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THE CANONICAL 2-GERBE OF A HOLOMORPHIC VECTOR
BUNDLE

MARKUS UPMEIER

Abstract. For each holomorphic vector bundle we construct a holomorphic bundle
2-gerbe that geometrically represents its second Beilinson�Chern class. Applied to the
cotangent bundle, this may be regarded as a higher analogue of the canonical line bundle
in complex geometry. Moreover, we exhibit the precise relationship between holomorphic
and smooth gerbes. For example, we introduce an Atiyah class for gerbes and prove a
Koszul�Malgrange type theorem.

1. Introduction

A fundamental object associated to complex manifolds X is its canonical line bundle
Λtop(T ∗X). The present paper deals with an extension of this concept. Recall that
the canonical bundle may be viewed as a representative of the �rst Chern class. In
Theorem 1.3 we construct a geometric representative of the second Be��linson�Chern class,
a re�nement introduced in [Be��linson, 1984] that takes the holomorphic structure into
account. This is a 2-gerbe and may be computed from the eigenvalues and eigenspaces of
chart transition functions, just like the canonical bundle depends only on the product of
these eigenvalues.

We are motivated by the relationship between 2-gerbes and line bundles on the space
of curves, via transgression [Carey�Johnson�Murray�Stevenson�Wang, 2005, Brylinski,
1999b, Brylinski, 2008, Waldorf, 2012]. According to the paradigm of string geome-
try, structure on the in�nite-dimensional loop space may be studied through higher-
categorical, �nite-dimensional structure on the original space. This is the viewpoint of the
present paper. The 2-gerbe will be constructed within the framework of bundle gerbes,
introduced in [Murray, 1996] and further studied in [Murray�Stevenson, 2000, Murray,
2010, Stevenson, 2004]. It is obtained by pulling back a `tautological' multiplicative 1-
gerbe on GL(n,C). Having applications to complex geometry in mind, we shall be partic-
ularly concerned with the holomorphic structure on our gerbe. Even though the de�nition
of our gerbe on GL(n,C) is similar to that of U(n) in [Murray�Stevenson, 2008], this forces
us to apply di�erent arguments based on zero-counting integrals.
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To set this work apart from related results, we now brie�y review the existing lit-
erature. In [Brylinski�McLaughlin, 1996, Brylinski�McLaughlin, 1994, Brylinski, 2008]
tautological gerbes are de�ned as Dixmier�Douady sheaves of groupoids, but the construc-
tions involve in�nite-dimensional spaces. This makes them less useful from the point of
view of string geometry. We shall construct instead a very explicit and �nite-dimensional
model. Moreover, we have smooth gerbes over compact, simple, simply-connected Lie
groups [Meinrenken, 2003], certain quotients therefore [Gawedzki�Reis, 2004], for SU(n)
[Gawedzki�Reis, 2002]. Of course, GL(n,C) is of none of these types. For compact
semi-simple Lie groups G, a smooth multiplicative structure on the tautological gerbe on
G was constructed by cohomological arguments in [Carey�Johnson�Murray�Stevenson�
Wang, 2005] and [Waldorf, 2010].

We now state our main results and give an overview of the present paper.
We begin in Section 2 by developing further the theory of holomorphic bundle gerbes

started in [Mathai�Stevenson, 2003, Section 7]. In 2.4 we study the relationship to smooth
gerbes and present an analogue of the Koszul�Malgrange Theorem [Koszul�Malgrange,
1958]. For holomorphic line bundles, the Atiyah class is the obstruction against holomor-
phic connections. In 2.10 we demonstrate how this idea extends to gerbes. The rest of
the section reviews well-known terminology for smooth gerbes [Murray, 1996, Murray�
Stevenson, 2000, Murray, 2010, Waldorf, 2007] in our holomorphic context.

Our �rst theorem gives a very explicit and �nite-dimensional construction of a holo-
morphic gerbe Gcan. It extends the work [Murray�Stevenson, 2008] for the smooth Lie
group U(n). However, as GL(n,C) is non-compact and in the holomorphic category we
require di�erent arguments based on zero-counting integrals. In Theorem 3.15 we prove:

1.1. Theorem. Gcan = (π : Y → GL(n,C), L,m) de�nes a holomorphic gerbe. Its
Dixmier�Douady class DD(Gcan) is the generator of H2(GL(n,C),O∗).

The complex Lie group GL(n,C) is a Stein group. The techniques in Section 4 for Stein
manifolds allow us to show in Section 5 that the existence of a holomorphic multiplicative
structure is a purely topological problem:

1.2. Theorem. Let G be a Stein group and let G be a holomorphic gerbe on G with
holomorphic connection. Then G admits a holomorphic multiplicative structure with con-
nection precisely when the topological Dixmier�Douady class DD(G) ∈ H3(G;Z) is in the
image of the transgression map H4(BG;Z)→ H3(G;Z).

