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COMBINATORICS OF PAST-SIMILARITY IN HIGHER
DIMENSIONAL TRANSITION SYSTEMS

PHILIPPE GAUCHER

Abstract. The key notion to understand the left determined Olschok model category
of star-shaped Cattani-Sassone transition systems is past-similarity. Two states are
past-similar if they have homotopic pasts. An object is fibrant if and only if the set of
transitions is closed under past-similarity. A map is a weak equivalence if and only if it
induces an isomorphism after the identification of all past-similar states. The last part of
this paper is a discussion about the link between causality and homotopy.
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1. Introduction

1.1. Presentation. This work belongs to our series of papers devoted to higher dimen-
sional transition systems [Gaucher, 2010a] [Gaucher, 2011] [Gaucher, 2014a] [Gaucher,
2014b] [Gaucher, 2015a] [Gaucher, 2015b]. One of the goal of this series of papers is to
explore the link between causality and homotopy in this setting.
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Figure 1: u||v: Concurrent execution of u and v

The notion of higher dimensional transition system is a higher dimensional analogue of
the computer-scientific notion of labelled transition system. The purpose is to model the
concurrent execution of n actions by a multiset of actions, i.e. a set with a possible repetition
of some elements (e.g. {u, u, v, w, w, w}). In the language of Cattani and Sassone [Cattani
and Sassone, 1996], the higher dimensional transition system u||v modeling the concurrent
execution of the two actions u and v, depicted by Figure 1, consists of the transitions
(α, {u}, β), (β, {v}, δ), (α, {v}, γ), (γ, {u}, δ) and (α, {u, v}, δ), where the middle term is
a multiset, not a set. The labelling map is in this case the identity map.

This notion is reformulated in [Gaucher, 2010a] to make easier a categorical and
homotopical treatment. A higher dimensional system consists of a set of states S, a set of
actions L together with a labelling map µ : L→ Σ where Σ is a set of labels, and a set
of tuples of

⋃
n>1 S × Ln × S satisfying at least the following two axioms, to obtain the

“minimal” notion of weak transition system:

• Multiset axiom. For every permutation σ of {1, . . . , n} with n > 2, if the tuple
(α, u1, . . . , un, β) is a transition, then the tuple (α, uσ(1), . . . , uσ(n), β) is a transition
as well.

• Patching axiom. For every (n + 2)-tuple (α, u1, . . . , un, β) with n > 3, for every
p, q > 1 with p + q < n, if the five tuples (α, u1, . . . , un, β), (α, u1, . . . , up, ν1),
(ν1, up+1, . . . , un, β), (α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) are transitions,
then the (q + 2)-tuple (ν1, up+1, . . . , up+q, ν2) is a transition as well.

The multiset axiom avoids the use of multisets. The patching axiom enables us to see,
amongst other things, the n-cube as a free object generated by a n-transition. The
patching axiom looks like a 5-ary composition because it generates a new transition
(the patch) from five transitions satisfying a particular condition. These two axioms are
mathematically designed so that the forgetful functor forgetting the set of transitions is
topological [Gaucher, 2010a, Theorem 3.4]. This topological structure turns out to be a
very powerful tool to deal with these objects. Figure 1 has in this new formulation the
transitions (α, u, β), (β, v, δ), (α, v, γ), (γ, u, δ), (α, u, v, δ) and (α, v, u, δ).

This paper is the direct continuation of [Gaucher, 2015a]. However, its reading is
not required to read this one. In [Gaucher, 2015a], we prove the existence of a left
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determined Olschok model structure of weak transition systems which restricts to left
determined Olschok model structures on various full subcategories without using the map
R : {0, 1} → {0} in the set of generating cofibrations (unlike what is done in [Gaucher,
2011] and [Gaucher, 2015b]). Then we prove that the behavior of these homotopy theories
break the causal structure and that the solution to overcome this problem is to work with
star-shaped transition systems. A star-shaped transition system is by definition a pointed
transition system (X, ∗), that means a transition system X together with a distinguished
state ∗ called the base state, such that all other states of X are reachable from ∗ by a path,
i.e. a finite sequence of 1-transitions. This path may also be called a past of the state.

In this paper, we want to make precise the above observations which are only sketched
in [Gaucher, 2015a]. We work in a reflective subcategory of all subcategories of higher
dimensional transition systems introduced in [Gaucher, 2015a]. It is called the subcategory
CSTS of Cattani-Sassone transition systems. The axiom we add is CSA1: if α

u→ β and
α

v→ β are two 1-transitions with µ(u) = µ(v), then u = v. This axiom is introduced in
[Cattani and Sassone, 1996] in a more general formulation: we only use its 1-dimensional
version. It appears also in [Winskel and Nielsen, 1995, Proposition 72] (it is called the
condition-extension condition) and in the notion of extensional asynchronous transition
system [Winskel and Nielsen, 1995, page 140]. It is used in [Gaucher, 2011] for a different
purpose. The main feature of this axiom is to simplify the calculations of the cylinder and
path functors (cf. Table 2, Table 3 and Table 4) while keeping all examples coming from
process algebras [Gaucher, 2008] [Gaucher, 2010b] [Gaucher, 2010a]. The structure of the
left determined model category CSTS obtained by restricting the construction of [Gaucher,
2015a] is unravelled in the following theorem:

1.2. Theorem. (Theorem 7.5) The left determined Olschok model category CSTS is
Quillen equivalent to the full subcategory of Cattani-Sassone transition systems having at
most one state equipped with the discrete model structure.

This theorem means that the homotopy category of Cattani-Sassone transition systems
destroys the causal structure in a very spectacular way. Thus, localizing or colocalizing
this model category will never give anything interesting from a computer-scientific point
of view because it already contains too many weak equivalences.

The formalism of Cattani-Sassone transition systems is interesting because, unlike any
formalism of labelled precubical sets [Gaucher, 2008] [Gaucher, 2010b] [Gaucher, 2014b],
it only contains objects satisfying the higher dimensional automata paradigm [Gaucher,
2010a, Definition 7.1]: mathematically, this paradigm states that the boundary of a labelled
n-cube, with n > 2, can be filled by at most one n-cube; from a computer scientific point
of view, this paradigm means that the concurrent execution of n actions is modelled by
exactly one n-cube, and not two or more having the same (n− 1)-dimensional boundary.
The drawback of the formalism of higher dimensional transition system is that colimits are
difficult to compute because of the patching axiom which freely adds new transitions in
the colimits (cf. [Gaucher, 2015b, Proposition A.1]). Thanks to the axiom CSA2 (recalled
in Section 2 and which plays the role of face operators in this setting), the category of
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Cattani-Sassone transition systems is better behaved with respect to colimits and the
following fact can be considered as an important result of the paper:

1.3. Theorem. (Theorem 4.5) The set of transitions of a colimit of Cattani-Sassone
transition systems is the union of the sets of transitions of the components.

The calculations made to prove Theorem 7.5 enable us to study the model category
CSTS• of star-shaped (Cattani-Sassone) transition systems. The notion of past-similarity
plays a key role in this study. Two states α and β of a star-shaped (Cattani-Sassone)
transition system (X, ∗) are past-similar if there exist two paths from the base state ∗ to α
and β respectively which are homotopic. A star-shaped transition system is reduced if two
states are past-similar if and only if they are equal: Figure 3 page 1139 gives an example
of a non-reduced transition system. Using these two new notions (past-similarity and
reduced transition system), the structure of the model category of star-shaped transition
systems is unravelled:

1.4. Theorem. (Theorem 10.12) The fibrant objects of CSTS• are the Cattani-Sassone
transition systems such that the set of transitions is closed under past-similarity. In
particular, all reduced transition systems are fibrant.

1.5. Theorem. (Theorem 11.9) The left determined Olschok model category CSTS• is
Quillen equivalent to the full subcategory of reduced objects equipped with the discrete model
structure. In particular, a map of star-shaped Cattani-Sassone transition system is a weak
equivalence if and only if it is an isomorphism after the identification of all past-similar
states.

The interpretation of Theorem 11.9 is postponed to the discussion of Section 12 which
speculates about the link between causality and homotopy in this setting.

1.6. Outline of the paper. The paper is structured as follows. Section 2 is a reminder
about weak, cubical, regular and Cattani-Sassone transition systems. It avoids the reader
to have to read the previous papers of this series. All these notions are necessary because
calculations of limits and colimits often require to start from the topological structure of
weak transition systems, and then to restrict to the coreflective subcategory of cubical
transition systems, and then to restrict twice to the reflective subcategories of regular and
Cattani-Sassone transition systems. It also happens that some proofs can be written only
by working with cubical transition systems (e.g. the proof of Proposition 11.7). Section 3
is a technical section about the calculation of colimits in the category of regular transition
systems. Theorem 3.3 must be considered as a vast generalization of [Gaucher, 2010a,
Theorem 4.7] and [Gaucher, 2015b, Proposition A.3]. Roughly speaking, it says that the set
of transitions of a colimit of regular transition systems is the union of the set of transitions.
Section 4 expounds some basic properties of Cattani-Sassone transition systems. It also
extends Theorem 3.3 to this new setting: in the category of Cattani-Sassone transition
systems as well, the set of transitions of a colimit is also the union of the set of transitions.
Section 5 uses the toolbox [Gaucher, 2015c] and the results of [Gaucher, 2015a] to construct
the left determined Olschok model structure of Cattani-Sassone transition systems. The
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cylinder functor is calculated in detail. Section 6 gives a very explicit formulation of the
path functor of the model category constructed in Section 5. Section 7 proves the first main
result of the paper (Theorem 7.5). The formulation is chosen to highlight the destruction
of the causal structure. The notions of pointed and star-shaped transition systems are
recalled in Section 8. Then the toolbox [Gaucher, 2015c] is used to prove the existence of
the left determined model structures on pointed and star-shaped Cattani-Sassone transition
systems. Meanwhile, we give precise formulations of the cylinder and path functors of
a star-shaped transition system. The notion of past-similar states is introduced and
succinctly studied in Section 9. Section 10 characterizes the fibrant object of the left
determined model structure of star-shaped transition systems (Theorem 10.12). Section 11
introduces a particular case of fibrant objects: the reduced star-shaped transition systems.
By definition, a star-shaped transition system is reduced if past-similarity and equality
coincide. Then the last part of the second main result of the paper (Theorem 11.9) is
established. Section 12 is a discussion about an interpretation of Theorem 11.9 and about
possible future works. In particular, Theorem 12.4 rules out a lot of candidates of model
categories. The appendix is an erratum of the paper [Gaucher, 2015a].

1.7. Prerequisites and notations. All categories are locally small. The set of maps
in a category K from X to Y is denoted by K(X, Y ). The cardinal of a set S is denoted by
#S. The class of morphisms of a category K is denoted by Mor(K). The composite of two
maps is denoted by fg instead of f ◦g. The initial (final resp.) object, if it exists, is always
denoted by ∅ (1 resp.). The identity of an object X is denoted by IdX . A subcategory is
always isomorphism-closed (i.e. replete). A reflective or coreflective subcategory is always
full. By convention, A×B tC ×D means (A×B)t (C ×D) where × denotes the binary
product and t the binary coproduct. Let f and g be two maps of a locally presentable
category K. Denote by f�g when f satisfies the left lifting property (LLP) with respect
to g, or equivalently when g satisfies the right lifting property (RLP) with respect to
f . Let us introduce the notations injK(C) = {g ∈ K,∀f ∈ C, f�g} called the class of
C-injective maps and cofK(C) = {f ∈ K,∀g ∈ injK(C), f�g} where C is a class of maps of
K. The class of morphisms of K that are transfinite compositions of pushouts of elements
of C is denoted by cellK(C). There is the inclusion cellK(C) ⊂ cofK(C). Moreover, every
morphism of cofK(C) is a retract of a morphism of cellK(C) as soon as the domains of
K are small relative to cellK(C) [Hovey, 1999, Corollary 2.1.15], e.g. when K is locally
presentable. For every map f : X → Y and every natural transformation α : F → F ′

between two endofunctors of K, the map f ? α is defined by the diagram:

FX

αX

��

Ff // FY

�� αY

��

F ′X

F ′f
11

// • f?α

$$
F ′Y.
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For a set of morphisms A, let A ? α = {f ? α, f ∈ A}. A cylinder functor C : K → K
is equipped with two natural transformations γ = γ0 t γ1 : Idt Id⇒ C and σ : C ⇒ Id
such that σγ : Idt Id ⇒ Id is the codiagonal. A path functor P : K → K is equipped
with two natural transformations τ : Id ⇒ P and π = (π0, π1) : P ⇒ Id× Id such that
πτ : Id⇒ Id× Id is the diagonal. Sometimes, a Greek letter denotes a state: the context
always enables the reader to avoid any confusion. In a model category M, the homotopy
class (left homotopy class, right homotopy class) of maps from X to Y is denoted by
πM(X, Y ) (πlM(X, Y ), πrM(X, Y ) resp.). A cofibrant replacement functor will be denoted
by (−)cof and a fibrant replacement functor by (−)fib. The discrete model structure is the
model structure such that all maps are cofibrations and fibrations and such that the weak
equivalences are the isomorphisms [Salch, 2017]. A map of model categories, i.e. a left
Quillen functor L :M→N is homotopically surjective [Dugger, 2001, Definition 3.1] if
for every fibrant object Y of N and every cofibrant replacement (RY )cof

∼→ RY , where R
is a right adjoint of L, the induced map L((RY )cof )→ Y is a weak equivalence of N . A
homotopically surjective map of model categories L :M→N is a Quillen equivalence if
and only if for every cofibrant object X ofM and every fibrant replacement LX

∼→ (LX)fib,
the map X → R((LX)fib) is a weak equivalence of M.

We refer to [Adámek and Rosický, 1994] for locally presentable categories, to [Rosický,
2009] for combinatorial model categories, and to [Adámek, Herrlich, and Strecker, 2006]
for topological categories, i.e. categories equipped with a topological functor towards a
power of the category of sets. We refer to [Hovey, 1999] and to [Hirschhorn, 2003] for
model categories. For general facts about weak factorization systems, see also [Kurz and
Rosický, 2005]. The reading of the first part of [Olschok, 2009b], published in [Olschok,
2009a], is recommended for any reference about good, cartesian, and very good cylinders.
We use the paper [Gaucher, 2015c] as a toolbox for constructing the model structures.
To keep this paper short, we refer to [Gaucher, 2015c] for all notions related to Olschok
model categories.

2. Higher dimensional transition systems

This section is a reminder about weak, cubical, regular and Cattani-Sassone transition
systems.

An infinite set of labels Σ is fixed. A transition presystem consists of a triple X =
(S(X), µ : L(X)→ Σ,T(X) =

⋃
n>1 Tn(X)) where S(X) is a set of states, where L(X) is

a set of actions, where µ : L(X) → Σ is a set map called the labelling map, and finally
where Tn(X) ⊂ S(X)× L(X)n× S(X) for n > 1 is a set of n-transitions or n-dimensional
transitions. A n-transition (α, u1, . . . , un, β) is also called a transition from α to β: α is

the initial state and β the final state of the transition. It can be denoted by α
u1,...,un //β .

This set of data satisfies one or several of the following axioms (note that the Intermediate
state axiom is a consequence of CSA2):

• Multiset axiom. For every permutation σ of {1, . . . , n} with n > 2, if the tuple
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(α, u1, . . . , un, β) is a transition, then the tuple (α, uσ(1), . . . , uσ(n), β) is a transition
as well.

• Patching axiom. For every (n + 2)-tuple (α, u1, . . . , un, β) with n > 3, for every
p, q > 1 with p + q < n, if the five tuples (α, u1, . . . , un, β), (α, u1, . . . , up, ν1),
(ν1, up+1, . . . , un, β), (α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) are transitions,
then the (q + 2)-tuple (ν1, up+1, . . . , up+q, ν2) is a transition as well.

• All actions are used. For every u ∈ L, there is a 1-transition (α, u, β).

• Intermediate state axiom. For every n > 2, every p with 1 6 p < n and every
transition (α, u1, . . . , un, β) of X, there exists a state ν (not necessarily unique) such
that both (α, u1, . . . , up, ν) and (ν, up+1, . . . , un, β) are transitions.

• CSA2 or Unique intermediate state axiom. For every n > 2, every p with
1 6 p < n and every transition (α, u1, . . . , un, β) of X, there exists a unique state ν
such that both (α, u1, . . . , up, ν) and (ν, up+1, . . . , un, β) are transitions.

• CSA1. If (α, u, β) and (α, v, β) are two transitions such that µ(u) = µ(v), then
u = v.

A map of transition presystems consists of two set maps, one between the sets of states,
the other one between the set of actions preserving the labelling map, such that any
transition of the domain is mapped to a transition of the codomain. For a map f : X → Y
of transition presystems, the image by f of a transition (α, u1, . . . , un, β) should be noted
f((α, u1, . . . , un, β)). The notation f(α, u1, . . . , un, β) will be used instead to not overload
the calculations. This convention is already implicitly used in our previous papers. The
mapping X → S(X) ( X → L(X) resp.) induces a functor from the category of transition
presystems to the category of sets Set.

Table 1 lists the definitions of the categories WTS of weak transition systems [Gaucher,
2010a, Definition 3.2], CTS of cubical transition systems [Gaucher, 2011, Proposition 6.7],
RTS of regular transition systems [Gaucher, 2015b, Definition 2.2] and CSTS of Cattani-
Sassone transition systems [Gaucher, 2015b, Table 1]. All examples coming from process
algebras belong to CSTS [Gaucher, 2008] [Gaucher, 2010b] [Gaucher, 2010a].

The category CSTS is a reflective subcategory of CTS by [Gaucher, 2011, Proposition 7.2],
but also of RTS by Proposition 4.4. We will come back on the category CSTS in Section 4.
The category RTS is locally finitely presentable by [Gaucher, 2015b, Proposition 4.5]. It
is a reflective subcategory of CTS by [Gaucher, 2015b, Proposition 4.4]. The reflection is
the functor CSA2 : CTS → CTS which forces CSA2 to hold. This functor is extensively
studied in [Gaucher, 2015b, Section 4]. The category CTS is locally finitely presentable by
[Gaucher, 2011, Corollary 3.15]. By [Gaucher, 2011, Corollary 3.15], the category CTS is a
coreflective subcategory of WTS. The latter is locally finitely presentable by [Gaucher,
2010a, Theorem 3.4]. The forgetful functor ω :WTS → Set{s}∪Σ taking the weak higher
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Cattani-Sassone Regular Cubical Weak
Multiset axiom yes yes yes yes
Patching axiom yes yes yes yes
All actions used yes yes yes no
Intermediate state axiom yes yes yes no
Unique intermediate state axiom yes yes no no
CSA1 yes no no no

Table 1: Cattani-Sassone, regular, cubical and weak transition systems.

dimensional transition system X to the ({s} ∪ Σ)-tuple of sets (S(X), (µ−1(x))x∈Σ) ∈
Set{s}∪Σ is topological by [Gaucher, 2010a, Theorem 3.4]. There is the chain of functors

CSTS ⊂reflective RTS ⊂reflective CTS ⊂coreflective WTS
ω−→topological Set

{s}∪Σ.

