degree. Let us return to the fact that each
element in G(S) has a representation of the form indicated in Theorem 2.2. Adopting the
terminology of [7] let us de�ne the regularity degree of an element x of G(S) with respect
to R to be the least number of terms of the form cd�; c; d 2 R, needed to represent x.
The regularity degree of G(S) is the supremum of the regularity degrees of its elements.
Having regularity degree 0 means that R itself is regular. Having regularity degree in�nite
means that there is no supremum for the regularity degrees of the individual elements of
R.

There are some natural questions which arise:

2.8. Problem. Can one have an epimorphic regular extension R ! S of in�nite regu-
larity degree, or must every such extension be of �nite regularity degree?

2.9. Problem. Suppose that every epimorphic regular extension is of �nite degree. Are
there such extensions of arbitrary large regularity degree, or is there a global bound for
these degrees as one ranges over all epimorphic regular extensions of semiprime rings? In
view of Theorem 2.3 it suÆces to determine the regularity degrees for Olivier's extensions
R! T (R).

Problem 2.9 is closely related to the following:

2.10. Problem. Are direct products of epis emanating from commutative rings, still
epi? Stated precisely if Ri; Si are families of rings so that each Si is an epimorphic
extension of Ri, is

Q
Si an epimorphic extension of

Q
Ri? The answer is known to be

negative in the non-commutative case [24, 2].

It is easy to see there are implications between Problems 2.8, 2.9, and 2.10. In view of
Theorems 2.2(i) and 2.3 the existence of a global bound on regularity degrees implies that
direct products of epimorphic regular extensions are epis. And if there are epimorphic
regular extensions of unbounded degree then Problem 2.10 has a negative answer by an
easy argument using direct products and Theorem 2.2(i) above. For the same reason a
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positive reply to Problem 2.8 means a negative answer to Problem 2.10. From recent
joint work with Henriksen and Woods it appears that there are examples using rings of
functions for which the degrees are �nite, but unbounded. This predicts a negative answer
to Problem 2.10. There remains the question of getting \algebraic" examples as answers
to these problems.

2.11. Overview. In studying the context R! G(S) determined by a particular regular
extension R ! S one has considerable machinery at one's disposal. First of all Olivier's
universal ring is close-by, as is the the epimorphic hull, another universal object, due to
Storrer, which will be described presently. Secondly, regular rings have many attractive
properties in their own right. Thirdly, epimorphisms impose added structure, for instance,
a result due to Lazard [14, 1.6] says that the contraction map SpecG(S)! Spec(R) must
be one-to-one. Lastly, one has a \handle" on the elements of G(S) in that they have the
�nite representation mentioned in Theorem 2.2(i). Although this representation is not
unique, its very existence is useful.

3. Examples of epimorphic regular contexts

There are two possible ways of �nding a context. It may be that we are given both a
semiprime ring R and a regular overring S, from which we build G(S). Or it maybe
that S itself is built by a natural construction that begins with R. We shall encounter
examples of both sorts. Our �rst examples are algebraic.

3.1. The epimorphic hull of a commutative semiprime ring [Storrer]. To
de�ne this ring we need another categorical notion. A monomorphism f A ! B is
called essential if each map g:B ! C must be a monomorphism whenever g Æ f is a
monomorphism. Usually one discusses essentiality for extensions of modules but the
de�nition makes sense in any category (cf [23]).

An epimorphic hull E(A) for an object A is an essential monoepi f :A ! E(A) with
the property that if h:A! B is an essential monoepi, there is a map g:B ! E(A) so that
g Æ h = f . Storrer [23] showed that epimorphic hulls are unique up to isomorphism and
studied the epimorphic hulls of commutative semiprime rings in detail. Let us recall that
if R is a semiprime ring and S is an extension of R, then S is called a ring of quotients of
R if given s 6= 0 2 R, there exists a t 2 S so that st 2 R; st 6= 0. The simplest example
of a ring of quotients is the passage from Z to Q, or, indeed, from any domain to its �eld
of fractions. Rings of quotients have been studied in many ways and from many points
of view. A ring of quotients is an essential extension in the category of rings. Every
semiprime ring R has a maximal (or \complete") ring of quotients denoted Q(R) which
is unique up to isomorphism over R [11, 2.3]. It is a regular ring [11, 2.4] so one has the
following:

3.2. Theorem. [[23]] Let R be a commutative semiprime ring. Then R has an epimor-
phic hull in the category of rings, denoted E(R). It is a ring of quotients of R and is the



Theory and Applications of Categories, Vol. 6, No. 8 98

epimorphic regular context determined by R and its complete ring of quotients Q(R). It
is (up to isomorphism) the only epimorphic regular extension which is essential.