This shows that for Stein groups, the problem may be reduced to Waldorf's theory
[Waldorf, 2010]. In particular, every holomorphic gerbe with connection on GL(n,C)
admits a multiplicative structure (Corollary 5.8). Following the proof, we also give a
more explicit description. It is special to our treatment that we use Stein spaces to
study the Be��linson�Chern classes, instead of Deligne's theory of mixed Hodge structures
[Deligne, 1974] used in [Be��linson, 1984, Esnault�Viehweg, 1988].

Sections 6.1 and 6.4 introduce a notion of 2-gerbe which is slightly weaker than in
[Stevenson, 2004]. We also review the de�nition of the Dixmier�Douady class of a 2-



1030 MARKUS UPMEIER

gerbe. In the holomorphic context, there is a subtle point with the choice of coverings we
feel is not adequately considered in the existing literature.

For each holomorphic vector bundles E → X we present in Section 6.7 a construction
for a 2-gerbe G(E). We show:

1.3. Theorem. The associated 2-gerbe has the following properties:

1. G(f ∗E) ∼= f ∗G(E) (functorial)

2. The topological Dixmier�Douady class is c2(E).

3. For X algebraic, DD(G(E)) = cB2 (E) is the Be��linson�Chern class of E.

Applied to E = T ∗X we obtain the canonical 2-gerbe of a complex manifold X. In the
last Section 7, we illustrate an application that relies on the newly established holomorphic
structure on the canonical 2-gerbe.

Notation. For iterated �ber products we use the notation Y [i] = Y ×X · · · ×X Y and
similarly for maps over X. By prijk··· we mean the projections onto the indicated factors.
The sheaf of holomorphic k-forms is Ωk and O∗ is the sheaf of nowhere vanishing holomor-
phic functions. Unless stated otherwise, all bundles and bundle maps below are assumed
to be holomorphic.

Acknowledgements. I thank Joel Fine for many discussions on these results.

2. Holomorphic Bundle Gerbes and Connections

In this section we review well-established concepts for smooth gerbes in the holomorphic
context, see [Mathai�Stevenson, 2003]. Also some new results are developed, such a
Koszul�Malgrange Theorem for gerbes in 2.4 or a generalization of the Atiyah class in
2.10. Brylinski's holomorphic gerbes [Brylinski, 2008], sheaves of groupoids with band
O∗, are equivalent to the holomorphic bundle gerbes considered here.

2.1. Holomorphic Gerbes. Smooth gerbes represent classes in H2(X,C∗) ∼= H3(X;Z)
geometrically. In the simplest approach, one uses �ech cocycles for an open cover of X,
leading to Hitchin�Chatterjee gerbes [Chatterjee, 1998]. Below, we shall de�ne holomor-
phic gerbes on complex manifolds X. These objects are designed to represent cohomology
classes in H2(X,O∗X). We will adopt the `bundle gerbe' approach from [Murray, 1996]
which uses descent theory to avoid arti�cial choices of an open cover.

2.2. Definition. A holomorphic gerbe G on X is a triple (π, L,m) consisting of a holo-
morphic submersion π : Y → X, holomorphic line bundle L → Y [2], and bundle isomor-
phismm : pr∗12L⊗ pr∗23L→ pr∗13L. Denoting by Ly1,y2 the �bers of L, we get `multiplication
maps' m : Ly1,y2 ⊗ Ly2,y3 → Ly1,y3, which are required to be associative (see [Murray, 2010,
De�nition 4.1]).
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2.3. Definition. A connection on G = (Y, L,m) consists of a holomorphic connection
on L (see [Huybrechts, 2005, De�nition 4.2.17]) preserved by the multiplication m. A
curving on a gerbe with connection is a form f ∈ Ω2(Y ) related to the curvature of L by

pr∗2f − pr∗1f = R(∇L). (1)

The 3-curvature is then the unique ρ = R(G,∇L, f) ∈ Ω3(X) with π∗ρ = df .

In contrast to the smooth category, holomorphic connections are rare (see for example
Corollary 2.13 below). The precise obstructions to their existence will be explained in
Section 2.10 with the help of Deligne cohomology. There is also the weaker notion of
compatible connection on G. It consists of a connection on L only compatible with the
holomorphic structure (see [Huybrechts, 2005]). The curving is then a form of type
(2, 0) + (1, 1).

2.4. Relationship to Smooth Gerbes. Holomorphic gerbes with holomorphic con-
nections may equivalently be described by connective data with certain properties. Recall
the obvious variant of De�nition 2.2 in the category of smooth manifolds [Murray, 2010].

2.5. Theorem. Let G = (π : Y → X,L,m) be a smooth gerbe whose projection π is a
holomorphic submersion. Suppose it is equipped with a connection and curving f of type
(2, 0) whose 3-curvature ρ is of type (3, 0). Then there exists a canonical structure of
holomorphic gerbe on G with holomorphic connection.

Proof. The (0, 1)-part (∇L)(0,1) of the smooth connection determines a Cauchy-Riemann
operator on L. By equation (1) and our assumption on ρ, the curvature of the connection
is of type (2, 0) which shows in particular that (∇L)(0,1) ◦ (∇L)(0,1) = 0 is �at. Therefore
the Theorem of Koszul�Malgrange [Koszul�Malgrange, 1958] shows that this Cauchy�
Riemann operator de�nes a holomorphic structure on L. The multiplication m preserves
the (0, 1)-part of the connection and is thus holomorphic. As the 3-curvature ρ of type
(3, 0) satis�es π∗ρ = df , we have ∂̄f = 0, so the curving f is holomorphic as well.