We give now some important examples of regular transition systems.

1. Every set X may be identified with the cubical transition system having the set of
states X, with no actions and no transitions.

2. For every x ∈ Σ, let us denote by ↑x↑ the cubical transition system with four
states {1, 2, 3, 4}, one action x and two transitions (1, x, 2) and (3, x, 4). The cubical
transition system ↑x↑ is called the double transition (labelled by x) where x ∈ Σ.

2.1. theorem. For n > 1, let 0n = (0, . . . , 0) (n-times) and 1n = (1, . . . , 1) (n-times).
By convention, let 00 = 10 = ().

Let us introduce the weak transition system corresponding to the labelled n-cube.

2.2. Proposition. [Gaucher, 2010a, Proposition 5.2] Let n > 0 and x1, . . . , xn ∈ Σ. Let
Td ⊂ {0, 1}n × {(x1, 1), . . . , (xn, n)}d × {0, 1}n (with d > 1) be the subset of (d+ 2)-tuples

((ε1, . . . , εn), (xi1 , i1), . . . , (xid , id), (ε
′
1, . . . , ε

′
n))

such that

• im = in implies m = n, i.e. there are no repetitions in the list (xi1 , i1), . . . , (xid , id)

• for all i, εi 6 ε′i

• εi 6= ε′i if and only if i ∈ {i1, . . . , id}.

Let µ : {(x1, 1), . . . , (xn, n)} → Σ be the set map defined by µ(xi, i) = xi. Then

Cn[x1, . . . , xn] = ({0, 1}n, µ : {(x1, 1), . . . , (xn, n)} → Σ, (Td)d>1)
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is a well-defined weak transition system called the n-cube.

The n-cubes Cn[x1, . . . , xn] for all n > 0 and all x1, . . . , xn ∈ Σ are regular by [Gaucher,
2010a, Proposition 4.6] and [Gaucher, 2010a, Proposition 5.2]. For n = 0, C0[], also
denoted by C0, is nothing else but the set {()}.

Here are two important families of weak transition systems which are not cubical, and
therefore not regular:

1. The weak transition system x = (∅, {x} ⊂ Σ,∅) for x ∈ Σ is not cubical because
the action x is not used.

2. Let n > 0. Let x1, . . . , xn ∈ Σ. The pure n-transition Cext
n [x1, . . . , xn] is the weak

transition system with the set of states {0n, 1n}, with the set of actions

{(x1, 1), . . . , (xn, n)}

and with the transitions all (n+ 2)-tuples (0n, (xσ(1), σ(1)), . . . , (xσ(n), σ(n)), 1n) for
σ running over the set of permutations of the set {1, . . . , n}. It is not cubical for
n > 1 because it does not contain any 1-transition. Intuitively, the pure transition is
a cube without faces of lower dimension.

The main use of the family of pure transitions is summarized in the following two facts:

1. For all weak transition systems X, the set WTS(Cext
n [x1, . . . , xn], X) is the set of

transitions (α, u1, . . . , un, β) of X such that for all 1 6 i 6 n, µ(ui) = xi and⊔
x1,...,xn∈Σ

WTS(Cext
n [x1, . . . , xn], X)

is the set of transitions of X.

2. Every map of weak transition systems f : Cext
n [x1, . . . , xn] → X where X satisfies

CSA2 factors uniquely as a composite f : Cext
n [x1, . . . , xn]→ Cn[x1, . . . , xn]→ X by

[Gaucher, 2010a, Theorem 5.6].

We conclude this section by recalling some important facts:

2.3. Proposition. Let f : A→ B be a map of weak transition systems which is one-to-one
on states and on actions. Then it is one-to-one on transitions.

Proof. It is mutatis mutandis the proof of [Gaucher, 2014b, Proposition .4.4].
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2.4. Theorem. [Gaucher, 2015b, Theorem 3.3] Let (fi : ω(Ai)→ W )i∈I be a cocone of
Set{s}∪Σ such that the weak transition systems Ai are cubical for all i ∈ I and such that
every action u of W is the image of an action of Aiu for some iu ∈ I. Then the ω-final
lift W is cubical.

2.5. Proposition. [Gaucher, 2015b, Proposition 4.1] Let X be a cubical transition system.
Let Y be a weak transition system satisfying CSA2. Let f : X → Y be a map of weak
transition systems which is one-to-one on states. Then X is regular, and in particular
satisfies CSA2.

3. Colimit of regular transition systems

Theorem 3.3 states that the set of transitions of a colimit of regular transition systems is
the union of the set of transitions. Its proof is similar to the proofs of [Gaucher, 2010a,
Theorem 4.7] and [Gaucher, 2015b, Proposition A.3].

We need to recall two lemmas about colimits of weak transition systems and cubical
transition systems coming from [Gaucher, 2015a].

3.1. Lemma. The forgetful functor mapping a weak transition system to its set of states
is colimit-preserving. The forgetful functor mapping a weak transition system to its set of
actions is colimit-preserving.

Proof. The lemma is a consequence of the fact that the functor ω :WTS −→ Set{s}∪Σ

taking the weak higher dimensional transition system (S, µ : L → Σ, (Tn)n>1) to the
({s} ∪ Σ)-tuple of sets (S, (µ−1(x))x∈Σ) ∈ Set{s}∪Σ is topological.

3.2. Lemma. The forgetful functor mapping a cubical transition system to its set of states
is colimit-preserving. The forgetful functor mapping a cubical transition system to its set
of actions is colimit-preserving.

Proof. Since the category of cubical transition systems is a coreflective subcategory of
the category of weak transition systems by [Gaucher, 2011, Corollary 3.15], this lemma is
a consequence of Lemma 3.1.

3.3. Theorem. Let (i 7→ Xi) be a small diagram of RTS. The set of states S(lim−→Xi)
is a quotient of the set lim−→ S(Xi), the set of actions L(lim−→Xi) is equal to lim−→L(Xi) and
the set of transitions of lim−→Xi is equal to

⋃
i φi(T(Xi)) where φi : Xi → lim−→Xi is the

canonical map. In particular, the regular transition system lim−→Xi is equipped with the
ω-final structure.

Proof. The proof is divided in two parts. The first one is easy. The second one requires
to be more careful and shows how the patching axiom can be used.

The case of states and actions. The colimit lim−→Xi in RTS is equal to CSA2(lim−→
CTS Xi)

where lim−→
CTS Xi is the colimit calculated in CTS. Since the functors S : CTS → Set and L :

CTS → Set are colimit-preserving by Lemma 3.2, we have the bijection of sets lim−→ S(Xi) ∼=
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S(lim−→
CTS Xi) and lim−→L(Xi) ∼= L(lim−→

CTS Xi). The unit map lim−→
CTS Xi → CSA2(lim−→

CTS Xi)
is onto on states and bijective on actions by [Gaucher, 2015b, Proposition 4.2]: the functor
CSA2 : CTS → RTS forces CSA2 to hold by making identifications of states. We deduce
that the set of states of lim−→Xi is a quotient of lim−→ S(Xi) and that the set of actions of
lim−→Xi is exactly lim−→L(Xi).

The case of transitions. Let T =
⋃
i φi(T(Xi)). Let (fi(α), fi(u1), . . . , fi(un), fi(β)) be

a tuple of T . Then the tuple (α, uσ(1), . . . , uσ(n), β) is a transition of Xi for all permutations
σ of {1, . . . , n}. So the tuple (f(α), f(uσ(1)), . . . , f(uσ(n)), f(β)) belongs to T . This means
that the set of tuples T satisfies the multiset axiom. Let n > 3 and p, q > 1 with p+ q < n.
Let

(α, u1, . . . , un, β), (α, u1, . . . , up, µ), (µ, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν), (ν, up+q+1, . . . , un, β)

be five tuples of T . Let (α, u1, . . . , un, β) = (fi(γ), fi(v1), . . . , fi(vn), fi(δ)) where the tuple
(γ, v1, . . . , vn, δ) is a transition of Xi. There exist two states ε and η of Xi such that the
five tuples

(γ, v1, . . . , vp, ε), (γ, v1, . . . , vp+q, η),

(ε, vp+1, . . . , vn, δ), (η, vp+q+1, . . . , vn, δ), (ε, vp+1, . . . , vp+q, η)

are transitions of Xi since Xi is cubical and by using the patching axiom in Xi. Therefore,
the five tuples

(α, u1, . . . , up, fi(ε)), (α, u1, . . . , up+q, fi(η)),

(fi(ε), up+1, . . . , un, β), (fi(η), up+q+1, . . . , un, β),

(fi(ε), up+1, . . . , up+q, fi(η))

are transitions of lim−→Xi. The point is that lim−→Xi satisfies CSA2. We deduce that fi(ε) = µ
and fi(η) = ν. We obtain that

(µ, up+1, . . . , up+q, ν) = (fi(ε), fi(vp+1), . . . , fi(vp+q), fi(η)) ∈ T.

This means that the set of tuples T satisfies the patching axiom. Write Z for the weak
transition system having the set of transitions T . We have obtained a morphism of cocones
of weak transition systems

(Xi)

��

(Xi)

��
Z

⊂ // lim−→Xi.

The map Z → lim−→Xi is bijective on states and on actions, and therefore one-to-one on
transitions by Proposition 2.3. We have also proved that the weak transition system
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Z is the ω-final lift of the cocone (ω(Xi) → ω(Z)) of Set{s}∪Σ. By Theorem 2.4, the
weak transition system Z is cubical. Since the map Z → lim−→Xi is one-to-one on states,
the cubical transition system Z satisfies CSA2 by Proposition 2.5. We have proved that
Z = lim−→Xi.

3.4. Corollary. Consider a pushout diagram of RTS

A
φ //

p

��

X

f

��
B

ψ // Y

such that the left vertical map A → B is onto on states, on actions and on transitions.
Then the right vertical map is onto on states, on actions and on transitions.

Proof. Since the map A→ B is onto on states and on actions, the map X → Y is onto
on states and on actions as well by Theorem 3.3. By Theorem 3.3, we have the equality
T(Y ) = f(T(X))∪ψ(T(B)). Since A→ B is onto on transitions, we also have the equalities
ψ(T(B)) = ψ(p(T(A)) = f(φ(T(A)). We deduce the inclusion ψ(T(B)) ⊂ f(T(X)). We
obtain T(Y ) = f(T(X)).

In Corollary 3.4, RTS cannot be replaced by CTS (cf. [Gaucher, 2015b, Proposi-
tion A.1]). This “good” behavior of colimits in RTS is due to CSA2.

4. Cattani-Sassone transition system

All sets, all double transitions and all cubes are Cattani-Sassone transition systems. All
weak transition systems coming from a process algebra are Cattani-Sassone transition
systems [Gaucher, 2008] [Gaucher, 2010b].

4.1. theorem. Let U = {C1[x] t{01,11} C1[x]→ C1[x] | x ∈ Σ}.

4.2. Proposition. Let X be a weak transition system. The following conditions are
equivalent:

1. X is U-injective.

2. X is U-orthogonal.

3. X satisfies CSA1.

Proof. Every map of U is bijective on states and onto on actions. Thus, every map of U
is epic. We deduce the equivalence (1)⇔ (2). The equivalence (1)⇔ (3) is clear.
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4.3. Proposition. Every map of cellRTS(U) is onto on states, on actions and on transi-
tions. In particular, every map of cellRTS(U) is epic.

Proof. Every pushout in RTS of a map of U is onto on states, on actions and on
transitions by Corollary 3.4. Every transfinite composition in RTS of maps onto on
states, on actions and on transitions is onto on states, on actions and on transitions by
Theorem 3.3. Therefore, every map of cellRTS(U) is onto on states, on actions and on
transitions. In particular, every map of cellRTS(U) is epic.

Since every map of cellRTS(U) is epic by Proposition 4.3, the canonical map X → 1
from X to the terminal object of RTS factors functorially and uniquely, up to isomorphism,
as a composite

X
∈cellRTS(U)// CSA1(X)

∈injRTS(U) // 1

in RTS where the left-hand map belongs to cellRTS(U) and the right-hand map belongs
to injRTS(U) (see [Gaucher, 2015a, Proposition A.1] for a proof of uniqueness). By
Proposition 4.2, the regular transition system CSA1(X) satisfies CSA1. We have obtained
a well-defined functor CSA1 : RTS → RTS.

4.4. Proposition. The category CSTS is a reflective locally finitely presentable subcategory
of RTS. The left adjoint of the inclusion CSTS ⊂ RTS is precisely the functor CSA1 :
RTS → RTS.

Proof. By Proposition 4.2, CSTS is a small-orthogonality class of RTS. Hence it is a
reflective subcategory. Thus, CSTS is complete and cocomplete. The set of cubes and
double transitions is a dense and hence strong generator of finitely presentable objects of
RTS by [Gaucher, 2011, Theorem 3.11], and therefore of CSTS. Consequently, the category
CSTS is locally finitely presentable by [Adámek and Rosický, 1994, Theorem 1.20]. Let
f : X → Z be a map of regular transition systems such that Z satisfies CSA1. Then we
have the commutative diagram of RTS

X //

��

Z

��
CSA1(X)

`

;;

// 1.

By construction, the left vertical map belongs to cellRTS(U). Since Z satisfies CSA1, the
right vertical map belongs to injRTS(U) by Proposition 4.2. Therefore the lift ` exists and
it is unique since the left vertical map is epic by Proposition 4.3. Thus, the map X → Z
factors uniquely as a composite X → CSA1(X)→ Z.

4.5. Theorem. Let (i 7→ Xi) be a small diagram of CSTS. The set of states S(lim−→Xi) is a
quotient of the set lim−→ S(Xi), the set of actions L(lim−→Xi) is a quotient of the set lim−→L(Xi)
and the set of transitions of lim−→Xi is equal to

⋃
i φi(T(Xi)) where φi : Xi → lim−→Xi is the

canonical map. In particular, the Cattani-Sassone transition system lim−→Xi is equipped
with the ω-final structure.
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Proof. We have lim−→Xi
∼= CSA1(lim−→

RTS Xi) where lim−→
RTS is the colimit calculated in RTS.

The unit map lim−→
RTS Xi → CSA1(lim−→

RTS Xi) belongs to cellRTS(U). Therefore it is onto
on states, on actions and on transitions by Proposition 4.3. The proof is complete thanks
to Theorem 3.3.

4.6. Corollary. Consider a pushout diagram of CSTS

A
φ //

p

��

X

f

��
B

ψ // Y

such that the left vertical map A → B is onto on states, on actions and on transitions.
Then the right vertical map is onto on states, on actions and on transitions.

Proof. The proof is mutatis mutandis the proof of Corollary 3.4.

5. Homotopy theory of non star-shaped objects

Let X be a weak transition system. By [Gaucher, 2015a, Proposition 2.10], there exists
a weak transition system Cyl(X) with the set of states S(X)× {0, 1}, the set of actions
L(X)× {0, 1}, the labelling map the composite map µ : L(X)× {0, 1} → L(X)→ Σ, and
such that a tuple ((α, ε0), (u1, ε1), . . . , (un, εn), (β, εn+1)) is a transition of Cyl(X) if and
only if the tuple (α, u1, . . . , un, β) is a transition of X.

5.1. theorem. Let Z ⊂ S(X). The ω-final lift of the map

ω(Cyl(X)) −→ (Z × {0} t (S(X)\Z)× {0, 1},L(X)× {0, 1})

of Set{s}∪Σ taking (s, ε) ∈ Z×{0, 1} to (s, 0) and which is the identity on (S(X)\Z)×{0, 1}
and on L(X)× {0, 1} is denoted by Cyl(X)//Z.

The set of transitions of Cyl(X)//Z is the set of tuples ((α, ε0), (u1, ε1), . . . , (un, εn),
(β, εn+1)) such that (α, u1, . . . , un, β) is a transition of X. Indeed, the ω-final structure
contains this set of tuples and this set of tuples obviously satisfies the multiset axiom and
the patching axiom; consequently, it is the ω-final structure.

By [Gaucher, 2015a, Theorem 3.3], if the weak transition system X is cubical, then
the weak transition system Cyl(X) introduced above is cubical as well. The map

ω(Cyl(X)) −→ (Z × {0} t (S(X)\Z)× {0, 1},L(X)× {0, 1})

of Set{s}∪Σ induces the identity of L(X)× {0, 1} on actions, and thus, is onto on actions.
By Theorem 2.4, we deduce that if the weak transition system X is cubical, then the weak
transition system Cyl(X)//Z is cubical as well.



COMBINATORICS OF PAST-SIMILARITY 1121

5.2. theorem. Let Z ⊂ S(X). The ω-final lift of the map of Set{s}∪Σ

ω(Cyl(X)) −→ (Z × {0} t (S(X)\Z)× {0, 1},L(X))

taking (s, ε) ∈ Z × {0, 1} to (s, 0) and taking the action (u, ε) ∈ L(X) × {0, 1} to u is
denoted by Cyl(X)///Z.

5.3. Proposition. Let X be a cubical transition system. Let Z ⊂ S(X) be a subset
of the set of states of X. The weak transition system Cyl(X)///Z is cubical. A tu-
ple ((α, ε0), u1, . . . , un, (β, εn+1)) is a transition of Cyl(X)///Z if and only if the tuple
(α, u1, . . . , un, β) is a transition of X. Moreover, if X satisfies CSA1, then Cyl(X)///Z
satisfies CSA1 as well.

Proof. By Theorem 2.4, the weak transition system Cyl(X)///Z is cubical since the
projection map L(X)× {0, 1} → L(X) is onto. The set of transitions of Cyl(X)///Z is
the ω-final structure generated by the set of tuples

T = {((α, ε0), u1, . . . , un, (β, εn+1)) | (α, u1, . . . , un, β) ∈ T(X)}.