Thus we have two important rings associated with a general commutative semiprime
ring R, | T (R), due to Olivier, and E(R), due to Storrer. Each has a universal property.
The two rings are related as follows:

3.3. Theorem. [Folklore] Let R be a commutative semiprime ring. Let T (R) be its uni-
versal epimorphic regular extension, and E(R) be its epimorphic hull. There is a homo-
morphism from T (R) onto E(R) that �xes R. (Indeed any epimorphic regular extension
of R maps onto E(R) over R.)

Proof. For one thing, such a map must exist by the universal property of T (R). But in
fact, the nicer way to see this is to use Zorn's lemma to choose in T (R) an ideal I maximal
with respect to having (0) intersection with R. Although the ideal I is far from unique,
the ring T (R)=I is a regular essential mono-epi, and hence a copy of E(R). Note that
there are certain topological situations when the choice of the ideal I is \canonical".

3.4. Remark. I am indebted to Hans Storrer for pointing out to me in private correspon-
dence the following fascinating point concerning E(S). Since r�� = r, and (rs)� = r�s�

one can establish part (i) of Theorem 2.2 for E(S) if one knows an expression for a
quasi-inverse of
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3.5. Minimal regular rings (Pierce, Burgess). In order to present this example,
we must recall some notions from studies by Pierce [17], Burgess [1], and Burgess and
Stewart [3].

Suppose that S is a ring. The characteristic subring of S, denoted �(S), is the maximal
epimorphic extension of the canonical image of Z in S. By B(S) one denotes the algebra
of central idempotents of S. The minimal subring of S (denoted P (S) in [1]) is the
subring of S that is generated by �(S) and B(S). When P (S) = S, S is called a minimal
ring. The minimal subring of a regular ring is itself regular. A regular ring is minimal,
exactly when its �eld images are primitive �elds. Minimal regular rings were studied by
Pierce [17] who showed that they form a category that is contravariantly equivalent to
the category of boolean spaces over the one-point compacti�cation of the set of primes
called the category of \labelled Boolean spaces" (LBS). The category of minimal regular
rings has some interesting properties, for example, it is complete and co-complete.

To relate these notions to epimorphic regular contexts we suppose that the ring S is
regular, and that R is the subring generated by B(S) and the image of Z in S. Then one
has the following:
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3.6. Proposition. (i) P (S) = G(S),
(ii) S is the classical ring of quotients of R and hence the regularity degree of G(S)

with respect to R is one.

Proof. (i) Since G(S) is the smallest regular ring between R and S, and P (S) is regular,
one knows that G(S) is a subring of P (S). On the other hand G(S) and P (S) have the
same idempotents, so when these regular rings are represented as sheaves over Boolean
spaces using the Pierce sheaf [16] they have a common base space X = SpecB(S). For
each x 2 X the stalks G(S)x and P (S)x are �elds, and G(S)x is a sub�eld of P (S)x. Since
the stalks of P (S) are primitive �elds, the stalks of the two rings coincide, as must the
rings themselves.

(ii) Suppose that r 2 R. By the regularity of S, the annihilator of r in S has the form
eS for some idempotent e of S. Since B(S) = B(R), the annihilator of r in R is eR and
it is easy to check that this makes Qcl(R) regular. Furthermore each non zero-divisor
in R is a non zero-divisor, and hence invertible in S. The universal property of Qcl(R)
implies that it maps into S over R. Since its image is a regular ring between R and G(S),
it is G(S). The kernel of the map is clearly trivial, establishing the isomorphism. Since
the elements in Qcl(R) have the form ab�1; a; b 2 R, the regularity degree of G(S) with
respect to R is one.

3.7. Remark. It follows that one cannot build a counterexample to Problem 2.10 using
the rings of Proposition 3.6.

3.8. Rings of continuous functions. One is led naturally to consider rings of the
form C(X), the algebra of all continuous functions on a (completely regular) Hausdor�
space. There are two reasons for this: �rst, if the algebraic notions are valid, they may
have interpretations of interest in rings of functions; and second, rings of functions are
suÆciently complicated that they are likely to provide examples and counterexamples for
algebraic questions. This was already clear when Storrer studied the epimorphic hull [23,
11.6]

Let us �rst recall some basic notions, bearing in mind that [5] is the standard reference
for the topic. If X is a topological set and f :X ! R is a continuous function, then the
zero-set of f is fx 2 X j f(x) = 0g. A subset of X is a GÆ if it is a countable intersection
of open sets. A point p 2 X is called a P -point of X if the zero-set of f is a neighbourhood
of p whenever f 2 C(X) and f(p) = 0.

