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COMPARING COEQUALIZER AND EXACT COMPLETIONS

Dedicated to Joachim Lambek
on the occasion of his 75th birthday.

M. C. PEDICCHIO AND J. ROSICK�Y

ABSTRACT. We characterize when the coequalizer and the exact completion of a
category C with �nite sums and weak �nite limits coincide.

Introduction

Our aim is to compare two well known completions: the coequalizer completion Ccoeq of a
small category C with �nite sums (see [P]) and the exact completion of a small category C
with weak �nite limits (see [CV]). For a category C with �nite sums and weak �nite limits,
Cex is always a full subcategory of Ccoeq. We characterize when the two completions are
equivalent - it turns out that this corresponds to a �niteness condition expressed in terms
of re
exive and symmetric graphs in C.

1. Two completions

For a small category C with �nite sums, the coequalizer completion of C is a category Ccoeq
with �nite colimits together with a �nite sums preserving functor GC : C ! Ccoeq such
that, for any �nite sums preserving functor F : C!X into a �nitely cocomplete category,
there is a unique �nite colimits preserving functor F : Ccoeq !X with F �GC = F . This
construction has been described by Pitts (cf. [BC]).

For a small category C with weak limits, the exact completion EC : C ! Cex can
be characterized by a universal property as well (see [CV]). In a special case when C
has �nite limits, EC is a �nite limits preserving functor into an exact category Cex such
that, for any �nite limits preserving functor F : C ! X into an exact category, there is
a unique functor F 0 : Cex ! X which preserves �nite limits and regular epimorphisms
such that F 0 � EC = F . Following [HT], Cex can be described as a full subcategory of

Set
C

op

and EC as the codomain restriction of the Yoneda embedding Y : C! Set
C

op

.
To explain it, we recall that a functor H : C op ! Set is weakly representable if it admits
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a regular epimorphism 
 : Y C ! H from a representable functor. Then Cex consists of
those weakly representable functors H admitting 
 : Y C ! H whose kernel pair

K
� ��

�
�� Y C


 �� H (1)

has K weakly representable.

We will start by showing that Ccoeq can be presented as a full subcategory of SetC
op

too, with GC being the codomain restriction of Y . The full subcategory of SetC
op

consisting of all �nite products preserving functors will be denoted by FP (C op). It is
well known that FP (C op) is a variety (see [AR] 3.17).

1.1. Lemma. Let C be a category with �nite sums. Then Ccoeq is equivalent to the full

subcategory of FP (C op) consisting of �nitely presentable objects in FP (C op).

Proof. By the universal property of Ccoeq, we get

FP (C op) � Lex((Ccoeq)
op)

where, on the right, there is the full subcategory of Set(Ccoeq)op consisting of all �nite
limits preserving functors. The result thus follows from [AR] 1.46.

1.2. Proposition. Let C be a category with �nite sums and weak �nite limits. Then Cex
is equivalent to a full subcategory of Ccoeq.

Proof. Let H 2 Cex and consider the corresponding diagram (1). There is a regular
epimorphism Æ : Y D! K (because K is weakly representable) and we obtain a coequal-
izer

Y D
� ��

�

�� Y C

 ��H (2)

where � = �Æ and � = �Æ. Since Y D is a regular projective in Set
C

op

, the graph (�; �)
is re
exive (it means the existence of ' : Y C ! Y D with �' = �' = idY (C)). Following
[PW], (2) is a coequalizer in FP (C op). Therefore, H is �nitely presentable in FP (C op)
(cf. [AR] 1.3). Hence, using Lemma 1.1, H belongs to Ccoeq.

When C has �nite sums, objects of C are precisely �nitely generated free algebras in
the variety FP (C op). The condition of having weak �nite limits too, is a very restrictive
one. We give another formulation of it.

1.3. Proposition. Let C have �nite sums. Then C has weak �nite limits i� �nite limits

of objects of C in FP (C op) are �nitely generated.