The set T of transitions satisfies the multiset axiom and the patching axiom. Therefore
it is the ω-final structure: T = T(Cyl(X)///Z). Assume that X satisfies CSA1. Let
((α, ε0), u, (β, ε1)) and ((α, ε0), v, (β, ε1)) be two transitions of the cubical transition system
Cyl(X)///Z with µ(u) = µ(v). Then the tuples (α, u, β) and (α, v, β) are two transitions
of X. Since X satisfies CSA1 by hypothesis, we obtain u = v. Consequently, Cyl(X)///Z
satisfies CSA1 if X does.

5.4. Definition. [Gaucher, 2015a] Let X be a weak transition system. A state α
of X is internal if there exists three transitions (γ, u1, . . . , un, δ), (γ, u1, . . . , up, α) and
(α, up+1, . . . , un, δ) with n > 2 and p > 1. A state α is external if it is not internal.

5.5. theorem. The set of internal states of a weak transition system X is denoted by
I(X). The complement is denoted by E(X) = S(X)\ I(X).

For any map f : X → Y of weak transition systems, we have f(I(X)) ⊂ I(Y ): any
internal state ofX is mapped to an internal state of Y . In general, we have f(E(X)) * E(Y ).

In the example of the inclusion 00
u−→ 01

v−→ 11 ⊂ C2[µ(u), µ(v)], all states of the domains
are external, and the middle state 01 is mapped to an internal state of C2[µ(u), µ(v)]. We
actually have the following characterization:

5.6. Proposition. A state α of a cubical transition systems X is internal if and only if
there exist three transitions (γ, u1, u2, δ), (γ, u1, α) and (α, u2, δ).

Proof. The “if” part is a consequence of the definition. The “only if” part is a consequence
of the fact that X is cubical.
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5.7. Proposition. Let X be a Cattani-Sassone transition system. Then the cubical
transition system Cyl(X)/// I(X) is a Cattani-Sassone transition system.

Proof. Consider the five transitions

((α, ε0), u1, . . . , un, (β, εn+1))

((α, ε0), u1, . . . , up, (γ, ε)), ((γ, ε), up+1, . . . , un, (β, εn+1))

((α, ε0), u1, . . . , up, (γ
′, ε′)), ((γ′, ε′), up+1, . . . , un, (β, εn+1))

of Cyl(X)/// I(X). Then the five tuples

(α, u1, . . . , un, β)

(α, u1, . . . , up, γ), (γ, up+1, . . . , un, β)

(α, u1, . . . , up, γ
′), (γ′, up+1, . . . , un, β)

are transitions of X. Since X is regular, we have γ = γ′. And since γ = γ′ is an internal
state of X, we have (γ, ε) = (γ, 0) and (γ′, ε) = (γ′, 0) in Cyl(X)/// I(X). We deduce that
Cyl(X)/// I(X) is regular. The proof is complete using Proposition 5.3.

5.8. Theorem. Let X be a Cattani-Sassone transition system. Then there is the natural
isomorphism CSA1 CSA2 Cyl(X) ∼= Cyl(X)/// I(X).

Proof. By [Gaucher, 2015a, Lemma 3.14], we have the isomorphism of weak transition
systems

CSA2 Cyl(X) ∼= Cyl(X)// I(X).

In particular, this means that Cyl(X)// I(X) is regular. Let u ∈ L(X). Since X is
cubical, there exists a transition (αu, u, βu) of X. We deduce that ((αu, 0), (u, 0), (βu, 0))
and ((αu, 0), (u, 1), (βu, 0)) are two transitions of Cyl(X), and therefore two transitions of
Cyl(X)// I(X). Consider the map φu : C1[µ(u)] t01,11 C1[µ(u)] → Cyl(X)// I(X) which
sends the two transitions of the domain to the transitions ((αu, 0), (u, 0), (βu, 0)) and
((αu, 0), (u, 1), (βu, 0)) respectively. Consider the pushout diagram of RTS

⊔
u∈L(X) C1[µ(u)] t01,11 C1[µ(u)]

��

⊔
u∈L(X) φu // Cyl(X)// I(X)

��⊔
u∈L(X) C1[µ(u)] // Z.

By Theorem 3.3, the set of states S(Z) is a quotient of the set of states S(Cyl(X)// I(X)),
the set of actions L(Z) of Z is equal to L(X) and the set of transitions of Z is given by
the ω-final structure. The map of Set{s}∪Σ

ω(Cyl(X)) −→ (I(X)× {0} t E(X)× {0, 1},L(X))
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factors as a composite

ω(Cyl(X)) −→ (I(X)× {0} t E(X)× {0, 1},L(X)× {0, 1})
−→ (I(X)× {0} t E(X)× {0, 1},L(X))

where the left hand map is the identity on L(X) × {0, 1}. Consequently, the map
Cyl(X)→ Cyl(X)/// I(X) factors uniquely as a composite

Cyl(X)→ Cyl(X)// I(X)→ Cyl(X)/// I(X).

The right-hand map
Cyl(X)// I(X)→ Cyl(X)/// I(X)

is bijective on states and Cyl(X)/// I(X) is obtained from Cyl(X)// I(X) by making
the identifications (u, 0) = (u, 1) for all actions u of X. Consequently, by the universal
property of the pushout, the map Cyl(X)// I(X)→ Cyl(X)/// I(X) factors uniquely as a
composite

Cyl(X)// I(X) −→ Z −→ Cyl(X)/// I(X).

The latter composite set map yields the factorization of IdS(Cyl(X)// I(X)) as the composite

S(Cyl(X)// I(X))� S(Z) −→ S(Cyl(X)/// I(X)).

We deduce that the left-hand map is one-to-one, and then bijective. We have obtained the
isomorphism Z ∼= Cyl(X)/// I(X) because the two Cattani-Sassone transition systems
are the ω-final lift of the same map of Set{s}∪Σ. We obtain a factorization of the canon-
ical map Cyl(X)// I(X) → 1 as a composite Cyl(X)// I(X) → Cyl(X)/// I(X) → 1
where the left-hand map belongs to cellRTS(U) and where, by Proposition 5.3 and
Proposition 4.2, the right-hand map belongs to injRTS(U). We deduce the isomorphism
CSA1(Cyl(X)// I(X)) ∼= Cyl(X)/// I(X).

5.9. theorem. For every X ∈ CSTS, let CylCSTS(X) := CSA1 CSA2 Cyl(X).

Let X be an object of CSTS. The cylinder CylCSTS(X) of X in CSTS is then the
Cattani-Sassone transition systems with the set of states I(X)× {0} t E(X)× {0, 1}, the
set of actions L(X) with the same labelling map as X, and such that a tuple

((α, ε0), u1, . . . , un, (β, εn+1))

is a transition of CylCSTS(X) if and only if the tuple (α, u1, . . . , un, β) is a transition of
X. The canonical map γε : X → CylCSTS(X) with ε ∈ {0, 1} is induced by the mapping
α 7→ (α, ε) for α ∈ S(X)\ I(X) or ε = 0, by the mapping α 7→ (α, 0) for α ∈ I(X) and
ε = 1 and by the identity of L(X) on actions. The canonical map CylCSTS(X) → X is
induced by the mapping (α, ε) 7→ α on states and by the identity of L(X) on actions.

5.10. Proposition. For every Cattani-Sassone transition system X, the unit map

CSA2 Cyl(X)→ CSA1 CSA2 Cyl(X)

is split epic.
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Proof. For every Cattani-Sassone transition system X, the map

CSA2 Cyl(X)→ CSA1 CSA2 Cyl(X)

is the identity on states and takes the action (u, ε) of CSA2 Cyl(X) to the action u of
CSA1 CSA2 Cyl(X). The inclusion map

CSA1 CSA2 Cyl(X) ⊂ CSA2 Cyl(X)

induced by the identity on states and the mapping u 7→ (u, 0) on actions yields a section
of the map CSA2 Cyl(X)→ CSA1 CSA2 Cyl(X).

5.11. Definition. Let n > 1 and x1, . . . , xn ∈ Σ. Let ∂Cn[x1, . . . , xn] be the regular
transition system defined by removing from the n-cube Cn[x1, . . . , xn] all its n-transitions.
It is called the boundary of Cn[x1, . . . , xn].

5.12. theorem. Let

ICTS = {C : ∅→ {0}} ∪ {∂Cn[x1, . . . , xn] ⊂ Cn[x1, . . . , xn] | n > 1 and x1, . . . , xn ∈ Σ}
∪ {C0 t C0 t C1[x]→↑x↑| x ∈ Σ}

where the maps C0 t C0 t C1[x]→↑x↑ for x running over Σ are defined to be bijective on
states.

The definition of ICTS is not the same as the one of [Gaucher, 2015a]. The maps
C1[x] →↑x↑ for x running over Σ are replaced by the maps C0 t C0 t C1[x] →↑x↑ for x
running over Σ which are defined to be bijective on states. The class of maps cellCTS(ICTS)
with ICTS defined as above is exactly the class of monomorphisms of weak transition
systems (i.e. one-to-one on states and actions by [Gaucher, 2011, Proposition 3.1]) between
cubical transition systems by [Gaucher, 2015a, Theorem 3.7] (which is fixed in Appendix A).
This choice is more convenient because the maps C0 t C0 t C1[x] →↑x↑ for x ∈ Σ are
bijective on states and on actions. Note that the maps C0tC0tC1[x]→↑x↑ for x running
over Σ are already used e.g. in the proof of [Gaucher, 2014b, Theorem 4.6].

Let X be a weak transition system. By [Gaucher, 2015a, Proposition 2.14], there
exists a well-defined weak transition system Path(X) with the set of states S(X)× S(X),
the set of actions is the set L(X)×Σ L(X) and the labelling map is the composite map
L(X)×Σ L(X)→ L(X)→ Σ and such that a tuple ((α0, α1), (u0

1, u
1
1), . . . , (u0

n, u
1
n), (β0, β1))

is a transition if and only if for any ε0, . . . , εn+1 ∈ {0, 1}, the tuple (αε0 , uε11 , . . . , u
εn
n , β

εn+1)
is a transition of X. The functor Path : WTS → WTS is a right adjoint of the functor
Cyl : WTS → WTS by [Gaucher, 2015a, Proposition 2.15]. The right adjoint PathCTS :
CTS → CTS of the restriction of Cyl to the full subcategory of cubical transition systems
is the composite map

PathCTS : CTS ⊂ WTS Path−→WTS −→ CTS

where the right-hand map is the coreflection.
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5.13. Proposition. Let X be a cubical transition system. The cubical transition system
PathCTS(X) can be identified to a subobject of Path(X) having the same set of states.

Proof. By [Gaucher, 2015a, Proposition 3.4], the counit map PathCTS(X)→ Path(X) is
bijective on states and one-to-one on actions and transitions.

5.14. Proposition. For every Cattani-Sassone transition system X, the cubical transition
system PathCTS(X) is a Cattani-Sassone regular transition system.

Proof. Since X is regular, the cubical transition system PathCTS(X) is regular as well by
[Gaucher, 2015a, Proposition 3.10]. Let

((α−, α+), (u−, u+), (β−, β+)), ((α−, α+), (v−, v+), (β−, β+))

be two transitions of PathCTS(X). By definition of PathCTS(X), the tuples (α−, u±, β−)
and (α−, v±, β−) are transitions of X. Since X satisfies CSA1, we deduce that u− = u+ =
v+ = v−. We obtain (u−, u+) = (v−, v+), which means that PathCTS(X) satisfies CSA1.

5.15. Theorem. There exists a left determined model structure on CSTS with the set of
generating cofibrations ICTS. This model category is an Olschok model category with the
very good cartesian cylinder CylCSTS : CSTS → CSTS. All objects are cofibrant.

Proof. By [Gaucher, 2015a, Theorem 3.16], there exists a unique left determined model
structure on RTS such that the set of generating cofibrations is CSA2(ICTS) = ICTS . This
model structure is an Olschok model structure with the very good cylinder CSA2 Cyl
and, by [Gaucher, 2015a, Proposition 3.10], with the cocylinder PathCTS . We want to
restrict this model structure to the subcategory CSTS. 1) It turns out that CSTS is a
reflective subcategory of RTS by Proposition 4.4. 2) We have CSA1(ICTS) = ICTS since
every domain and every codomain of a map of ICTS satisfies CSA1 and since CSTS is a
full subcategory of RTS. 3) We have PathCTS(CSTS) ⊂ CSTS by Proposition 5.14. 4) The
map CSA2 Cyl(X)→ CSA1 CSA2 Cyl(X) is split by Proposition 5.10. Therefore, we can
apply [Gaucher, 2015c, Theorem 3.1] and the proof is complete.

The following proposition will be used later:

5.16. Proposition. Let f : X → Y be a map of CSTS. If f is one-to-one on states and
on actions, then it belongs to cellCSTS(ICTS). The converse is false: there exist maps of
cellCSTS(ICTS) which are not one-to-one on states and on actions.

Proof. Since f is one-to-one on states and on actions, it belongs to cellCTS(ICTS). The
inclusion functor CSTS ⊂ CTS has a left adjoint CSA1 CSA2 : CTS → CSTS. Thus,
the functor CSA1 CSA2 is colimit-preserving and CSA1 CSA2(f) : CSA1 CSA2(X) →
CSA1 CSA2(Y ) belongs to cellCSTS(CSA1 CSA2(ICTS)). Since CSA1 CSA2(f) = f and
CSA1 CSA2(ICTS) = ICTS , we deduce that f belongs to cellCSTS(ICTS). Let x ∈ Σ. The
map γC2[x,x] : C2[x, x] t C2[x, x] → CylCSTS(C2[x, x]) is a cofibration of CSTS. The state
01 is an internal state of C2[x, x]. Thus, the states 01 of the two copies of C2[x, x] are
identified to the same state of CylCSTS(C2[x, x]). This means that γC2[x,x] is not one-to-one
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on states. The actions (x, 1) of the two copies of C2[x, x] are identified to the same action
(x, 1) of CylCSTS(C2[x, x]). This implies that γC2[x,x] is not one-to-one on actions.

6. Computation of the path functor

6.1. Proposition. Let X be a regular transition system. Consider the family of sets
(Tn)n>1 constructed by induction on n as follows:

• T1 is the set of triples ((α−, α+), u1, (β
−, β+)) such that the triples (α±, u1, β

±) are
transitions of X.

• For n > 2, Tn is the set of tuples ((α−, α+), u1, . . . , un, (β
−, β+)) such that the tuples

(α±, u1, . . . , un, β
±) are transitions of X and such that for all permutations σ of

{1, . . . , n} and all 1 6 p < n, there exists a pair of states (γ−σ , γ
+
σ ) of X such that

the tuple ((α−, α+), uσ(1), . . . , uσ(p), (γ
−
σ , γ

+
σ )) belongs to Tp and such that the tuple

((γ−σ , γ
+
σ ), uσ(p+1), . . . , uσ(n), (β

−, β+)) belongs to Tn−p.

Let T =
⋃
n>1 Tn. Then we have:

a) For every transition (α, u1, . . . , un, β) of X, the tuple ((α, α), u1, . . . , un, (β, β)) be-
longs to T .

b) The set of states S(X)× S(X), the labelling map µ : L(X)→ Σ and the set of tuples
T assemble to a regular transition system denoted by PseudoPath(X).

Proof. a) Consider the statement Pn defined for n > 1 by:

for every transition (α, u1, . . . , um, β) of X with m 6 n, the tuple
((α, α), u1, . . . , um, (β, β)) belongs to T .

Let (α, u1, β) be a transition of X. The tuple ((α, α), u1, (β, β)) belongs to T1 by definition
of T1. We have proved P1. Let n > 2. Assume Pn−1. We want to prove Pn. Let
(α, u1, . . . , un, β) be a transition of X. Let 1 6 p < n. Let σ be a permutation of {1, . . . , n}.
Since X is cubical, there exists a state γ of X such that the tuples (α, uσ(1), . . . , uσ(p), γ)
and (γ, uσ(p+1), . . . , uσ(n), β) are transitions of X. By the induction hypothesis, the tuples
((α, α), uσ(1), . . . , uσ(p), (γ, γ)) and ((γ, γ), uσ(p+1), . . . , uσ(n), (β, β)) belong to T since p 6
n− 1 and n− p 6 n− 1. Hence we have proved Pn from Pn−1.

b) The set of tuples T satisfies the multiset axiom because of the internal symmetry
of its definition. Let ((α−, α+), u1, . . . , un, (β

−, β+)) be an element of T with n > 3. Let
p, q > 1 with p+ q < n such that the tuples

((α−, α+), u1, . . . , un, (β
−, β+)),

((α−, α+), u1, . . . , up, (ν
−
1 , ν

+
1 )), ((ν−1 , ν

+
1 ), up+1, . . . , un, (β

−, β+)),

((α−, α+), u1, . . . , up+q, (ν
−
2 , ν

+
2 )), ((ν−2 , ν

+
2 ), up+q+1, . . . , un, (β

−, β+))
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belong to T . Then by definition of T , the tuples

(α±, u1, . . . , un, β
±),

(α±, u1, . . . , up, ν
±
1 ), (ν±1 , up+1, . . . , un, β

±),

(α±, u1, . . . , up+q, ν
±
2 ), (ν±2 , up+q+1, . . . , un, β

±)

are transitions of X. Since X satisfies CSA2, we obtain ν−1 = ν+
1 = ν1 and ν−2 = ν+

2 = ν2.
By the patching axiom, the tuple (ν1, up+1, . . . , up+q, ν2) is a transition of X. By a), we
deduce that the ((ν−1 , ν

+
1 ), up+1, . . . , up+q, (ν

−
2 , ν

+
2 )) belongs to Tq. We have proved that

T satisfies the patching axiom and that the set of states S(X) × S(X), the labelling
map µ : L(X) → Σ and the set of tuples T assemble to a weak transition system
PseudoPath(X). Let u be an action of X. Since X is cubical, there exists a transition
(α, u, β) of X. Thus, the triple ((α, α), u, (β, β)) is a transition of PseudoPath(X). Hence,
all actions of PseudoPath(X) are used. By definition of T , PseudoPath(X) satisfies the
Intermediate state axiom. This means that PseudoPath(X) is a cubical transition system.
Since X is regular, it satisfies CSA2. This means that in the definition of T , the equality
γ−σ = γ+

σ always holds and that this state is unique. Hence the cubical transition system
PseudoPath(X) satisfies CSA2 as well.

The natural mapping X 7→ PseudoPath(X) yields a well-defined functor

PseudoPath : RTS → RTS.

6.2. Theorem. Let X be a Cattani-Sassone transition system. There exists a natural
isomorphism PseudoPath(X) ∼= PathCTS(X).