A topological space X is called completely regular [5] if it is a Hausdor� space in which
any point and any closed set disjoint from it can be completely separated by a continuous
real-valued function on X. When considering the ring of all continuous functions on a
topological space one can assume, without loss of generality that X is completely regular
[5, Chapter 3].

3.9. �-algebras. There are several simultaneous structures on C(X)|that of a com-
mutative algebra over R, that of a partially ordered set, and that of a lattice. In [8] these
essential features were abstracted to the notion of a �-algebra whose de�nition requires
the following notions. Let A denote a lattice ordered ring, and let A+ = fa 2 A: a � 0g.
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A lattice-ordered ring A is called Archimedian if, for each element a which is di�erent
from 0 the set fna:n 2 Zg has no upper bound in A. An element a 2 A+ is called a
weak order unit of A of if b 2 A and a _ b = 0 imply b = 0. Lastly, an ideal of A is called
an l-ideal, if a 2 I; b 2 A, and jbj � jaj imply b 2 I. A �-algebra is an Archimedean
lattice-ordered algebra over R in which 1 is a weak order unit. Each C(X) is a �-algebra
but the converse is far from true. If A is a �-algebra then M(A) denotes the set of max-
imal l-ideals in A endowed with the hull-kernel topology. For each M 2 M(A), A=M is
a totally ordered �eld containing R. The ideal M is called real or hyper-real accordingly
as A=M coincides with R or properly contains it. The (possibly empty) subset of real
maximal l-ideals is denoted R(A), and if

T
R(A) = (0), then A is a subdirect product of

copies of R and one calls A a �-algebra of real-valued functions.
Henriksen and Johnson [8, 2.3] showed that any �-algebra A has a representation as

an algebra of continuous functions to the extended reals de�ned on the space M(A). Each
element of A is real on a dense open subset of M(A) and functions are identi�ed when
they agree on the intersection of the sets where they are real-valued. There is a natural
(supremum) metric on A, so that it makes sense to speak of �-algebras being uniformly
closed, (meaning that Cauchy sequences converge).

A natural and recurring question is whether a given �-algebra is isomorphic to a ring
of the form C(X). Henriksen and Johnson [8, 5.2] found conditions which are necessary
and suÆcient|the ring must be a �-algebra of real-valued functions, it must be uniformly
closed, be closed under inversion, and R(A) must be z-embedded in M(A) .

3.10. P -spaces. A topological space is called a P -space if every GÆ is open, equivalently,
if every zero-set is open. Compact P -spaces are necessarily �nite and countable P -spaces
are discrete, but there exist P -spaces with no isolated points. These spaces are pertinent
because X is a P -space precisely when C(X) is its own epimorphic hull.

3.11. Almost P -spaces. A space X is almost P if every non-empty zero-set has a
non-empty interior, equivalently every nonempty GÆ set has non-empty interior. Unlike
P spaces, almost P spaces can be compact and in�nite, though they also are discrete
if they are countable. Watson [25] has constructed in ZFC a compact almost P space
with no P -points. There is also an interesting space due to Levy [12] who invented
these spaces [13]. Once again there is an algebraic characterization: it is precisely when
C(X) = Qcl(X) that X is almost P .

3.12. The delta topology. [18, 1W] There is a canonical way of making a space X
into a P -space by (if necessary) strengthening its topology. One takes as a base for the
new topology allGÆ sets in the original space. It is equivalent to take the set of zero-sets as
a base for a new topology. The new space, denoted XÆ, is called the P -space core
ection
of X. If j is the continuous identity map XÆ ! X then one has the following universal
property: if Y is a Tychono� P -space and f :Y ! X is a continuous map, then there is
a continuous map k:Y ! XÆ so that j Æ k = f . In categorical terms, P -spaces form a
core
ective subcategory of the category of Tychono� spaces.
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3.13. The epimorphic hull of C(X). The classical and complete rings of quotients
of a C(X) were considered as instances of the general algebraic study by Fine, Gillman,
and Lambek in their now classic [4]. We will use their notation for these rings, Qcl(X),
and Q(X) respectively. The main result reads:

3.14. Theorem. [Fine, Gillman, Lambek, [4, 2.6]] The ring Q(X) is the set of all con-
tinuous functions de�ned on dense open sets of X modulo the equivalence relation that
identi�es two functions that agree on the intersection of their domains. The ring Qcl(X)
is the algebra of all continuous functions on dense cozero sets of X modulo the same
equivalence relation.