Proof. LetD : D! C be a �nite diagram and (Æd : A! Y Dd)d2D its limit in FP (C op).
Assume that A is �nitely generated. Then there is a regular epimorphism � : Y C ! A

where C 2 C. Consider a cone (fd : X ! Dd)d2D in C. There is a unique ' : Y X ! A

with Æd' = Y fd for all d 2 D. Since � is a regular epimorphism (and Y X regular



Theory and Applications of Categories, Vol. 6, No. 6 79

projective) ' factorizes through � and therefore (Æd� : Y C ! Y Dd)d2D is a weak limit
of Y D in Y (C). Hence D has a weak limit in C.

Conversely, assume that D has a weak limit (
d : C ! Dd)d2D in C. There is a unique
� : Y C ! A with Æd� = Y 
d for all d 2 D. Consider ' : Y X ! A, X 2 C. There exists
' : X ! C such that Y (
d ) = Æd' for all d 2 D. Hence ' = � , which implies that �
is a regular epimorphism (because Y X;X 2 C are �nitely generated free algebras in the
variety FP (C op)). Hence A is �nitely generated.

2. When do they coincide?

2.1. Construction. Let C be a category with weak �nite limits. Let r0, r1 : C1 ! C0

be a re
exive and symmetric graph in C. It means that there are morphisms d : C0 ! C1

and s : C1 ! C1 with r0d = r1d = idC0
and r1s = r0, r0s = r1. We form a weak pullback

C2

r0

����
��

��
�� r1

���
��

��
��

�

C1

r1 ���
��

��
��

� C1

r0

����
��

��
��

C0

(3)

By taking r2i = ri�ri, i = 0; 1, we get the graph

C2

r2
0 ��

r2
1

�� C1

This graph is re
exive: d2 : C0 ! C2 is given by �r0d
2 = �r1d

2 = d. It is also symmetric:
s2 : C2 ! C2 is given by �r0s

2 = s�r1 and �r1s
2 = s�r0. By iterating this procedure, we get

re
exive and symmetric graphs

Cn

rn
0 ��
rn
1

�� C1

for n = 1; 2; : : :.

2.2. Definition. Let C have weak �nite limits. We say that a re
exive and symmetric

graph r0; r1 : C1 ! C0 has a bounded transitive hull if there is n 2 N such that, for any

m > n, there exists fm : Cm ! Cn with rn0fm = rm0 and rn1fm = rm1 .

It is easy to check that the de�nition does not depend on the choice of weak �nite
limits. Evidently, if C has �nite limits, De�nition 2.2 means that the pseudoequivalence
generated by the graph r0; r1 : C1 ! C0 is equal to r

n
0 ; r

n
1 : Cn ! C0.

2.3. Theorem. Let C have �nite sums and weak �nite limits. Then Cex is equivalent to

Ccoeq i� any re
exive and symmetric graph in C has a bounded transitive hull.
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Proof. I. Let r0; r1 : C1 ! C0 be a re
exive and symmetric graph in C. Consider the
coequalizer

Y C1

Y r0 ��

Y r1

�� Y C0

 �� H

in Set
C

op

. Put H1 = Y C1, H0 = Y C0 and 
i = Y ri for i = 0; 1. Let 
n0 , 

n
1 : Hn ! H0

be iterations of the graph (
0; 
1) constructed as before, by using pullbacks in Set
C

op

.
There are morphisms �n : Y Cn ! Hn such that �1 = idH0

and �
ni �n+1 = �nY (�r
n
i ) for

i = 1; 2 and n = 0; 1; : : ::

Y Cn+1

Y �rn
0

����������������������

�n+1

��

Y �rn
1

����������������������

Y Cn

�n ���
��

��
��

� Hn+1
�
n
0

�����
��

��
�� �
n

1

		�
��

��
��

��
Y Cn

�n

��
��

��
��

Hn


n
1 			

		
		

		
		