Proof. By definition of Path : WTS → WTS, the identity of S(X) × S(X) and the
diagonal map L(X)→ L(X)×Σ L(X) induces a map of weak transition systems

PseudoPath(X)→ Path(X).

This map is one-to-one on states and on actions, and therefore one-to-one on transitions by
Proposition 2.3. By Proposition 6.1, the weak transition system PseudoPath(X) is cubical.
Since CTS is a coreflective subcategory of WTS, the map PseudoPath(X) → Path(X)
then factors uniquely as a composite

PseudoPath(X)→ PathCTS(X)→ Path(X).

By Proposition 5.13, the cubical transition system PathCTS(X) has the set of states
S(X) × S(X) and the set of actions (of transitions resp.) of PathCTS(X) is a subset of
the set of actions (of transitions resp.) of Path(X), i.e. L(X)×Σ L(X). We deduce that
the map PseudoPath(X) → PathCTS(X) induces the identity of S(X) × S(X) on states
and the diagonal of L(X) on actions. Therefore, the set of actions of PathCTS(X) contains
the diagonal of L(X). Let (u−, u+) ∈ L(X)×Σ L(X) be an action of PathCTS(X). Since
PathCTS(X) is cubical, there exists a transition ((α−, α+), (u−, u+), (β−, β+)) of PathCTS(X).
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Since the latter tuple is also a transition of Path(X) by Proposition 5.13, the triples
(α±, u±, β±) are transitions of X by definition of Path :WTS → WTS. Since X satisfies
CSA1 by hypothesis, we deduce that u− = u+. Thus, the set of actions of PathCTS(X) is
a subset of the diagonal of L(X). This implies that the set of actions of PathCTS(X) is
exactly the diagonal of L(X). We deduce that the map PseudoPath(X) → PathCTS(X)
induces the bijection L(X) ∼= {(u, u) | u ∈ L(X)} on actions. For the sequel, the diagonal
of L(X) can be identified with the set L(X).

We have proved so far that the map PseudoPath(X) → PathCTS(X) is bijective on
states (it is the identity of S(X) × S(X)) and bijective on actions (it is the bijection
L(X) ∼= {(u, u) | u ∈ L(X)}). It is then one-to-one on transitions by Proposition 2.3. Let
((α−, α+), (u1, u1), . . . , (un, un), (β−, β+)) be a transition of PathCTS(X). It is a transition
of Path(X) by Proposition 5.13. By definition of Path : WTS → WTS, the tuples
(α±, u1, . . . , un, β

±) are transitions of X. If n = 1, then the tuple ((α−, α+), u1, (β
−, β+))

is a transition of PseudoPath(X) by definition of PseudoPath(X). Assume that n > 2.
Let σ be a permutation of {1, . . . , n}. Let 1 6 p < n. Since PathCTS(X) is cubical, there
exists a pair of states (γ−σ , γ

+
σ ) of X such that the tuples

((α−, α+), (uσ(1), uσ(1)), . . . , (uσ(p), uσ(p)), (γ
−
σ , γ

+
σ ))

and
((γ−σ , γ

+
σ ), (uσ(p+1), uσ(p+1)), . . . , (uσ(n), uσ(n)), (β

−, β+))

are transitions of PathCTS(X). By definition of Path : WTS → WTS, this implies
that the tuples (α±, uσ(1), . . . , uσ(p), γ

±
σ ) and (γ±σ , uσ(p+1), . . . , uσ(n), β

±) are transitions
of X. Therefore the tuple ((α−, α+), (u1, u1), . . . , (un, un), (β−, β+)) is a transition of
PseudoPath(X) by Proposition 6.1. We have proved that the map PseudoPath(X) →
PathCTS(X) is onto on transitions.

The path object of X in CSTS is then the Cattani-Sassone transition system denoted
by PathCSTS(X) with the set of states S(X)× S(X), the set of actions L(X) and such that
a tuple

((α−, α+), u1, . . . , un, (β
−, β+))

is a transition of PathCSTS(X) if and only if the tuples (α±, u1, . . . , un, β
±) are transitions

of X. The canonical map τX : X → PathCSTS(X) is induced by the diagonal of S(X)
on states and the identity on actions. The canonical map πεX : PathCSTS(X) → X with
ε ∈ {0, 1} is induced by the projection on the (ε+ 1)-th component S(X)× S(X)→ S(X)
on states and by the identity on actions.

Table 2 summarizes the computation of the cylinder functor and of the path functor of
CSTS.

7. Characterization in the non star-shaped case

7.1. Proposition. Let X be a fibrant object of CSTS. Then the labelling map µ : L(X)→
Σ is one-to-one.
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X CylCSTS(X) PathCSTS(X)

S(X) I(X)× {0} t E(X)× {0, 1} S(X)× S(X)

L(X) L(X) L(X)

T(X) ((α, ε0), u1, . . . , un, (β, εn+1)) ((α−, α+), u1, . . . , un, (β
−, β+))

such that (α, u1, . . . , un, β) ∈ T(X) such that (α±, u1, . . . , un, β
±) ∈ T(X)

Table 2: Cylinder functor and path functor of CSTS

Proof. Let u and v be two actions of X with µ(u) = µ(v). Since X is cubical, there
exist two transitions (αu, u, βu) and (αv, v, βv) of X. Consider the commutative diagram
of CSTS

{01, 11} = ∂C1[µ(u)]

01 7→ (αu, αv)
11 7→ (βu, βv) //

��

PathCSTS(X)

π0

��
C1[µ(u)]

`

44

01 7→ αu
11 7→ βu

(µ(u), 1) 7→ u

// X.

Since X is fibrant by hypothesis, it is injective with respect to the anodyne cofibration
(∂C1[µ(u)] ⊂ C1[µ(u)]) ? γ0. By adjunction, we deduce that the lift ` in the diagram above
exists. Therefore the triple `(01, (µ(u), 1), 11) = ((αu, αv), u, (βu, βv)) is a transition of
PathCSTS(X). This implies that the triple (αv, u, βv) is a transition of X. Since X satisfies
CSA1, we deduce that u = v.

7.2. Proposition. Let X and Y be two objects of CSTS with Y fibrant. Then the set
πCSTS(X, Y ) has at most one element: all maps from X to Y are homotopy equivalent.

Proof. Let f, g : X ⇒ Y be two maps of CSTS. We have µ(f(u)) = µ(g(u)) = µ(u) since
maps of CSTS preserve labels. Since Y is fibrant, µ is one-to-one by Proposition 7.1. Thus,
we deduce that f and g coincide on actions. Since X is cofibrant by Theorem 5.15 and Y
fibrant by hypothesis, it suffices to prove that f and g are right homotopic to conclude
the proof. The only possible definition of this right homotopy is H(α) = (f(α), g(α))
for all states α of X and H(u) = f(u) = g(u) = µ(u) for all actions u of X. We
have to prove that H yields a well-defined map of transition systems, i.e. that for all
transitions (α, u1, . . . , un, β) of X, the tuple ((f(α), g(α)), H(u1), . . . , H(un), (f(β), g(β)))
is a transition of PathCSTS(Y ).
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The n-transition (f(α), f(u1), . . . , f(un), f(β)) gives rise to a (unique) map of weak
transition systems Cext

n [µ(u1), . . . , µ(un)]→ Y (the definition of Cext
n [µ(u1), . . . , µ(un)] is

recalled in Section 2). Since Y satisfies CSA2, it factors (uniquely) as a composite

Cext
n [µ(u1), . . . , µ(un)]→ Cn[µ(u1), . . . , µ(un)]→ Y

by [Gaucher, 2010a, Theorem 5.6]. We obtain the commutative diagram of CSTS

{0n, 1n}
0n 7→ (f(α), g(α))
1n 7→ (f(β), g(β)) //

��

PathCSTS(Y )

π0

��
Cn[µ(u1), . . . , µ(un)]

`

44

// Y.

Since Y is fibrant by hypothesis, it is injective with respect to the anodyne cofibration
({0n, 1n} ⊂ Cn[µ(u1), . . . , µ(un)]) ? γ0. By adjunction, we deduce that the lift ` in the
diagram above exists. By Table 2, the right vertical map π0 is the identity on actions. We
deduce that the tuple

`(0n, (µ(u1), 1), (µ(un), n), 1n) = ((f(α), g(α)), f(u1), . . . , f(un), (f(β), g(β)))

is a transition of PathCSTS(Y ).

7.3. Proposition. Let w : X → Y be a map of CSTS which is onto on states, on actions
and on transitions. Then w is a weak equivalence.

Proof. Let Z be a fibrant object. We have to prove that the set map πCSTS(Y, Z) →
πCSTS(X,Z) induced by the precomposition with w is bijective. By Proposition 7.2, it
suffices to prove that it is onto. Suppose first that Z = ∅. Let f : X → Z. Then X = ∅.
Since w : X → Y is onto on states, Y does not contain any state. Consequently, Y = ∅
because all actions of Y are used. We deduce that w = Id∅, and that πCSTS(Y, Z) =
πCSTS(X,Z) = πCSTS(∅,∅) = {Id∅}. Suppose now that Z 6= ∅. By Proposition 7.1, we
have the inclusion L(Z) ⊂ Σ. Let f : X → Z be a map of CSTS. Let ξ be a state
of Z. Let g : Y → Z defined on states by g(α) = ξ and on actions by g(u) = µ(u).
It suffices to prove that g yields a well-defined map of CSTS from Y to Z to complete
the proof. Let (α, u1, . . . , un, β) be a transition of Y . By hypothesis, there exists a
transition (α, u1, . . . , un, β) of X with w(α, u1, . . . , un, β) = (α, u1, . . . , un, β). We obtain
the transition (f(α), µ(u1), . . . , µ(un), f(β)) of Z which yields a map of cubical transition
systems Cn[µ(u1), . . . , µ(un)]→ Z. Since Z is fibrant, it is injective with respect to the
anodyne cofibration ({0n, 1n} ⊂ Cn[µ(u1), . . . , µ(un)]) ? γ0. By adjunction, we deduce that
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the lift ` exists in the commutative diagram of solid arrows of CSTS

{0n, 1n}
0n 7→ (f(α), ξ)

1n 7→ (f(β), ξ) //

��

PathCSTS(Z)

π0

��
Cn[µ(u1), . . . , µ(un)]

`

55

0n 7→ f(α)

1n 7→ f(β)
(µ(ui), i) 7→ µ(ui)

// Z.

Therefore the tuple ((f(α), ξ), µ(u1), . . . , µ(un), (f(β), ξ)) is a transition of PathCSTS(Z).
We deduce that the tuple (ξ, µ(u1), . . . , µ(un), ξ) is a transition of Z. We have proved that
g(α, u1, . . . , un, β) = (ξ, µ(u1), . . . , µ(un), ξ) is a transition of Z and that g is a well-defined
map of Cattani-Sassone transition systems.

7.4. Theorem. Let R : {0, 1} → {0}. Every map of cellCSTS({R}) is onto on states, on
actions and on transitions. Every map of cellCSTS({R}) is a weak equivalence of CSTS.

Proof. Every pushout of R : {0, 1} → {0} is onto on states, on actions and on transitions
by Corollary 4.6. Every transfinite composition of pushouts of R : {0, 1} → {0} is also onto
on states, on actions and on transitions by Theorem 4.5. We deduce the first assertion of
the theorem. The second assertion of the theorem is then a corollary of Proposition 7.3.

Note that every map of CSA1(CSA2(ICTS)) = ICTS is a map between finitely presentable
objects. Thus, by [Raptis and Rosický, 2015, Proposition 4.1], the class of weak equivalences
of CSTS is closed under transfinite composition.

Let X be a Cattani-Sassone transition system. For all objects X of CSTS, the unique
map X → 1 from X to the terminal object of CSTS factors functorially as a composite

X
∈cellCSTS({R}) //R⊥(X)

∈injCSTS({R}) //1

in CSTS where the left-hand map belongs to cellCSTS({R}) and the right-hand map
belongs to injCSTS({R}). Since all maps of cellCSTS({R}) are epic by Theorem 7.4, this
decomposition is unique up to isomorphism by [Gaucher, 2015a, Proposition A.1]. Since
R : {0, 1} → {0} is epic, an object is R-injective if and only if it is R-orthogonal, i.e. if
and only if X has at most one state. Let us denote by CSTS this small-orthogonality
class. The functor R⊥ : CSTS → CSTS is a left adjoint of the inclusion CSTS ⊂ CSTS. By
[Adámek and Rosický, 1994, Theorem 1.39], the category CSTS is locally presentable.

7.5. Theorem. The left adjoint R⊥ : CSTS → injCSTS({R}) induces a Quillen equivalence
between the model category CSTS and the category CSTS equipped with the discrete model
category structure.
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Proof. For any R-orthogonal Cattani-Sassone transition system X, we have by Table 2
the equalities PathCSTS(X) = X and R⊥(CylCSTS(X)) = X. Using [Gaucher, 2015c,
Theorem 3.1], we obtain a left determined Olschok model structure on CSTS such that
the cylinder and the path functors are the identity functor. Therefore, we have the
equalities πCSTS(X, Y ) = πlCSTS(X, Y ) = πrCSTS(X, Y ) = CSTS(X, Y ) for all R-orthogonal
Cattani-Sassone transition systems X and Y . This means that the weak equivalences of
CSTS are the isomorphisms. For every R-orthogonal Cattani-Sassone transition system
Y , the canonical map R⊥(Y ) → Y is an isomorphism. We deduce that the left adjoint
R⊥ : CSTS → CSTS is a homotopically surjective left Quillen adjoint from CSTS to
CSTS equipped with the discrete model structure. By Theorem 7.4, the canonical map
X → R⊥(X) is a weak equivalence of CSTS for all Cattani-Sassone transition systems X.
Thus, this left Quillen adjoint is a left Quillen equivalence.

7.6. Corollary. A map f of CSTS is a weak equivalence if and only if R⊥(f) is an
isomorphism.

Proof. Since all objects of CSTS are cofibrant by Theorem 5.15, a weak equivalence f is
mapped to a weak equivalence R⊥(f) of CSTS, i.e. an isomorphism. Conversely, if R⊥(f)
is an isomorphism, then by Theorem 7.4 and the two-out-of-three property, f is a weak
equivalence of CSTS.

8. Homotopy theory of star-shaped objects

A pointed (Cattani-Sassone) transition system is a pair (X, ∗) where X is a Cattani-Sassone
transition system and where ∗ is a state of X called the base state. A map of pointed
transition system is a map of CSTS preserving the base state. The category of pointed
(Cattani-Sassone) transition systems is denoted by CSTS∗. Let ω∗ : CSTS∗ → CSTS be the
forgetful functor. It is a right adjoint which preserves connected colimits. The left adjoint
ρ∗ : CSTS → CSTS∗ is defined on objects by ρ∗(X) = ({∗} tX, ∗) and on morphisms by
ρ∗(f) = Id{∗} tf . By [Adámek and Rosický, 1994, Proposition 1.57] and [Hirschhorn, 2015,
Theorem 2.7], there exists a structure of combinatorial model category on CSTS∗ such that
the cofibrations (the fibrations, the weak equivalences resp.) belong to the inverse image
by the forgetful functor of the class of cofibrations (fibrations, weak equivalences resp.) of
CSTS. The set of generating cofibrations of the category CSTS∗ is the set ρ∗(ICTS).

Note that pointed weak, cubical or regular transition systems are defined exactly as
pointed Cattani-Sassone transition systems. Without further precision, a pointed transition
system is supposed to be a pointed Cattani-Sassone transition system.

8.1. Remark. It is important to keep in mind that the functors ω : WTS → Set{s}∪Σ

and ω∗ : CSTS∗ → CSTS are two different functors.

8.2. theorem. Let S(X, ∗) = S(X), L(X, ∗) = L(X) and T(X, ∗) = T(X).
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Let Cyl∗ : CSTS∗ → CSTS∗ be the functor defined by the following natural pushout
diagram of CSTS ((X, ∗) being an object of CSTS∗):

{∗} t {∗} //

��

{∗}

Cyl∗(X)

��

X tX
γX
��

CylCSTS(X) // ω∗(Cyl∗(X, ∗)),

where the pushout is taken in CSTS.

8.3. Theorem. The combinatorial model category CSTS∗ is a left determined Olschok
model category with the very good cylinder Cyl∗ : CSTS∗ → CSTS∗.

Proof. By Proposition 5.16, every map with domain a singleton is a cofibration of CSTS.
The map {∗} t {∗} → CylCSTS({∗}) is an isomorphism. By [Gaucher, 2015c, Theorem 5.8],
we deduce that the model category CSTS∗ is an Olschok model category. Let (X, ∗) be an
object of CSTS∗. We know that the set of states of CylCSTS(X) is I(X)×{0}tE(X)×{0, 1},
that the set of actions of CylCSTS(X) is L(X), and that a tuple ((α, ε0), u1, . . . , un, (β, εn+1))
is a transition of CylCSTS(X) if and only if the tuple (α, u1, . . . , un, β) is a transition of X.
Consider now the pushout diagram of cubical transition systems

{∗} t {∗} //

��

{∗}

��

X tX
γX
��

CylCSTS(X) // U.

By Lemma 3.2, the forgetful functor mapping a cubical transition system to its set of
states (to its set of actions resp.) is colimit-preserving. We deduce that the set of states
of U is (I(X) ∪ {∗})× {0} t (S(X)\(I(X) ∪ {∗}))× {0, 1} and that the set of actions of
U is L(X). Therefore, the cubical transition system U is the ω-final lift of the cocone of
Set{s}∪Σ consisting of the unique map

ω(Cyl(X)) −→ ((I(X) ∪ {∗})× {0} t (S(X)\(I(X) ∪ {∗}))× {0, 1},L(X)).

By Proposition 5.3, we obtain U = Cyl(X)///(I(X) ∪ {∗}). There is an inclusion

Cyl(X)///(I(X) ∪ {∗}) ⊂ Cyl(X)/// I(X).

By Theorem 5.8, we obtain the inclusion

Cyl(X)///(I(X) ∪ {∗}) ⊂ CSA1 CSA2 Cyl(X).



1134 P. GAUCHER

By Proposition 2.5, the cubical transition system Cyl(X)///(I(X)∪{∗}) is regular. And it
satisfies CSA1 by Proposition 5.3. Thus, the cubical transition system Cyl(X)///(I(X) ∪
{∗}) is a Cattani-Sassone transition system and we obtain the pushout diagram of CSTS

{∗} t {∗} //

��

{∗}

��

X tX
γX
��

CylCSTS(X) // Cyl(X)///(I(X) ∪ {∗}).