Note that Qcl(X) and Q(X) are easily seen to be �-algebras. Hager showed that
Q(X) is rarely a ring of functions as follows:

3.15. Theorem. [Hager [6]]
Suppose that the spectrum of Q(X) is of non-measurable cardinality. Then Q(X) is

isomorphic to a C(Y ) iff X has a dense set of isolated points.

The epimorphic hull of C(X) was studied in [19] but it was denoted H(X) because
the symbol E(X) had an existing and con
icting meaning in topology. The epimorphic
hull was shown to be a �-algebra for all spaces X. The most natural (and still open)
question was:

3.16. Problem. Let X be a Tychono� space. Find necessary and suÆcient conditions
on X for H(X) to be isomorphic to a C(Y ).

3.17. Subproblem. Find necessary and suÆcient conditions on X for the �-algebra
H(X) to be uniformly closed.

Problem 3.16 has never been solved. Indeed, one does not even know whether X must
contain a P -point if H(X) is a C(Y ), although this was recently established positively
for basically disconnected spaces [7]. The presence of a dense set of P -points, indeed of
isolated points, does not suÆce to give that H(X) is a C(Y ) [7].

Here is a summary of the main things one does know [19]:
1. If H(X) is a C(Y ), then compact subspaces of X are scattered.
2. If X has a countable dense set of isolated points then H(X) = C(N), where N

denotes a countable discrete space.
3. One has a characterization of when Qcl(X) is a C(Y ).
4. One has many examples of spaces, almost P and not, for which H(X) is a C(Y ),

as well as examples where some but not all of the three rings of quotients Qcl(X), H(X)
and Q(X) are isomorphic to rings of continuous functions.

An important tool for studying H(X) is the de�nition of the following \test" subspace:

3.18. Definition. By gX denote the intersection of the dense cozero sets of a realcom-
pact Tychono� space X.

One shows the following: let X be realcompact and Tychono�:
(i) The space gX is a realcompact almost P space.
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(ii) If X has a dense almost P space it has a largest one and it is gX.
(iii) The following are equivalent:

(a) H(X) is a �-algebra of real-valued functions,
(b) gX is dense in X,
(c) C(X) has a regular ring of quotients of the form C(Y ).

This shows that (cf Problem 3.16):
(iv) If H(X) is a C(Y ) then Y = (gX)Æ, (gX with the delta topology).

3.19. A context of real-valued functions. More recently there has been parallel
work undertaken by Henriksen, Raphael, and Woods which drops the rings of quotients
aspect but keeps the discussion very concrete. The idea is the following: Let X be a
Tychono� space and observe that C(X) lies in the natural von Neumann regular ring
F (X) of all real-valued functions de�ned on X. Let G(X) be the context determined by
C(X) and F (X). Like H(X), the ring G(X) is always a �-algebra but unlike H(X) it is
always a �-algebra of real-valued functions.

When X is an almost P space, H(X) and G(X) coincide. In general these rings di�er
but H(X) is always a homomorphic image of G(X).

One is no longer dealing with rings of quotients, but still has very natural problems
such as:

3.20. Problem. Find necessary and suÆcient conditions on X so that G(X) be a ring
of continuous functions.

This is known to occur for some non P spaces, but it occurs so rarely that one raises
a more general question. Let Gu(X) denote the set of limits of Cauchy sequences from
G(X).

3.21. Problem. Find necessary and suÆcient conditions on X for Gu(X) to be a ring.

[Of course there is the parallel problem for H(X)]. It is easy to see that Gu(X) is
closed under sums, �nite sups and infs, and scalar multiples. Thus in the cases where it
is a ring, it is a �-algebra. It is also easy to see that being a ring is equivalent to being
closed under forming squares. Note that Isbell gave an example [9, 1.8] of an algebra of
real valued functions whose uniform closure is not closed under taking squares.

Lastly returning to Olivier's work, there is the question

3.22. Problem. Describe T (C(X)) where X is an arbitrary Tychono� space. Certainly
it has both G(X) and H(X) as a homomorphic image. But when is it G(X)? When
is it a �-algebra? When is it a �-algebra of real-valued functions or a uniformly closed
�-algebra?

Afterword Recent joint work with W.D. Burgess using algebraic methods seems to give
progress on some of the problems presented above.
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