Hn


n
0��
















H0

By induction, we will prove that �n are regular epimorphisms in SetC
op

. Assume that
�n is a regular epimorphism and consider the pullback

G
�0



���
��

��
�� �1

���
��

��
��

��

Y Cn


n
1
�n ���

��
��

��
� Y Cn


n
0
�n

��

��
��

��

H0

in SetC
op

. There are morphisms ' : Y Cn+1 ! G and  : G! Hn+1 such that  ' = �n+1,

%i' = Y �rni and �
ni  = �n%i for i = 0; 1. Since �n is a regular epimorphism in SetC
op

,  is

a regular epimorphism in Set
C

op

. Furthermore, it follows from the proof of Proposition

1.3 that ' is a regular epimorphism in Set
C

op

too. Hence �n+1 is a regular epimorphism

in Set
C

op

.

Let I be the relation in Set
C

op

determined by the graph (
0; 
1). It means that I is
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given by the regular epi-monopair factorization

H1


0 ��

1

��

�

���
��

��
��

��
��

��
��

� H0

I

�0

������������������

�1

������������������

in Set
C

op

. Let �n0 ; �
n
1 : In ! H0 be the composition of n copies of I. Then In is the

relation generated by the graph 
n0 ; 

n
1 : Hn ! H0. Since �n : Y Cn ! Hn is a regular

epimorphism, In is also the relation generated by the graph Y rn0 ; Y r
n
1 : Y Cn ! Y C0 = H0.

II. Now, assume that C has bounded transitive hulls of re
exive and symmetric graphs.
We are going to prove that Cex � Ccoeq. Let H : C op !Set belong to Ccoeq. Following
Proposition 1.2, it suÆces to prove that H belongs to Cex. Since FP (C op) is a variety
and, following Lemma 1.1, H is �nitely presentable, H is presented by a coequalizer

H1


0 ��

1

�� H0

 �� H (4)

of a re
exive and symmetric graph in FP (C op) where H1 and H0 are free algebras in
FP (C op) over �nitely many generators (cf. [AR], Remark 3.13). Since �nitely presentable
free algebras in FP (C op) are precisely �nite sums of representable functors and GC : C!
Ccoeq preserves �nite sums, the functors H0 and H1 are representable, Hi = Y Ci, i = 0; 1.
Hence we get a re
exive and symmetric graph r0; r1 : C1 ! C0 in C such that 
i = Y ri,

i = 0; 1. Since (4) is a coequalizer in Set
C

op

too (by [PW]), it suÆces to show that the
kernel pair

K
� ��

�
�� Y C0


 �� H

has K weakly representable.
Since the graph (r0; r1) has a bounded transitive hull, there is n such that, for any

m > n, there exists a graph morphism Y fm : Y Cm ! Y Cn from the graph (Y rm0 ; Y r
m
1 ) to

the graph (Y rn0 ; Y r
n
1 ). Following I., they induce morphisms Im ! In of the corresponding

relations. Hence In is an equivalence relation and, consequently, it yields a kernel pair of



In
�n
0 ��
�n
1

�� H0

 �� H

Hence K �= In and since In is a quotient of Y Cn, K is weakly representable.

III. Conversely, let Cex � Ccoeq and consider a re
exive and symmetric graph r0; r1 :
C1 ! C0 in C. Take a coequalizer

Y C1

Y r0 ��

Y r1

�� Y C0

 �� H
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in SetC
op

. Following [PW], it is a coequalizer in FP (C op) as well and, using Lemma 1.1,
we get that H 2 Ccoeq. Hence H 2 Cex and therefore the kernel pair

K
� ��

�
�� Y C0


 �� H

has K weakly representable. Hence K is �nitely generated in Set
C

op

(see [AR] 1.69).
Since K is a union of the chain of compositions In, n = 0; 1; : : :, there is n such that
K �= In. Hence Im �= In for all m � n. Following I., Im is the relation generated by
the graph (Y rm0 ; Y r

m
1 ). Since Y Cm are regular projectives, there are graph morphisms

Y Cm ! Y Cn for all m > n. Hence, there are graph morphisms fm : Cm ! Cn for all
m > n. We have proved that C has bounded transitive hulls of re
exive and symmetric
graphs.