We deduce the isomorphism

ω∗(Cyl∗(X, ∗)) ∼= Cyl(X)///(I(X) ∪ {∗}).

The inclusion Cyl(X)///(I(X)∪{∗}) ⊂ CSA1 CSA2 Cyl(X) yields a section of the bottom
horizontal map. Thus, by [Gaucher, 2015c, Corollary 5.9], the Olschok model category
CSTS∗ is left determined and the functor Cyl∗ : CSTS∗ → CSTS∗ yields a very good
cylinder.

After the previous calculations, the following definition makes sense:

8.4. Definition. A state of a pointed transition system (X, ∗) is internal if it is equal to the
base state ∗ or it is internal in X. Let I(X, ∗) = I(X)∪ {∗}, and E(X, ∗) = S(X)\ I(X, ∗).
A state which is not internal is external. Note that for any Cattani-Sassone transition
system X, there are the equalities I(ρ∗(X), ∗) = I(X) t {∗} and E(ρ∗(X), ∗) = E(X).

Thus, we have for any pointed transition system (X, ∗) the equalities CylCSTS(X) =
Cyl(X)/// I(X) and ω∗(Cyl∗(X, ∗)) = Cyl(X)/// I(X, ∗). For any map f : (X, ∗)→ (Y, ∗)
of pointed transition systems, we have f(I(X, ∗)) ⊂ I(Y, ∗): any internal state of (X, ∗) is
mapped to an internal state of (Y, ∗). In general, we have f(E(X, ∗)) * E(Y, ∗).

8.5. Definition. The path (P (w), 0) indexed by w with n > 0, w = x1 . . . xn ∈ Σn for
n > 0 is by definition the pointed transition system

P (w) = 0
(x1,1) // 1

(x2,2) // 2 . . . n− 1
(xn,n) // n ,

which means that the set of actions is {(xi, i) | 1 6 i 6 n} with the labelling map
µ(xi, i) = xi for 1 6 i 6 n. Let pw : ρ∗({n}) ⊂ (P (w), 0) with n > 0 and w ∈ Σn be the
inclusion. The state 0 is also called the initial state of (P (w), 0) and the state n the final
state of (P (w), 0). We have the equality (P (∅), 0) = {0}.

8.6. Definition. Let (X, ∗) be a pointed Cattani-Sassone transition system. A state α of
X is reachable if there exists w ∈ Σn with n > 0 and a map (P (w), 0)→ (X, ∗) taking n
to α. A transition (α, u1, . . . , un, β) of (X, ∗) is reachable if its initial state α is reachable.
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8.7. Definition. A star-shaped (Cattani-Sassone) transition system is a pointed Cattani-
Sassone transition system (X, ∗) such that every state of X is reachable. The full subcate-
gory of CSTS∗ of star-shaped transition systems is denoted by CSTS•.

Note that star-shaped weak, cubical or regular transition systems are defined exactly as
star-shaped Cattani-Sassone transition systems. Without further precision, a star-shaped
transition system is supposed to be a star-shaped Cattani-Sassone transition system.

The category CSTS• is a coreflective subcategory of CSTS∗. By [Gaucher, 2015a,
Proposition 5.5], the coreflection CSTS∗ → CSTS• removes all states which are not reachable,
all actions which are not used by a reachable transition, and all transitions which are not
reachable.

8.8. theorem. Let (X, ∗) be a star-shaped transition system. Let α be a state of (X, ∗).
Let `(α) = min{n ∈ N | ∃w ∈ Σn, ∃f : (P (w), 0)→ (X, ∗), f(n) = α}. The integer `(α) is
well-defined since (X, ∗) is star-shaped. We have `(∗) = 0.

8.9. Theorem. Consider a map f → g of Mor(CSTS∗) (i.e. a commutative square) where
f is a map of CSTS∗ which is one-to-one on states and on actions and where g is a map
of CSTS•. Then f → g factors as a composite f → f � g → g where f � g is a map of
CSTS• which is one-to-one on states and on actions. In particular, f � g is a cofibration
of CSTS•. Finally, the class of maps {f � g | g ∈ Mor(CSTS•)} is a set.

Note that the factorization f → f � g → g is not unique.

Proof. The proof of this theorem is similar to the proof of [Gaucher, 2015a, Theorem 5.9].
This one is more explicit because we need an explicit calculation of f � g for the sequel.
Consider the commutative diagram of CSTS∗

(A, ∗)

f

��

φ // (X, ∗)

g

��
(B, ∗) ψ // (Y, ∗)

with (X, ∗) and (Y, ∗) star-shaped and f one-to-one on states and on actions. Since (X, ∗)
is star-shaped, for any state α of (A, ∗), the state φ(α) is reachable from ∗ in (X, ∗) using
a path of length `(φ(α)) labelled with a finite sequence wα of length `(φ(α)) of Σ. Thus,
the composite map

ρ∗({`(φ(α))}) `(φ(α))7→α // (A, ∗) φ // (X, ∗)

factors as a composite

ρ∗({`(φ(α))}) pwα // P (wα) // (X, ∗) .
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We obtain the commutative diagram of CSTS∗

(M, ∗) = ρ∗

( ⊔
α∈S(A)

{`(φ(α))}

)
⊔

α∈S(A)

pwα

��

// (A, ∗)

φ

��
(N, ∗) =

⊔
α∈S(A)

P (wα) // (X, ∗).

For any state α of S(A), the state g(φ(α)) is reachable from ∗ in (Y, ∗) using a path of
length `(φ(α)) labelled with a finite sequence wα of length `(φ(α)) of Σ. Since (Y, ∗) is
star-shaped, for any state β of S(B)\ S(A), the state ψ(β) is reachable from ∗ in (Y, ∗)
using a path of length `(ψ(β)) labelled with a finite sequence wβ of length `(ψ(β)) of Σ.
We obtain the commutative diagram of CSTS∗

(P, ∗) = ρ∗

( ⊔
α∈S(A)

{`(φ(α))} t
⊔

β∈S(B)\S(A)

{`(ψ(β))}

)

⊔
α∈S(A)

pwαt
⊔

β∈S(B)\ S(A)

p
wβ

��

// (B, ∗)

ψ

��
(Q, ∗) =

⊔
α∈S(A)

P (wα) t
⊔

β∈S(B)\ S(A)

P (wβ) // (Y, ∗).

We obtain the commutative diagram of CSTS∗:

(M, ∗)

��

��

// (A, ∗)

f

��

φ //

��

X

g

��

(N, ∗)

⊂

��

// (Â, ∗)

∃!

��

∃!

;;

(P, ∗)

��

// (B, ∗) ψ //

��

Y

(Q, ∗) // (B̂, ∗)

∃!

88

The map (Â, ∗)→ (B̂, ∗) making the diagram commutative exists by the universal property
of the pushout and it is one-to-one on states and on actions. By Proposition 5.16, the
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underlying map is then a cofibration between Cattani-Sassone transition system. Thus,
since (Â, ∗) and (B̂, ∗) are star-shaped by construction, it is a cofibration of CSTS•. We
obtain the factorization

(A, ∗)

φ

((⊂ //

f

��

Â

f�g

��

// X

g

��
(B, ∗)

ψ

66
⊂ // B̂ // Y.

Finally, the class of maps {f � g | g ∈ Mor(CSTS•)} has at most (#Σ)(# S(B))ℵ0 elements.
Thus, it is a set.

8.10. Corollary. The set of generating cofibrations ρ∗(ICTS) of CSTS∗ has a solution
set of cofibrations with respect to CSTS•, i.e. there exists a set I• of cofibrations of CSTS∗
between star-shaped objects such that every map i→ g from a generating cofibration i of
CSTS∗ to a map g of CSTS• factors as a composite i→ j → g with j ∈ I•.
Proof. The set I• = {ρ∗(i) � g | i ∈ ρ∗(ICTS) and g ∈ Mor(CSTS•)} is a solution.

8.11. Theorem. There exists a left determined Olschok model structure on the category
CSTS• of star-shaped transition systems with respect to the class of maps such that the
underlying map is a cofibration of CSTS. A very good cylinder is given by the restriction
of the functor Cyl∗ : CSTS∗ → CSTS∗ to the coreflective subcategory CSTS• of CSTS∗.
Proof. By Theorem 8.3, the combinatorial model category CSTS∗ is a left determined
Olschok model category. We have seen that CSTS• is a coreflective subcategory of CSTS∗.
By [Gaucher, 2011, Lemma A.3], cofCSTS•(I•) = cofCSTS∗(ρ

∗(ICTS))∩Mor(CSTS•) where I•
is the set constructed in Corollary 8.10. The proof will be complete by applying [Gaucher,
2015c, Theorem 4.1]. It therefore remains to prove that Cyl∗(CSTS•) ⊂ CSTS•. Let (X, ∗)
be a star-shaped transition system. We have the pushout diagram (in CSTS):

{∗} t {∗} //

��

{∗}

Cyl∗(X)

��

X tX
γX
��

CylCSTS(X) // ω∗(Cyl∗(X, ∗)),

In Cyl∗(X, ∗)), every state (α, ε) is reachable from (∗, ε) since (X, ∗) is star-shaped by
hypothesis. Since (∗, 0) = (∗, 1) = ∗ in ω∗(Cyl∗(X, ∗)), every state of Cyl∗(X, ∗)) is
therefore reachable from ∗. Thus, the Cattani-Sassone transition system Cyl∗(X, ∗)) is
star-shaped.
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(X, ∗) Cyl∗(X) Path∗(X)

I(X, ∗) = I(X) ∪ {∗}
E(X, ∗) = E(X)\{∗}

S(X) I(X, ∗)× {0} t E(X, ∗)× {0, 1} S(X)× S(X)

L(X) L(X) L(X)

T(X) ((α, ε0), u1, . . . , un, (β, εn+1)) ((α−, α+), u1, . . . , un, (β
−, β+))

such that (α, u1, . . . , un, β) ∈ T(X) such that (α±, u1, . . . , un, β
±) ∈ T(X)

Table 3: Cylinder functor and path functor of CSTS∗

We have PathCTS({∗}) ∼= {(∗, ∗)}. By [Gaucher, 2015c, Lemma 5.2], the cylinder functor
Cyl∗ : CSTS∗ → CSTS∗ has a right adjoint Path∗ : CSTS∗ → CSTS∗ defined on objects by

mapping (X, ∗) to the composite {∗}
∼=→ PathCTS({∗}) → PathCTS(X) and on maps by

mapping the commutative triangle {∗} → f to the composite {∗}
∼=→ PathCTS({∗}) →

PathCTS(f). By Theorem 8.11, the restriction of Cyl∗ : CSTS∗ → CSTS∗ to CSTS• gives rise
to a very good cylinder Cyl• : CSTS• → CSTS•. A right adjoint is given by the composite
functor

Path• : CSTS• ⊂ CSTS∗
Path∗ // CSTS∗ // CSTS•

where the right-hand map is the coreflection, i.e. the right adjoint of the inclusion functor
CSTS• ⊂ CSTS∗. In particular, this means that the underlying Cattani-Sassone transition
system of Path•(X, ∗) is a subobject of the underlying Cattani-Sassone transition system
of Path∗(X, ∗), i.e. of PathCTS(X) calculated in Table 2.

Table 3 summarizes the computation of the cylinder functor and of the path functor of
CSTS∗.

9. Past-similarity of states

9.1. Definition. Let (X, ∗) be a star-shaped transition system. Two states α and β of
X are past-similar (denoted by α 'past β) if there exists w ∈ Σn with n > 0 and two right
homotopic maps (P (w), 0)⇒ (X, ∗) sending n to α and β respectively.

In Figure 3, the states α and β are past-similar because there is a homotopy between
any path from ∗ to α and any path from ∗ to β. In Figure 2, the states α and β are
not past-similar. However, they are past-similar in any fibrant replacement. In fact, the
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• v // α

∗
u 55

u (( • v // β

Figure 2: α and β are not past-similar

• v //

v

##

α

∗
u 55

u (( • v //
v

;;

β

Figure 3: α and β are past-similar

star-shaped transition system of Figure 3 is a fibrant replacement of the star-shaped
transition system of Figure 2 because: 1) it is fibrant by Theorem 10.12, 2) the image by
R⊥• of these two star-shaped transition systems is ∗ u→ • v→ • w→ • (see Section 11).

9.2. Proposition. Let (X, ∗) be a star-shaped transition system. Let α and β be two
states of X. We have α 'past β if and only if (α, β) is a state of Path•(X, ∗).

Proof. If α 'past β, then there exists w ∈ Σn for n > 0 and a map (P (w), 0) →
Path•(X, ∗) taking n to (α, β). Thus, the pair (α, β) is a state of Path•(X, ∗). Conversely,
if (α, β) is a state of Path•(X, ∗), then it is reachable. Consequently, there exists a map
(P (w), 0)→ Path•(X, ∗) with n > 0 and w ∈ Σn taking n to (α, β).

For all actions u of a Cattani-Sassone transition system X, there exists a transi-
tion (α, u, β) of X because X is cubical. Since α 'past α and β 'past β, the triple
((α, α), u, (β, β)) is a transition of Path•(X, ∗). Thus, all actions of L(X) are used in
Path•(X, ∗). Table 4 summarizes the computation of the cylinder functor and of the path
functor of CSTS•.

9.3. Proposition. Let f, g : (X, ∗) ⇒ (Y, ∗) be two maps of star-shaped transition
systems. The following conditions are equivalent:

1. f and g are left homotopic

2. f and g are right homotopic

3. f and g are homotopic.

In particular, this means that

πlCSTS•((X, ∗), (Y, ∗)) = πrCSTS•((X, ∗), (Y, ∗)) = πCSTS•((X, ∗), (Y, ∗)).

Note that this proposition also holds in CSTS and in CSTS∗.
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(X, ∗) Cyl•(X) Path•(X)

I(X, ∗) = I(X) ∪ {∗}
E(X, ∗) = E(X)\{∗}

S(X) I(X, ∗)× {0} t E(X, ∗)× {0, 1} 'past⊂ S(X)× S(X)

L(X) L(X) L(X)

T(X) ((α, ε0), u1, . . . , un, (β, εn+1)) ((α−, α+), u1, . . . , un, (β
−, β+))

such that (α, u1, . . . , un, β) ∈ T(X) such that (α±, u1, . . . , un, β
±) ∈ T(X)

Table 4: Cylinder functor and path functor of CSTS•

Proof. We have (3)⇒ (1) and (3)⇒ (2) by definition. It suffices to prove the equivalence
(1) ⇔ (2). By adjunction, the existence of a left homotopy Hl : Cyl•(X, ∗) → (Y, ∗) is
equivalent to the existence of a right homotopy Hr : (X, ∗)→ Path•(Y, ∗). The maps f
and g are left homotopic if and only if Hl(α, 0) = f(α), Hl(α, 1) = g(α) for any state α of
X and H(u) = f(u) = g(u) for any action u of X. The maps f and g are right homotopic
if and only if Hr(α) = (f(α), g(α)) for any state α of X and Hr(u) = u for any action u
of X.

9.4. Definition. The set of transitions of a star-shaped transition system (X, ∗) is closed
under past-similarity if for all n > 1, for all transitions (α, u1, . . . , un, β) of X, and for
all states γ and δ of X, if α 'past γ and β 'past δ then the tuple (γ, u1, . . . , un, δ) is a
transition of X.

9.5. Proposition. Let (X, ∗) be a star-shaped transition system. If (X, ∗) is fibrant, then
the set of transitions of X is closed under past-similarity.

The converse is proved in Theorem 10.12.

Proof. The proof is by induction on n.
Suppose that n = 1. Let (α, u1, β) be a transition of X. Let γ and δ be two states of
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X such that α 'past γ and β 'past δ. Consider the diagram of CSTS

{01, 11}

⊂

��

ω∗(Path•(X, ∗))

ω∗(π0)

��
C1[µ(u1)]

`

77

01 7→ α
11 7→ β

(µ(u1), 1) 7→ u1

// ω∗((X, ∗)).

By hypothesis, we have α 'past γ and β 'past δ. By Proposition 9.2, (α, γ) and (β, δ) are
two states of Path•(X, ∗). We obtain the commutative diagram of solid arrows of CSTS

{01, 11}

⊂

��

01 7→ (α, γ)
11 7→ (β, δ) // ω∗(Path•(X, ∗))

ω∗(π0)

��
C1[µ(u1)]

`

77

01 7→ α
11 7→ β

(µ(u1), 1) 7→ u1

// ω∗((X, ∗)).

The map ρ∗({01, 11} ⊂ C1[µ(u1)]) � π0 is a cofibration by Theorem 8.9. Since (X, ∗) is
fibrant, it is injective with respect to the trivial cofibration

(ρ∗({01, 11} ⊂ C1[µ(u1)]) � π0) ? γ0.

Thus, the right vertical map satisfies the RLP with respect to ({01, 11} ⊂ C1[µ(u1)]) � π0,
and then with respect to the left vertical map {01, 11} ⊂ C1[µ(u1)]. Since π0 is the identity
on actions, we obtain that the triple ((α, γ), u1, (β, δ)) is a transition of ω∗(Path•(X, ∗)).
By Table 4, we deduce that (γ, u1, δ) is a transition of X.

Suppose the induction hypothesis proved for all p 6 n with n > 1. Choose a transition
(α, u1, . . . , un+1, β) of X, which gives rise to a map f : Cn+1[µ(u1), . . . , µ(un+1)]→ ω∗(X, ∗).
Let γ and δ be two states of X such that α 'past γ and β 'past δ. By induction hypothesis,
there is a commutative diagram of CSTS

∂Cn+1[µ(u1), . . . , µ(un+1)]

⊂

��

0n+1 7→ (α, γ)
f : ζ ∈ {0, 1}n\{0n+1, 1n+1) 7→ (f(ζ), f(ζ))

1n+1 7→ (β, δ)
(µ(ui), i) 7→ ui for 1 6 i 6 n + 1 // ω∗(Path•(X, ∗))

ω∗(π0)

��
Cn+1[µ(u1), . . . , µ(un+1)]

`

33

f // ω∗(X, ∗).
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∗
u

ww
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''

u

��
v

��
α β γ

Figure 4: Example of non transitive past-similarity

The map ρ∗(∂Cn+1[µ(u1), . . . , µ(un+1)] ⊂ Cn+1[µ(u1), . . . , µ(un+1)]) � π0 is a cofibration
by Theorem 8.9. Thus, (X, ∗) is injective with respect to the trivial cofibration(

ρ∗(∂Cn+1[µ(u1), . . . , µ(un+1)] ⊂ Cn+1[µ(u1), . . . , µ(un+1)]) � π0
)
? γ0.

Hence, the lift ` exists. Since π0 is the identity on actions, we obtain that the tuple
((α, γ), u1, . . . , un+1, (β, δ)) is a transition of ω∗(Path•(X, ∗)). By Table 4, we deduce that
(γ, u1, . . . , un+1, δ) is a transition of X.

9.6. Proposition. Let (X, ∗) be a star-shaped transition system. Past-similarity is a
reflexive and symmetric relation. There exists a star-shaped transition system (X, ∗) such
that the binary relation 'past is not transitive. Let f : (X, ∗) → (Y, ∗) be a map of
star-shaped transition systems. If α and β are two past-similar states of X, then f(α) and
f(β) are two past-similar states of Y .

Proof. Reflexivity and symmetry are obvious. Consider the following example of Figure 4
(with µ(u) 6= µ(v)). We have α 'past β and β 'past γ. But α is not past-similar to
γ. If α and β are two past-similar states of X, then there exists a right homotopy
H : (P (w), 0)→ Path•(X, ∗) for w ∈ Σn sending n to (α, β). The map f induces a map
Path•(X, ∗)→ Path•(Y, ∗) by functoriality, and therefore a right homotopy (P (w), 0)→
Path•(X, ∗) → Path•(Y, ∗) sending n to (f(α), f(β)). Thus, f(α) and f(β) are past-
similar.

9.7. Proposition. Let (X, ∗) be a star-shaped transition system such that the set of
transitions is closed under past-similarity. Then 'past is transitive. In particular, if (X, ∗)
is fibrant, then 'past is transitive.

Proof. Let α, β, γ be three states of X with α 'past β and β 'past γ. Then there exists
a map f : Cyl•(P (w), 0) → (X, ∗) with w ∈ Σn and n > 0 such that f(n, 0) = α and
f(n, 1) = β. If n = 0, then α = β and therefore α 'past γ. Let us suppose n > 1.
Define g : Cyl•(P (w), 0) → (X, ∗) on states by g(n, 1) = γ and g = f otherwise, and
g = f on actions. The only transitions of Cyl•(P (w), 0) involving the state (n, 1) are
((n−1, 0), (xn, n), (n, 1)) and ((n−1, 1), (xn, n), (n, 1)) where w = x1 . . . xn. Since f is a well-
defined map of star-shaped transition systems, the triples (f(n−1, 0), f(xn, n), f((n, 1))) =
(f(n− 1, 0), f(xn, n), β) and (f(n− 1, 1), f(xn, n), f((n, 1))) = (f(n− 1, 1), f(xn, n), β) are
two 1-transitions of X. Since β 'past γ and since the set of transitions of (X, ∗) is closed
under past-similarity, the triples (g(n− 1, 0), g(xn, n), g((n, 1))) = (f(n− 1, 0), f(xn, n), γ)
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and (g(n − 1, 1), g(xn, n), g((n, 1))) = (f(n − 1, 1), f(xn, n), γ) are two 1-transitions of
(X, ∗). We deduce that the map g : Cyl•(P (w), 0) → (X, ∗) is a well-defined map of
star-shaped transition systems. Thus, α 'past γ. The last sentence is a consequence of
Proposition 9.5.

9.8. Theorem. Let (X, ∗) and (Y, ∗) be two objects of CSTS• with (Y, ∗) fibrant. Two
maps from (X, ∗) to (Y, ∗) are homotopy equivalent if and only if they coincide on actions
and send any state of (X, ∗) to past-similar states of (Y, ∗).

Proof. Let f and g be two homotopy equivalent maps from (X, ∗) to (Y, ∗). There exists
a right homotopy H : (X, ∗)→ Path•(Y, ∗) from f to g. Let u be an action of X. Since
X is cubical, there exists a transition (α, u, β). We deduce that

H(α, u, β) = ((f(α), g(α)), u′, (f(β), g(β)))

with (f(α), u′, f(β)) = f(α, u, β) and (g(α), u′, g(β)) = g(α, u, β). We obtain u′ = f(u) =
g(u). Let α be a state of X. Then H(α) = (f(α), g(α)). We deduce that f(α) 'past g(α)
by Proposition 9.2.

Conversely, let f and g be two maps from (X, ∗) to (Y, ∗) which coincide on ac-
tions and such that for any state α of X, f(α) and g(α) are past-similar. We have to
construct a right homotopy H : (X, ∗) → Path•(Y, ∗) from f to g. The only possible
definition is H(α) = (f(α), g(α)) for all states α of (X, ∗) and H(u) = f(u) = g(u)
for all actions u of (X, ∗). We have to prove that H yields a well-defined map of
transition systems, i.e. that for all transitions (α, u1, . . . , un, β) of (X, ∗), the tuple
((f(α), g(α)), H(u1), . . . , H(un), (f(β), g(β))) is a transition of Path•(Y, ∗). We are going
to prove by induction on n > 1 that for all states α and β of (X, ∗) and all actions
u1, . . . , up of X with 1 6 p 6 n, the tuple ((f(α), g(α)), H(u1), . . . , H(up), (f(β), g(β))) is
a transition of Path•(Y, ∗) if (α, u1, . . . , up, β) is a transition of (X, ∗).

The case n = 1. Consider the commutative diagram of solid arrows of CSTS

{01, 11}

⊂

��

01 7→ (f(α), g(α))
11 7→ (f(β), g(β)) // ω∗(Path•(Y, ∗))

ω∗(π0)

��
C1[µ(u1)]

`

55

01 7→ f(α)
11 7→ g(α)

(µ(u1), 1) 7→ f(u1)

// ω∗((Y, ∗)).

Since (Y, ∗) is fibrant, the canonical map (Y, ∗)→ 1 satisfies the RLP with respect to the
trivial cofibration (ρ∗(∂C1[µ(u1)] ⊂ C1[µ(u1)]) � π0) ? γ0. By adjunction, this implies that
the lift ` in the diagram above exists. Thus, we have proved that the triple

`(01, µ(u1), 11)) = ((f(α), g(α)), f(u1), (f(β), g(β)))

is a transition of Path•(Y, ∗).
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From n to n+ 1 with n > 1. By induction hypothesis, we have the commutative dia-
gram of solid arrows of CSTS:

∂Cn+1[µ(u1), . . . , µ(un+1)]

⊂

��

0n+1 7→ (f(α), g(α))
1n+1 7→ (f(β), g(β))

(µ(ui), i) 7→ f(ui) for 1 6 i 6 n + 1 // ω∗(Path•(Y, ∗))

ω∗(π0)

��
Cn+1[µ(u1), . . . , µ(un+1)]

`

22

0n+1 7→ f(α)
1n+1 7→ g(α)

(µ(ui), i) 7→ f(ui) for 1 6 i 6 n + 1

// ω∗(Y, ∗).

Since (Y, ∗) is fibrant, the canonical map (Y, ∗)→ 1 satisfies the RLP with respect to the
trivial cofibration(

ρ∗ (∂Cn+1[µ(u1), . . . , µ(un+1)] ⊂ Cn+1[µ(u1), . . . , µ(un+1)]) � π0
)
? γ0.

By adjunction, this implies that the lift ` in the diagram above exists. Thus, we have
proved that the triple

`(0n+1, µ(u1), . . . , µ(un+1), 1n+1) = ((f(α), g(α)), f(u1), . . . , f(un+1), (f(β), g(β)))

is a transition of Path•(Y, ∗).

9.9. Corollary. Every weak equivalence between two fibrant star-shaped transition
systems is bijective on actions.

10. Fibrant star-shaped transition systems

10.1. Lemma. Consider a commutative square of CSTS•

(A, ∗) //

��

(C, ∗)

��
(B, ∗) // (D, ∗).

Then the set map S(B, ∗) tS(A,∗) S(C, ∗)→ S(D, ∗) factors as a composite

S(B, ∗) tS(A,∗) S(C, ∗)� S((B, ∗) t(A,∗) (C, ∗)) −→ S(D, ∗)

where the left-hand map is onto and the set map L(B, ∗) tL(A,∗) L(C, ∗)→ L(D, ∗) factors
as a composite

L(B, ∗) tL(A,∗) L(C, ∗)� L((B, ∗) t(A,∗) (C, ∗)) −→ L(D, ∗)

where the left-hand map is onto.
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Proof. A pushout (B, ∗) t(A,∗) (C, ∗) in CSTS• can be calculated in CSTS∗ since the
category CSTS• is a coreflective subcategory of CSTS∗. Since a pushout is a connected
colimit, we have the isomorphism

(B, ∗) t(A,∗) (C, ∗) ∼= (B tA C, ∗).

A pushout B tAC in CSTS is calculated by taking the pushout B tCTSA C in CTS, and then
by applying the reflection CSA1 CSA2 : CTS → CSTS which identifies states and actions
to force CSA1 and CSA2 to hold. We obtain the isomorphism of CSTS•:

(B tA C, ∗) ∼= (CSA1 CSA2(B tCTSA C), ∗).

By adjunction, the map of cubical transition systems

B tCTSA C → D

factors uniquely as a composite

B tCTSA C −→ B tA C −→ D.

By Lemma 3.2, we have the bijections of sets

S(B tCTSA C) ∼= S(B) tS(A) S(C) and L(B tCTSA C) ∼= L(B) tL(A) L(C).

We obtain the composite set map

S(B) tS(A) S(C)� S((B, ∗) t(A,∗) (C, ∗)) −→ S(D)

where the left-hand map is onto and the composite set map

L(B) tL(A) L(C)� L((B, ∗) t(A,∗) (C, ∗)) −→ L(D)

where the left-hand map is onto.

10.2. theorem. Let

1. Λ0(Z) = (Z ? γ0) ∪ (Z ? γ1)

2. Λn+1(Z) = Λn(Z) ? γ for n > 0

3. Λ(Z) :=
⋃
n>0 Λn(Z)

where γ0, γ1 : Id ⇒ Cyl• are the natural transformations associated with the cylinder
Cyl• : CSTS• → CSTS• and γ = γ0 t γ1 (see Table 4 page 1140) and where Z is a set of
maps of CSTS•.

10.3. Proposition. Every map of Λ(I•) is bijective on actions.
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Proof. Let f : (A, ∗) → (B, ∗) be a map of star-shaped transition systems. Using
Lemma 10.1, the map f ? γε gives rise to the composite set map

L(A, ∗) tL(A,∗) L(B, ∗)� L
(
Cyl•(A, ∗) t(A,∗) (B, ∗)

)
−→ L(B, ∗)

which is bijective. Thus, the left-hand map is injective and then bijective. This implies
that the right-hand map is bijective and that f ? γε is bijective on actions. Suppose now
that f is bijective on actions. By Lemma 10.1, the map f ? γ gives rise to the composite
set map

L(Cyl•(A, ∗)) tL((A,∗)t(A,∗)) L((B, ∗) t (B, ∗))
� L

(
Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗))

)
−→ L(Cyl•(B, ∗))

which is bijective. Thus, the left-hand map is injective and then bijective. This implies
that the right-hand map is bijective and that f ? γ is bijective on actions.

10.4. Proposition. Let (X, ∗) be a star-shaped transition system. Then we have the
equalities I(Cyl•(X, ∗)) = I(X, ∗)× {0} and E(Cyl•(X, ∗)) = E(X, ∗)× {0, 1}.

Proof. The natural map γ0
X : (X, ∗)→ Cyl•(X, ∗) induces a one-to-one set map

S(γ0
X) : I(X, ∗) t E(X, ∗) −→ I(X, ∗)× {0} t E(X, ∗)× {0, 1}.

We deduce the set inclusion

I(γ0
X) : I(X, ∗) ∼= I(X, ∗)× {0} ⊂ I(Cyl•(X, ∗)).

Let (α, ε) ∈ I(Cyl•(X, ∗)). By Proposition 5.6, there exists a 2-transition

((µ0, ε0), u1, u2, (µ1, ε1))

of Cyl•(X, ∗) such that the tuples ((µ0, ε0), u1, (α, ε)) and ((α, ε), u2, (µ1, ε1)) are two tran-
sitions of Cyl•(X, ∗). Using Table 4, we deduce that the tuples (µ0, u1, u2, µ1), (µ0, u1, α)
and (α, u2, µ1) are transitions of (X, ∗). This implies that α is an internal state of (X, ∗)
and that ε = 0. We deduce the set inclusion

I(Cyl•(X, ∗)) ⊂ I(X, ∗)× {0}.

We obtain the equality
I(Cyl•(X, ∗)) = I(X, ∗)× {0}

and, by taking the complement, the equality

E(Cyl•(X, ∗)) = E(X, ∗)× {0, 1}.
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10.5. Definition. A map f : (A, ∗)→ (B, ∗) of pointed transition systems is proper if
the set map I(f) : I(A, ∗) → I(B, ∗) is bijective and if f induces a one-to-one set map
f(E(A, ∗)) ⊂ E(B, ∗) on external states. In particular, a proper map is one-to-one on
states. A map f : (A, ∗)→ (B, ∗) of pointed transition systems is strongly proper if it is
proper and bijective on states (which means that not only it is bijective on internal states,
but also on external states).

10.6. Proposition. Let f : (A, ∗)→ (B, ∗) be a (strongly resp.) proper map of pointed
transition systems. Then for any g ∈ Mor(CSTS•), the map f�g is (strongly resp.) proper.

Proof. Let f � g : (Â, ∗)→ (B̂, ∗). The star-shaped transition system (Â, ∗) is obtained
from (A, ∗) by doing for each state α of (A, ∗) different from the base state one of the
following operations (cf. the proof of Theorem 8.9): 1) either identifying α with ∗, 2) or
attaching a finite sequence of 1-transitions with initial state ∗ and final state α. When
α is internal in (A, ∗), it remains internal in (Â, ∗). When it is external in (A, ∗), it
becomes internal (case 1) and actually equal to ∗, or it remains external (case 2). In
case 2, all intermediate states of the finite sequence of 1-transitions are external. The
star-shaped transition system (B̂, ∗) is obtained from (B, ∗) by doing for each state α
of (B, ∗) different from the base state one of the following operations (cf. the proof of
Theorem 8.9): 1) nothing for a state of f(S(A)), 2) one of the two operations above on
the states of S(B)\f(S(A)). Thus, f � g is proper.

10.7. theorem. Let Σ+ =
⋃
n>1 Σn denote the set of nonempty words over Σ.

10.8. Corollary. Every map of I• is proper. Every map of I•\{(∅→ (P (w), 0)) | w ∈
Σ+} is strongly proper (where ∅ = ({∗}, ∗) is the initial object of CSTS•).

Proof. For any set S, we have I(S) = ∅, E(S) = S. For any n-cube Cn[x1, . . . , xn] with
n > 1 and x1, . . . , xn ∈ Σ, we have E(Cn[x1, . . . , xn]) = {0n, 1n} and I(Cn[x1, . . . , xn]) =
{0, 1}n\{0n, 1n}. Thus, every map of ρ∗(ICTS) is proper and every map of ρ∗(ICTS\{∅ ⊂
{0}}) is strongly proper. The proof of the first statement is complete using Proposition 10.6.
We have

{ρ∗(∅ ⊂ {0}) � g | g ∈ Mor(CSTS•)} = {(∅→ (P (w), 0)) | w ∈ Σ+}.

Then the proof of the last part is complete using Proposition 10.6.

10.9. Proposition. Let f : (A, ∗) → (B, ∗) be a (strongly resp.) proper map of star-
shaped transition systems. Then the map f ? γε for ε = 0, 1 is (strongly resp.) proper.

Proof. We write the proof for ε = 0. We have

S(Cyl•(A, ∗)) tS(A,∗) S(B, ∗)
∼= (I(A, ∗)× {0} t E(A, ∗)× {0, 1}) tI(A,∗)×{0}tE(A,∗)×{0} (I(B, ∗)× {0} t E(B, ∗)× {0})
∼= I(B, ∗)× {0} t E(B, ∗)× {0} t E(A, ∗)× {1}.
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The map f ? γ0 gives rise by Lemma 10.1 to the composite set map

I(B, ∗)× {0} t E(B, ∗)× {0} t E(A, ∗)× {1}
� S

(
Cyl•(A, ∗) t(A,∗) (B, ∗)

)
−→ I(B, ∗)× {0} t E(B, ∗)× {0, 1}

which is one-to-one. Thus, the left-hand map is one-to-one, and then bijective. We deduce
the bijection of sets

S
(
Cyl•(A, ∗) t(A,∗) (B, ∗)

) ∼= I(B, ∗)× {0} t E(B, ∗)× {0} t E(A, ∗)× {1}

and therefore, that f ? γ0 is one-to-one on states. The map of star-shaped transition
systems

ι2 : (B, ∗)→ Cyl•(A, ∗) t(A,∗) (B, ∗)

induces on internal states the set map

I(ι2) : I(B, ∗) −→ I(Cyl•(A, ∗) t(A,∗) (B, ∗)).

The latter yields the inclusion of sets

I(B, ∗)× {0} ⊂ I(Cyl•(A, ∗) t(A,∗) (B, ∗)).

The map f ? γ0 : Cyl•(A, ∗) t(A,∗) (B, ∗)→ Cyl•(B, ∗) induces a set inclusion between the
sets of internal states

I
(
Cyl•(A, ∗) t(A,∗) (B, ∗)

)
⊂ I(Cyl•(B, ∗)).

By Proposition 10.4, we have I(Cyl•(B, ∗)) = I(B, ∗)× {0}. We obtain the set inclusion

I
(
Cyl•(A, ∗) t(A,∗) (B, ∗)

)
⊂ I(B, ∗)× {0}.

Thus, we obtain the equality

I(Cyl•(A, ∗) t(A,∗) (B, ∗)) = I(B, ∗)× {0}

and, by taking the complement, the equality

E(Cyl•(A, ∗) t(A,∗) (B, ∗)) = E(A, ∗)× {1} t E(B, ∗)× {0}.

The proof is complete thanks to Proposition 10.4.
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10.10. Proposition. Let f : (A, ∗)→ (B, ∗) be a proper map. The map f ? γ is strongly
proper.

Proof. We have

S(Cyl•(A, ∗)) tS((A,∗)t(A,∗)) S((B, ∗) t (B, ∗))
∼= (I(A, ∗)× {0} t E(A, ∗)× {0, 1})

tI(A,∗)×{0,1}tE(A,∗)×{0,1} (I(B, ∗)× {0, 1} t E(B, ∗)× {0, 1})
∼= I(A, ∗)× {0} t E(B, ∗)× {0, 1}.