2.4. Example. 1) Let V be a variety in which �nitely generated algebras are closed under
�nite products and subalgebras (like sets, vector spaces or abelian groups). Let C be the
full subcategory of V consisting of �nitely generated free algebras. Then Cex � Ccoeq.

At �rst, following [AR] 3.16, V �= FP (C op) and Y : C! FP (C op) corresponds to the
inclusion C � V. Consider a re
exive and symmetric graph r0; r1 : C1 ! C0 in C. The
equivalence relation K � C0 � C0 determined by it is �nitely generated (as a subalgebra
of C0�C0). Following III. of the proof of 2.3, the graph (r0; r1) has a bounded transitive
hull.

Remark that C has weak �nite limits (following Proposition 1.3).
2) On the other hand, it is easy to �nd examples of a small category C such that

Cex � Ccoeq does not hold. It suÆces to consider the category C of countable sets (and
the in�nite path as a re
exive and symmetric graph in it) and to use Theorem 2.3.

References

[AR] J. Ad�amek and J. Rosick�y, Locally presentable and accessible categories, Cambridge University
Press 1994

[BC] M. Bunge and A. Carboni, The symmetric topos, Jour. Pure Appl. Algebra 105 (1995), 233-249

[CV] A. Carboni and E. M. Vitale, Regular and exact completions, Jour. Pure Appl. Algebra 125
(1998), 79-117

[HT] H. Hu and W. Tholen, A note on free regular and exact completions and their in�nitary general-
izations, Theory and Applications of Categories, 2 (1996), 113-132

[PW] M.C. Pedicchio and R. Wood, A simple characterization theorem of theories of varieties, to appear

[P] A. Pitts The lex re
ection of a category with �nite products, unpublished notes 1996

University of Trieste Masaryk University
Ple Europa 1 Jan�a�ckovo n�am. 2a
34100 Trieste, Italy 66295 Brno, Czech Republic

Email: pedicchi@univ.trieste.it and rosicky@math.muni.cz

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by
anonymous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/6/n6/n6.fdvi,psg



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
signi�cantly advance the study of categorical algebra or methods, or that make signi�cant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scienti�c knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility
of members of the Editorial Board. Only papers judged to be both signi�cant and excellent are accepted
for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as they
are published. Full text of published articles is available in .dvi and Postscript format. Details will be
e-mailed to new subscribers and are available by WWW/ftp. To subscribe, send e-mail to tac@mta.ca

including a full name and postal address. For institutional subscription, send enquiries to the Managing
Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LaTEX is the preferred

avour. TEX source of articles for publication should be submitted by e-mail directly to an appropriate
Editor. They are listed below. Please obtain detailed information on submission format and style
�les from the journal's WWW server at URL http://www.tac.mta.ca/tac/ or by anonymous ftp from
ftp.tac.mta.ca in the directory pub/tac/info. You may also write to tac@mta.ca to receive details
by e-mail.

Editorial board.
John Baez, University of California, Riverside: baez@math.ucr.edu
Michael Barr, McGill University: barr@barrs.org
Lawrence Breen, Universit�e de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: r.brown@bangor.ac.uk
Jean-Luc Brylinski, Pennsylvania State University: jlb@math.psu.edu
Aurelio Carboni, Universit�a dell Insubria: carboni@fis.unico.it
P. T. Johnstone, University of Cambridge: ptj@pmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
F. William Lawvere, State University of New York at Bu�alo: wlawvere@acsu.buffalo.edu
Jean-Louis Loday, Universit�e de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.ruu.nl
Susan Nie�eld, Union College: niefiels@union.edu
Robert Par�e, Dalhousie University: pare@mscs.dal.ca
Andrew Pitts, University of Cambridge: ap@cl.cam.ac.uk
Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
James Stashe�, University of North Carolina: jds@charlie.math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Sydney: walters b@maths.usyd.edu.au

R. J. Wood, Dalhousie University: rjwood@mscs.dal.ca