Thus the map f ? γ gives rise by Lemma 10.1 to the composite set map

I(A, ∗)× {0} t E(B, ∗)× {0, 1}� S(Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗)))
−→ I(B, ∗)× {0} t E(B, ∗)× {0, 1}.

Since this composite is bijective, the left-hand map is injective and then bijective. We
obtain

S(Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗))) = I(A, ∗)× {0} t E(B, ∗)× {0, 1}

and f ? γ is bijective on states. The states of E(B, ∗)× {0, 1} are external in Cyl•(B, ∗)
by Proposition 10.4. Thus, the states E(B, ∗) × {0, 1} cannot be internal states of
Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗)). We have proved the inclusion

I(Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗))) ⊂ I(B, ∗)× {0}.

The map Cyl•(A, ∗)→ Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗)) induces a set map

I(Cyl•(A, ∗))→ I(Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗))).

By Proposition 10.4, we have I(Cyl•(A, ∗)) = I(A, ∗)× {0} ∼= I(B, ∗)× {0}. We deduce
the inclusion of sets

I(B, ∗)× {0} ⊂ I(Cyl•(A, ∗) t(A,∗)t(A,∗) ((B, ∗) t (B, ∗))).

The proof is complete thanks to Proposition 10.4.

10.11. Corollary. Every map of Λ(I•)\Λ0({∅ → (P (w), 0) | w ∈ Σ+}) is strongly
proper, and in particular, bijective on states.

Proof. Table 5 summarizes the situation.
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ICTS ∅ ⊂ {0} ICTS\{∅ ⊂ {0}}

I• = {ρ∗(f) � g | f ∈ ICTS {∅→ (P (w), 0) | w ∈ Σ+} I•\{∅→ (P (w), 0) | w ∈ Σ+}
and g ∈ Mor(CSTS•)} proper (10.8) strongly proper (10.8)

Λ0 proper (10.9) strongly proper (10.9)

Λn with n > 1 strongly proper (10.10) strongly proper(10.10)

Table 5: Properness of the maps of Λ(I•)

10.12. Theorem. Let (X, ∗) be a star-shaped transition system. Then (X, ∗) is fibrant if
and only if its set of transitions is closed under past-similarity.

Proof. The “only if” part is Proposition 9.5. Let (X, ∗) be a star-shaped transition
system such that the set of transition is closed under past-similarity. We have to prove
that (X, ∗) is injective with respect to any map of Λ(I•).

Let us prove first that (X, ∗) is injective with respect to the maps of Λ0({∅ →
(P (w), 0) | w ∈ Σ+}). Let i : ∅ → (P (w), 0) with w ∈ Σ+. By symmetry, it suffices to
prove the injectivity with respect to i ? γ0. Consider the diagram of solid arrows of CSTS•

(P (w), 0)
φ //

i?γ0

��

(X, ∗)

Cyl•(P (w), 0)

`

<<

The map i ? γ0 : (P (w), 0) → Cyl•(P (w), 0) has the retraction σ : Cyl•(P (w), 0) →
(P (w), 0). Thus, ` = φσ is a solution. So far, we have not used the fact that the set of
transitions of (X, ∗) is closed under past-similarity.

Let us prove now that (X, ∗) is injective with respect to any map of Λ0(I•\{∅ ⊂
(P (w), 0) | w ∈ Σ+}). By symmetry, it suffices to prove the injectivity with respect to

{i ? γ0 | i ∈ I•\{∅ ⊂ (P (w), 0) | w ∈ Σ+}}.

The map i ? γ0 is of the form Cyl•(A, ∗) t(A,∗) (B, ∗) → Cyl•(B, ∗) with i : (A, ∗) →
(B, ∗) ∈ I•\{∅ ⊂ (P (w), 0) | w ∈ Σ+} where the map from (A, ∗) to Cyl•(A, ∗) is γ0

(A,∗).
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Consider the diagram of solid arrows of CSTS•
Cyl•(A, ∗) t(A,∗) (B, ∗) //

i?γ0

��

(X, ∗)

Cyl•(B, ∗).

`

::

By adjunction, the lift ` in the diagram above exists if and only the lift `′ in the commutative
diagram of solid arrows of CSTS•

(A, ∗) φ′ //

i

��

Path•(X, ∗)

π0

��
(B, ∗) ψ′ //

`′

::

(X, ∗)

exists. By Table 5, the map i is bijective on states. By Table 4, the map π0 is bijective on
actions. There is therefore one and exactly one way to define `′ on states and on actions.
Let (α, u1, . . . , un, β) be a transition of B. Then the tuple (ψ′(α), ψ′(u1), . . . , ψ′(un), ψ′(β))
is a transition of (X, ∗). By Table 4, we obtain the equality of tuples

`′(α, u1, . . . , un, β) = ((ψ′(α), α′), ψ′(u1), . . . , ψ′(un), (ψ′(β), β′))

with α′ 'past ψ′(α) and β′ 'past ψ′(β). Since the set of transitions of (X, ∗) is closed under
past-similarity, the three tuples

(ψ′(α), ψ′(u1), . . . , ψ′(un), β′)), (α′, ψ′(u1), . . . , ψ′(un), ψ′(β)), (α′, ψ′(u1), . . . , ψ′(un), β′)

are transitions of X. Thus, by Table 4, the tuple `′(α, u1, . . . , un, β) is a transition of
Path•(X, ∗) and `′ is a well-defined map of CSTS•.

Let us prove now that (X, ∗) is injective with respect to the maps f ?γ of Λ1(I•\{(∅→
(P (w), 0)) | w ∈ Σ+}) and of Λn(I•) for n > 2. Then we have

f ∈ Λ0(I•\{(∅→ (P (w), 0)) | w ∈ Σ+}) ∪ Λn−1(I•).
By Table 5, the map f : (A, ∗)→ (B, ∗) is bijective on states. And by Proposition 10.3, it
is bijective on actions. By adjunction, we then have to prove that for any commutative
diagram of solid arrows of CSTS•

(A, ∗) φ //

f

��

Path•(X, ∗)

π

��
(B, ∗)

`

::

ψ=(ψ1,ψ2) // (X, ∗)× (X, ∗),
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the lift ` exists. Since f is bijective on actions, we have ψ1(u) = ψ2(u) for any ac-
tion u of (B, ∗) because π is the diagonal on actions. Since f is bijective on states,
ψ(α) is a state of Path•(X, ∗) for any state α of (B, ∗). Let `(α) = ψ(α) for a state
α of (B, ∗) and `(u) = ψ1(u) = ψ2(u). We have to prove that ` takes a transition
of (B, ∗) to a transition of Path•(X, ∗). Let (α, u1, . . . , un, β) be a transition of (B, ∗).
Since the map ψ1 : (B, ∗) → (X, ∗) × (X, ∗) → (X, ∗) is a map of star-shaped tran-
sition systems, the tuple (ψ1(α), ψ1(u1), . . . , ψ1(un), ψ1(β)) is a transition of X. Since
the map ψ2 : (B, ∗) → (X, ∗) × (X, ∗) → (X, ∗) is a map of star-shaped transition
systems, the tuple (ψ2(α), ψ2(u1), . . . , ψ2(un), ψ2(β)) is a transition of X as well. Since
ψ(α) is a state of Path•(X, ∗), we have ψ1(α) 'past ψ2(α) by Table 4. For the same
reason, we have ψ1(β) 'past ψ2(β). Since the set of transitions of (X, ∗) is closed
under past-similarity, we deduce that the tuples (ψ2(α), ψ1(u1), . . . , ψ1(un), ψ1(β)) and
(ψ1(α), ψ1(u1), . . . , ψ1(un), ψ2(β)) are transitions of (X, ∗). Therefore, the tuple

(`(α), `(u1), . . . , `(un), `(β)) = (ψ(α), ψ1(u1), . . . , ψ1(un), ψ(β))

is a transition of Path•(X, ∗) by Table 4.
It remains to prove that (X, ∗) is injective with respect to the maps of Λ1({(∅ →

(P (w), 0)) | w ∈ Σ+})) to complete the proof. A map of Λ1({(∅→ (P (w), 0)) | w ∈ Σ+})
is of the form f ? γ where f : (P (w), 0) → Cyl•(P (w), 0) is the map f = γε(P (w),0) for
w ∈ Σn and n > 1. Assume that ε = 0 without loss of generality. By adjunction, we have
then to prove that for any commutative diagram of solid arrows of CSTS•

(P (w), 0)
φ //

f=γ0
(P (w),0)

��

Path•(X, ∗)

π

��
Cyl•(P (w), 0)

`

88

ψ=(ψ1,ψ2) // (X, ∗)× (X, ∗),

the lift ` exists. Since f is bijective on actions, and since π is the diagonal map on
actions, we have ψ1(u) = ψ2(u) for any action u of (B, ∗). The only possible defi-
nition on actions is `(u) = ψ1(u) = ψ2(u). Let `(α) = ψ(α). For any 0 6 j 6
n, we have (j, 0) 'past (j, 1) in Cyl•(P (w), 0). Consequently, we have ψ1(j, 0) 'past
ψ1(j, 1) and ψ2(j, 0) 'past ψ2(j, 1) in (X, ∗). Since the diagram is commutative, the pair
(ψ1(j, 0), ψ2(j, 0)) is a state of Path•(X, ∗). By Table 4, we deduce that ψ1(j, 0) 'past
ψ2(j, 0). By Proposition 9.7, past-similarity is transitive on (X, ∗). We deduce that
ψ1(j, 1) 'past ψ2(j, 1). We have proved that for any state α of Cyl•(P (w), 0), ψ(α)
is a state of Path•(X, ∗) (remember that π is one-to-one on states). It remains to
prove that ` takes a transition of Cyl•(P (w), 0) to a transition of Path•(X, ∗) to com-
plete the proof. Let (α, u1, . . . , un, β) be a transition of Cyl•(P (w), 0). Then both
(ψ1(α), ψ1(u1), . . . , ψ1(un), ψ1(β)) and (ψ2(α), ψ2(u2), . . . , ψ2(un), ψ2(β)) are transitions
of X. Since the set of transitions of (X, ∗) is closed under past-similarity, the tuples
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(ψ1(α), ψ1(u1), . . . , ψ1(un), ψ2(β)) and (ψ1(α), ψ2(u2), . . . , ψ2(un), ψ2(β)) are also transi-
tions of X. The proof is complete using Table 4.

11. Characterization in the star-shaped case

11.1. Definition. A star-shaped transition system is reduced when two states are past-
similar if and only if they are equal.

All reduced star-shaped transition systems are fibrant by Theorem 10.12.

11.2. Proposition. The full subcategory CSTS• of reduced star-shaped transition systems
is a small-orthogonality class of CSTS•.

Proof. Let w = x1 . . . xn ∈ Σn with n > 1. Let (C(w), ∗) be the ω-final lift of the map

ω(Cyl•(P (w), 0))→ (S(Cyl•(P (w), 0))/((n, 1) = (n, 2)), {(x1, 1), . . . , (xn, n)}).

It can be depicted as follows:

(1, 0)
(x2,2) //

(x2,2)

��

(2, 0)
(x3,3) //

(x3,3)

��

. . . . . .

(xn,n) ''
∗ = (0, 0) = (0, 1)

(x1,1)
77

(x1,1) ''

(n, 0) = (n, 1)

(1, 1)
(x2,2) //

(x2,2)

DD

(2, 1)
(x3,3) //

(x3,3)

DD

. . . . . .

(xn,n)

77

A star-shaped transition system is reduced if and only if it is injective with respect to the
maps Cyl•(P (w), 0)→ (C(w), ∗) with w ∈ Σ+. Since these maps are onto on states and
on actions, they are epic. Thus, injectivity is equivalent to orthogonality in this case.

LetR = {Cyl•(P (w), 0)→ (C(w), ∗) | w ∈ Σ+}. For any star-shaped transition system
(X, ∗), the canonical map (X, ∗) → 1 factors as a composite (X, ∗) → R⊥• (X, ∗) → 1
with the left-hand map belonging to cellCSTS•(R) and the right-hand map belonging to
injCSTS•(R). By Theorem 4.5 and Corollary 4.6, every map of cellCSTS•(R) is onto on
states, on actions and on transitions. We deduce that every map of cellCSTS•(R) is epic
in CSTS•. Thus, by [Gaucher, 2015a, Proposition A.1], this factorization is unique up
to isomorphism. And for the same reason as for CSA1, this construction provides the
left adjoint to the inclusion functor CSTS• ⊂ CSTS•. By [Adámek and Rosický, 1994,
Theorem 1.39], the category CSTS• is locally presentable.

11.3. theorem. Let us denote by Ψ(X,∗) : (X, ∗)→ R⊥• (X, ∗) the unit map.

11.4. theorem. Let X be a weak transition system. Let u and v be two actions of X.
Denote by u 'CSA1 v if µ(u) = µ(v) and if there exist two states α and β of X such that
the triples (α, u, β) and (α, v, β) are transitions of X.
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11.5. Proposition. Let (X, ∗) be a star-shaped cubical transition system. Let r(X) be
the ω-final lift of the map ω(X) −→ (S(X)/'past,L(X)/'CSA1) of Set{s}∪Σ. Let ∗ be the
image by X → r(X) of ∗ ∈ X. Then the pointed weak transition system (r(X), ∗) is a
star-shaped cubical transition system.

Proof. The weak transition system X is cubical by hypothesis. Since the set map
L(X)→ L(X)/'CSA1 is onto, the weak transition system r(X) is cubical by Theorem 2.4.
The map X → r(X) is onto on states. Thus, every state of r(X) is reachable.

11.6. Proposition. Let (X, ∗) be a star-shaped transition system. Let X0 = X. Suppose
the weak transition system Xξ constructed for an ordinal ξ > 0. Let Xξ+1 = r(Xξ). For a
limit ordinal ξ, let Xξ = lim−→

WTS
β<ξ

Xβ, the colimit being taken in WTS. Then

1. For all ordinals ξ, the weak transition system Xξ is cubical and the pointed cubical
transition system (Xξ, ∗) is star-shaped.

2. There exists an ordinal η such that Xξ = Xη for all ξ > η.

3. There is the isomorphism R⊥• (X, ∗) = (Xη, ∗).

Proof. The proof is in five steps.
1) For a limit ordinal ξ, the weak transition system lim−→

WTS
ζ<ξ

Xζ is cubical if all Xζ for

ζ < ξ are cubical since CTS is a coreflective subcategory of WTS. We have proved the first
assertion using Proposition 11.5.

2) The second assertion holds for cardinality reasons.
3) For any action u and v of (Xη, ∗), we have u 'CSA1 v ⇒ u = v since Xη = Xη+1.

This means that (Xη, ∗) satisfies CSA1.
4) Let (α, u1, u2, β), (α, u1, ν1), (α, u1, ν2), (ν1, u2, β) and (ν2, u2, β) be five transitions

of (Xη, ∗). Thus, the triple ((α, α), u1, (ν1, ν2)) is a transition of Path∗(Xη, ∗) by Table 2.
Since α 'past α, we deduce that (α, α) is a reachable state of Path∗(Xη, ∗), and then that
(ν1, ν2) is a reachable state of Path∗(Xη, ∗), and therefore that ν1 'past ν2. Thus, we obtain
ν1 = ν2 since Xη = r(Xη). Let

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (α, u1, . . . , up, ν2), (ν1, up+1, . . . , un, β),

(ν2, up+1, . . . , un, β)

be five transitions of (Xη, ∗) with n > p + 1 and p > 2. Since (Xη, ∗) is cubical, there
exists a state ν3 such that the tuples (α, u1, . . . , up−1, ν3) and (ν3, up, . . . , un, β) are two
transitions of (Xη, ∗). By the patching axiom, the triples (ν3, up, ν1) and (ν3, up, ν2) are
two transitions of (Xη, ∗). Since ν3 'past ν3, we deduce that (ν3, ν3) is a reachable state
of Path∗(Xη, ∗), and then that (ν1, ν2) is a reachable state of Path∗(Xη, ∗), and therefore
that ν1 'past ν2. Thus, we obtain ν1 = ν2 since Xη = r(Xη). Therefore, (Xη, ∗) satisfies
CSA2.

5) We deduce that (Xη, ∗) is a star-shaped Cattani-Sassone transition system. By
construction, the star-shaped transition system (Xη, ∗) is reduced. Let us prove by
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induction on the ordinal ξ that the map (X, ∗) → R⊥• (X, ∗) factors as a composite

(X, ∗) → (Xξ, ∗)
φξ→ R⊥• (X, ∗). The case ξ = 0 is trivial. If the map (X, ∗) → R⊥• (X, ∗)

factors as a composite (X, ∗) → (Xξ, ∗) → R⊥• (X, ∗), then for any pair of past-similar
states (α, β) of Xξ, we have φξ(α) 'past φξ(β) in R⊥• (X, ∗). Thus, we obtain φξ(α) = φξ(β)
since R⊥• (X, ∗) is reduced. And for any pair of actions (u, v) of Xξ with u 'CSA1 v,
we have φξ(u) 'CSA1 φξ(v) in R⊥• (X, ∗). Thus, we obtain φξ(u) = φξ(v) since R⊥• (X, ∗)
satisfies CSA1. We deduce that the map ω(φξ) : ω(Xξ) → ω(ω∗(R⊥• (X, ∗))) of Set{s}∪Σ

factors uniquely as a composite ω(Xξ) → ω(Xξ+1) → ω(ω∗(R⊥• (X, ∗))). We obtain the
factorization φξ : (Xξ, ∗) → (Xξ+1, ∗) → R⊥• (X, ∗). By passing to the colimit, we then

obtain the factorization X −→ Xη
φη−→ R⊥• (X, ∗). By the universal property of the

adjunction, we deduce the isomorphism Xη
∼= R⊥• (X, ∗).

11.7. Proposition. Let f : (X, ∗)→ (Z, ∗) be a map of star-shaped cubical transition
systems with (Z, ∗) fibrant in CSTS•. Let Y = r(X). Then (Y, ∗) is a star-shaped cubical
transition system. There exists a map g : (Y, ∗)→ (Z, ∗) of star-shaped cubical transition
systems such that for any state α of X, we have gw(α) 'past f(α) and for any action u of
X, we have gw(u) = f(u) where w : (X, ∗)→ (Y, ∗) is the canonical map.

Proof. Let w : (X, ∗) → (Y, ∗) be the canonical map. By Proposition 11.5, (Y, ∗) is
a star-shaped cubical transition system. By construction, the map ω(w) has a section
s. Let g(α) = fs(α) for a state α of Y and g(u) = fs(u) for an action u of Y . Let
α ∈ S(X). Since wsw(α) = w(α) in S(X)/ 'past, the pair of states (sw(α), α) is in
the transitive closure of the binary relation 'past of (X, ∗). Thus, the pair of states
(fsw(α), f(α)) is in the transitive closure of the binary relation 'past of (Z, ∗). But (Z, ∗)
is fibrant by hypothesis. By Proposition 9.7, we deduce that fsw(α) 'past f(α). We have
gw(α) = fsw(α) by definition of g. We obtain gw(α) 'past f(α) for any state α of X. Let
u be an action of X. By a similar argument, we prove that the pair of actions (gw(u), f(u))
is in the transitive closure of the binary relation 'CSA1 of (Z, ∗). Since Z satisfies CSA1,
we deduce that gw(u) = f(u) for any action u of X. It remains to prove that g maps
a transition of (Y, ∗) to a transition of (Z, ∗). The weak transition system Y is defined
as the ω-final lift of the map ω(X) → (S(X)/'past,L(X)/'CSA1). That is to say, it is
equipped with the final structure. By [Gaucher, 2010a, Proposition 3.5], this final structure
is obtained by considering the set G0 of transitions which are in the image of the map
(X, ∗)→ (Y, ∗), then by applying the patching axiom on the transitions of G0 to obtain a
set G1 ⊇ G0, and by transfinitely iterating the process. The set of transitions

⋃
ξ>0Gξ is

the final structure 1. We are going to prove by transfinite induction on ξ > 0 that for any
transition (α, u1, . . . , un, β) of Gξ, the tuple (g(α), g(u1), . . . , g(un), g(β)) is a transition of
(Z, ∗). First of all, let (α, u1, . . . , un, β) ∈ G0. By definition of G0, there exists a transition
(α, u1, . . . , un, β) of (X, ∗) such that (w(α), w(u1), . . . , w(un), w(β)) = (α, u1, . . . , un, β).
We have w(α) = α = ws(α) since s is a section of w on states. Thus, the pair of states

1[Gaucher, 2010a, Proposition 3.5] also claims that the multiset axiom is automatically satisfied. This
is due to the internal symmetry of the patching axiom and to the fact that G0 satisfies the multiset axiom.
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(α, s(α)) is in the transitive closure of the binary relation 'past in (X, ∗). We obtain
f(α) 'past fs(α) = g(α) since 'past is transitive in (Z, ∗) by Proposition 9.7. For the same
reason, we obtain f(β) 'past fs(β) = g(β). The tuple (f(α), f(u1), . . . , f(un), f(β)) is a
transition of (Z, ∗) since f is a map of transition systems. By Theorem 10.12, and since
(Z, ∗) is fibrant by hypothesis, the tuple (g(α), f(u1), . . . , f(un), g(β)) is then a transition
of (Z, ∗). We have w(ui) = ui = ws(ui) for all 1 6 i 6 n. Thus, the pair of actions
(ui, s(ui)) for any 1 6 i 6 n is in the transitive closure of the binary relation 'CSA1

in (X, ∗). We obtain f(ui) = fs(ui) = g(ui) for all 1 6 i 6 n since Z satisfies CSA1.
Therefore, the tuple (g(α), g(u1), . . . , g(un), g(β)) is a transition of (Z, ∗). The step ξ = 0
of the transfinite induction is proved. The case ξ limit ordinal is trivial. It remains to
prove that if all transitions of Gξ are mapped by g to transitions of (Z, ∗), then the same
fact holds for Gξ+1. Consider the five tuples

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β)

of Gξ with n > 3, p, q > 1 and p+ q < n. By definition, the tuple (ν1, up+1, . . . , up+q, ν2)
belongs to Gξ+1. By induction hypothesis, the five tuples

(g(α), g(u1), . . . , g(un), g(β)), (g(α), g(u1), . . . , g(up), g(ν1)), (g(ν1),

g(up+1), . . . , g(un), g(β)), (g(α), g(u1), . . . , g(up+q), g(ν2)),

(g(ν2), g(up+q+1), . . . , g(un), g(β))

are transitions of (Z, ∗). By applying the patching axiom in (Z, ∗), we obtain that the
tuple (g(ν1), g(up+1), . . . , g(up+q), g(ν2)) is a transition of (Z, ∗). The proof is complete.

11.8. Theorem. For any star-shaped transition system (X, ∗), the map Ψ(X,∗) : (X, ∗)→
R⊥• (X, ∗) is a weak equivalence of CSTS•.

Proof. Let f : (X, ∗) → (Y, ∗) be a map of star-shaped transition systems. By Propo-
sition 11.6 and Proposition 11.7, there exists a map of star-shaped transition system
g : R⊥• (X, ∗)→ (Y, ∗) such that for any state α of (X, ∗), we have gΨ(X,∗)(α) 'past f(α)
and for any action u of (X, ∗), we have gΨ(X,∗)(u) = f(u). By Theorem 9.8, we deduce
that gΨ(X,∗) and f are homotopy equivalent maps. Thus, the set map

πCSTS•(R
⊥
• (X, ∗), (Y, ∗))→ πCSTS•((X, ∗), (Y, ∗))

induced by the precomposition with Ψ(X,∗) : (X, ∗) → R⊥• (X, ∗) is onto. Let f, g :
R⊥• (X, ∗) → (Z, ∗) be two maps of CSTS• such that fΨ(X,∗) is homotopy equivalent to
gΨ(X,∗). Then fΨ(X,∗) and gΨ(X,∗) coincide on actions by Theorem 9.8 and for any state
α of X, the states f(Ψ(X,∗)(α)) and g(Ψ(X,∗)(α)) are past-similar. For any state β of Y ,
there exists a state α of X such that Ψ(X,∗)(α) = β. Thus, for any state β of Y , the states
f(β) and g(β) are past-similar. Since Ψ(X,∗) is onto on actions as well, f and g coincide
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on actions. We deduce that f and g are homotopy equivalent by Theorem 9.8. We deduce
that the set map

πCSTS•(R
⊥
• (X, ∗), (Z, ∗))→ πCSTS•((X, ∗), (Z, ∗))

induced by the precomposition with Ψ(X,∗) is one-to-one.

11.9. Theorem. The left adjoint R⊥• : CSTS• → CSTS• induces a Quillen equivalence
between the model category CSTS• and the category CSTS• equipped with the discrete model
category structure.

Proof. For any reduced star-shaped transition system (X, ∗), we have by Proposition 9.2
and by Table 2 the equality Path•(X, ∗) = (X, ∗). Let α be a state of X. Since (X, ∗) is
star-shaped, there exists w ∈ Σn with n > 0 and a map f : (P (w), 0)→ (X, ∗) such that
f(n) = α. By functoriality, we obtain a map Cyl•(f) : Cyl•(P (w), 0)→ Cyl•(X, ∗). Thus,
we have (α, 0) 'past (α, 1) in Cyl•(X, ∗). This implies that R⊥• (Cyl(X, ∗)) = (X, ∗) for any
reduced star-shaped transition system (X, ∗). Using [Gaucher, 2015c, Theorem 3.1], we
obtain a left determined Olschok model structure on CSTS• such that the cylinder and
path functors are the identity functor. Therefore, we have the equalities

πCSTS•((X, ∗), (Y, ∗)) = πlCSTS•((X, ∗), (Y, ∗))
= πrCSTS•((X, ∗), (Y, ∗)) = CSTS•((X, ∗), (Y, ∗))

for any reduced Cattani-Sassone transition system (X, ∗) and (Y, ∗). This means that the
weak equivalences of CSTS• are the isomorphisms. Thus, the left adjoint R⊥• : CSTS• →
CSTS• induces a homotopically surjective left Quillen adjoint from CSTS• to CSTS• equipped
with the discrete model structure. By Theorem 11.8, this left Quillen adjoint is a left
Quillen equivalence.

The following corollary proves that a map of star-shaped transition systems is a
weak equivalence if and only if it becomes an isomorphism after the identification of all
past-similar states.

11.10. Corollary. A map f of CSTS• is a weak equivalence if and only if R⊥• (f) is an
isomorphism.

Proof. Since all objects of CSTS• are cofibrant, a weak equivalence f is mapped to a weak
equivalence R⊥• (f) of CSTS•, i.e. an isomorphism. Conversely, if R⊥• (f) is an isomorphism,
then by Theorem 11.8 and the two-out-of-three property, f is a weak equivalence.

12. Causality and homotopy

This concluding section is written to interpret Theorem 11.9. All left determined model
categories constructed so far on higher dimensional transition systems, including the ones
of [Gaucher, 2011] and [Gaucher, 2015b] where R : {0, 1} → {0} is a generating cofibration,
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are Quillen equivalent to discrete model categories. Similar left determined model categories
on flows [Gaucher, 2003] and multipointed d-spaces [Gaucher, 2009] do not have such
a behavior. This phenomenon could be related to the absence of thin objects in higher
dimension in the formalism of higher dimensional transition systems which categorically
behave like labelled symmetric precubical sets [Gaucher, 2010a, Theorem 11.6].

To be more specific in the sequel, we will be using the 1-dimensional paths (P (w), 0) with
w ∈ Σ∗ (where Σ∗ =

⋃
n>0 Σn is the set of words over Σ). The arguments developed here

could be adapted to more complicated notions of paths, in particular higher dimensional
ones like in [Fahrenberg and Legay, 2013]. Let

P = {(P (w), 0)→ (P (ww′), 0) | w,w′ ∈ Σ∗}

be the set of extensions of paths. The semantics of [Gaucher, 2010a] is used in this section.
The reader does not actually need to read the latter paper to understand the sequel.
Indeed, except for Proposition 12.2 whose proof is just sketched, the only facts to know
are that:

1. All P-cell complexes are realizations of process algebras.

2. All realizations of process algebras are colimits of cubes.

12.1. Definition. After [Joyal, Nielsen, and Winskel, 1996], two star-shaped transition
systems (X, ∗) and (Y, ∗) are P-bisimilar if they are related by a span of P-injective maps
(X, ∗)← (Z, ∗)→ (Y, ∗).

Since the class of P-injective maps is closed under pullback and composition, two
star-shaped transition systems (X, ∗) and (Y, ∗) are P-bisimilar if and and only if they are
related by a zig-zag of P-injective maps. Note that a P-injective map between star-shaped
transition systems is always onto on states, on actions and on 1-dimensional transitions.

12.2. Proposition. Any two weakly equivalent star-shaped transition systems of the left
determined Olschok model category CSTS• realizing process algebras are isomorphic, and
hence P-bisimilar. There exist two P-bisimilar P-cell complexes which are not weakly
equivalent.

Proof Sketch of proof. A star-shaped transition systems realizing a process algebra
is reduced: the proof is by induction on the syntactic description of the process algebra.
Thus, if two of them are weakly equivalent, they are isomorphic by Corollary 11.10. The
two P-cell complexes (P (u), 0) t (P (u), 0) and (P (u), 0) are P-bisimilar since the unique
map (P (u), 0)t (P (u), 0)→ (P (u), 0) is P-injective. They can be depicted as follows with
µ(u1) = µ(u2) = u:

•

(P (u), 0) t (P (u), 0) = 0

u1
AA

u2 ��

(P (u), 0) = 0
u1 // •

•
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However, they are reduced and not isomorphic. Thus, they are not weakly equivalent by
Corollary 11.10.

12.3. Definition. A model structure on CSTS• is P-causal (with respect to the semantics
of [Gaucher, 2010a]) if any two star-shaped transition systems realizing process algebras
are weakly equivalent if and only if they are P-bisimilar.

12.4. Theorem. Consider a model structure of CSTS• such that all P-cell complexes are
cofibrant and such that all P-injective maps are weak equivalences. Then there exist two
homotopy equivalent P-cell complexes which are not P-bisimilar. In particular, this model
structure is not P-causal.

Proof. Consider the two P-cell complexes (M0, 0) = (P (uv), 0)t (P (u), 0) and (M1, 0) =
(P (uv), 0). The star-shaped transition systems (M0, 0) and (M1, 0) look as follows (with
µ(u1) = µ(u2) = u and µ(v1) = v):

• v1 // •

(M0, 0) = 0

u1
AA

u2 ��

(M1, 0) = 0
u1 // • v1 // •

•

They are not P-bisimilar since the path 0
u2→ • of (M0, 0) cannot be extended. Let

f : (M0, 0)→ (M1, 0) be the unique map defined on actions by the mappings u1, u2 7→ u1

and v1 7→ v1. Let g : (M1, 0) → (M0, 0) be the unique map defined on actions by the
mappings u1 7→ u1 and v1 7→ v1. Consider a commutative diagram of solid arrows of CSTS•

(P (w), 0)
φ //

��

(M0, 0) t (M0, 0)

��
(P (ww′), 0) //

`

77

(M0, 0)

where w,w′ ∈ Σ∗. The only possibilities for w,ww′ ∈ Σ∗ are w,ww′ ∈ {∅, u, uv}.
Consequently, the map φ factors as a composite

(P (w), 0) −→ (M0, 0) −→ (M0, 0) t (M0, 0).

Thus, the lift ` exists. We deduce that the codiagonal map (M0, 0) t (M0, 0)→ (M0, 0)
factors as a composite

(M0, 0) t (M0, 0)
∼= // (M0, 0) t (M0, 0)

∈injCSTS• (P)
// (M0, 0)

where the left-hand map is a cofibration and the right-hand map is P-injective, i.e. by
hypothesis a weak equivalence. Consequently, (M0, 0)t(M0, 0) is a good cylinder of (M0, 0)
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for this model structure. We deduce that the maps Id(M0,0), gf : (M0, 0)⇒ (M0, 0) are left
homotopic maps. By [Hirschhorn, 2003, Proposition 7.4.8], and since (M0, 0) is cofibrant
by hypothesis, Id(M0,0) and gf are right homotopic, and then homotopic. For the same
reason, the maps Id(M1,0) and fg are homotopic. Therefore, the star-shaped transition
systems (M0, 0) and (M1, 0) are homotopy equivalent in this model structure.

Theorem 12.4 and its proof tell us that localizing with respect to the whole class of
P-injective maps is a very bad idea. Theorem 12.4 also tells us that the most obvious
candidate, the left determined model structure with respect to P, whose existence is a
consequence of Vopěnka’s principle by [Rosický and Tholen, 2003, Theorem 2.2], is not
P-causal either.

Theorem 12.4 also holds by replacing the category of star-shaped transition systems
by any category of labelled precubical sets of [Gaucher, 2008] or [Gaucher, 2010b]. Indeed,
the origin of the problem is that the map (X, ∗) t (X, ∗)→ (X, ∗) is P-injective for any
star-shaped transition system (X, ∗) not containing any cycle passing by the base state ∗,
which means in this case that a good cylinder of (X, ∗) is (X, ∗) t (X, ∗) in such a model
structure.

It turns out that there exist star-shaped transition systems which are not colimits of
cubes, e.g. the star-shaped transition systems of Figure 2 and Figure 3. It is actually the
main technical difference with any category of labelled precubical sets of [Gaucher, 2008]
or [Gaucher, 2010b]. To overcome the problem arising from Theorem 12.4, the idea is to
localize with respect to a class of P-injective maps between star-shaped transition systems
which are P-optimized in the sense that they use a minimal set of actions. For example,
with (X, ∗) = (P (uv), ∗), the star-shaped transition system (X, ∗)t (X, ∗) looks as follows
(with µ(u1) = µ(u2) = u and µ(v1) = µ(v2) = v):

• v1 // •

(X, ∗) t (X, ∗) = ∗
u1
AA

u2 ��
• v2

// •

and its P-optimized version is:

• v // •

(Y, ∗) = ∗
u
AA

u ��
• v

// •

The star-shaped transition system of (Y, ∗) is exactly the one of Figure 2. The star-shaped
transition systems (X, ∗) t (X, ∗) and (Y, ∗) are P-bisimilar and (Y, ∗) uses as few actions
as possible. Note that (X, ∗) t (X, ∗) is never P-optimized unless X = {∗}.

The pushout diagram of Figure 5 highlights another problem which seems to indicate
that left properness could be an obstacle. All star-shaped transition systems of Figure 5
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• v // • • v // • w // •

∗
u ??

u ��

// ∗
u ??

u ��
• v // • • v

// •

�� ��

•
v
��

•
v
��

∗
u ??

u ��

• // ∗
u ??

u ��

• w // •

• v

??

• v

??

Figure 5: A pushout of a P-injective map which is not P-injective

β
• α•uoo γ

•
∩

β
• α•uoo γ

•
α′• u // γ

′

•
∩

β
• α•uoo u // γ•

Figure 6: Erratum

are P-optimized. The left vertical map is P-injective. The right vertical map is not
P-injective since the bottom path of the domain ∗ u→ • v→ • cannot be extended. It turns
out that the right vertical map identifies two states having the same past and not the
same future. There are two ways of overcoming this situation: 1) noticing that the domain
and the codomain of the bottom horizontal arrow are not the optimizations of star-shaped
transition systems coming from a process algebra; indeed the semantics of [Gaucher, 2010a]
cannot create directed cycles; 2) colocalizing with respect to the set of paths; then the
domain and the codomain of the bottom horizontal arrow are not cofibrant anymore.

After all these observations, we want to study localizations with respect to P-injective
maps between P-optimized realizations of process algebras and also localizations of the
colocalization with respect to the set of paths of CSTS•. The colocalization is not left
proper and entails the introduction of a new underlying category.

A. Erratum

[Gaucher, 2015a, Theorem A.2] is false. It is used in [Gaucher, 2015a, Proposition 2.7] and
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in [Gaucher, 2015a, Theorem 3.7]. [Gaucher, 2015a, Proposition 2.7] is still true. [Gaucher,
2015a, Theorem 3.7] is not true. Indeed, the cofibration

β
• α•uoo γ

•
∩

β
• α•uoo u // γ•

is not a transfinite composition of pushouts of maps of

ICTS = {C : ∅→ {0}}
∪ {∂Cn[x1, . . . , xn]→ Cn[x1, . . . , xn] | n > 1 and x1, . . . , xn ∈ Σ}

∪ {C1[x]→↑x↑| x ∈ Σ}.

However, it belongs to cellCTS(ICTS ∪ {R : {0, 1} → {0}}) by the sequence of inclusions of
Figure 6. The correct statement of [Gaucher, 2015a, Theorem 3.7] is obtained by replacing
the maps C1[x] →↑x↑ for x running over Σ by the maps C0 t C0 t C1[x] →↑x↑ for x
running over Σ which are defined to be bijective on states (see Notation 5.12 of this paper).
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Niefield, Union College: niefiels@union.edu
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