Note that, conversely, a holomorphic gerbe with holomorphic connection satis�es the
hypotheses of the theorem. A similar statement applies to holomorphic gerbes with con-
nection, but without curving � the hypothesis is then that R(∇L) is of type (2, 0).
Moreover, we note that the weaker notion of compatible connection with curving on G

corresponds to a smooth connection whose curving has type (2, 0) + (1, 1).

2.6. Deligne Cohomology. Dixmier�Douady Classes.TheDeligne complex Z(p)D
is the following complex of sheaves (see [Brylinski, 2008, Section 1.5])

Z(p)D : 0 O∗ Ω1 · · · Ωp−1.
d log d d

The Deligne cohomology groups Hq(X,Z(p)D) are the hypercohomology groups of this
complex. For X paracompact they are isomorphic to the �ech hypercohomology groups
Ȟq(X,Z(p)D) (Godement's Theorem), which are convenient to construct actual classes.
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Of course Hn(X,Z(1)D) = Hn−1(X,O∗). The higher Deligne groups relate to connec-
tive structure. Thus H2(X,Z(2)D) is the group of holomorphic line bundles on X with
holomorphic connection, see [Deligne, 1991]. We now extend this classi�cation to gerbes.

2.7. Lemma. [Lurie, 2009, Lemma 7.2.3.5] Let U = {Uα} be an open covering of a para-
compact space X, k ∈ N. Given an open cover Vα0···αk of each (k + 1)-fold intersection
Uα0···αk , there exists a re�nement {Wβ} of U with the property that each (k + 1)-fold
intersection Wβ0···βk is a subset of some element of Vα0···αk .

2.8. Corollary. Let G = (π, L,m) be a holomorphic gerbe. Then we �nd arbitrarily
�ne open covers {Uα} of X which admit holomorphic sections sα : Uα → Y of π and
holomorphic trivializations σαβ of (sα, sβ)∗L.

We now come to the Dixmier�Douady class, which naturally lies in H3(X;Z(p)D), p
signifying the amount of connective structure on the gerbe.

2.9. Definition. Let G be a holomorphic gerbe. Pick an open cover {Uα} as in Corol-
lary 2.8. De�ne gαβγ ∈ O∗(Uαβγ) by

m(σαβ, σβγ) = gαβγ · σαγ.

Associativity of m implies that (gαβγ) is closed. Di�erent trivializations give cohomologous
cocycles. Taking the limit over a co�nal sequence of covers, we de�ne

DD(G) = [(gαβγ)] ∈ Ȟ3(X,Z(1)D).

If G is equipped with a holomorphic connection ∇, this class may be re�ned to

DD(G,∇) ∈ Ȟ3(X,Z(2)D).

For this we write the connection on (sα, sβ)∗L as d+ Aαβ. Since m preserves the connec-
tion we have d log(gαβγ) = Aβγ − Aαγ + Aαβ. Hence (gαβγ, Aαβ) ∈ Č3({Uα},Z(2)D) is a
�ech cocycle. If, in addition, we suppose G to be equipped with a curving, then fβ − fα =
dAαβ for fα = s∗αf , so (gαβγ, Aαβ, fα) de�nes a class DD(G,∇, f) ∈ H3(X,Z(3)D).

The exponential map to H3(X;Z) maps this class to the topological Dixmier�Douady
class DDtop(G), de�ned for example in [Murray, 1996, Murray, 2010].

2.10. Obstructions to Holomorphic Connections. As mentioned, holomorphic
connections and curvings cannot always be found. This is measured by the following
generalization of the Atiyah class for holomorphic line bundles. The short exact sequence
of sheaves

0→ Ωp[−p− 1]→ Z(p+ 1)D → Z(p)D → 0

induces the following exact sequences

H3(X,Z(2)D) H3(X,Z(1)D) H2(X,Ω1),

H3(X,Z(3)D) H3(X,Z(2)D) H1(X,Ω2).

B

C
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2.11. Corollary. Let G be a holomorphic gerbe. Then G admits a holomorphic connec-
tion if and only if B(DD(G)) = 0. Assume G is equipped with a holomorphic connection
∇. Then we may �nd a curving if and only if C(DD(G,∇)) = 0.

2.12. Proposition. The images of the classes B(G) and DD(G) in H3(X;C) agree.

Proof. From the de�nition of the coboundary map, one sees that B maps the �ech
cocycle gαβγ ∈ O∗(Uαβγ) to the class of d log gαβγ in H2(A1

cl). Therefore the image of
d log gαβγ in H3(X;C) is the image of the Dixmier�Douady class δ(gαβγ).

2.13. Corollary. For a compact Kähler manifold X the topological Dixmier�Douady
class DD(G) ∈ H3(X;Z) of a gerbe with holomorphic connection must be torsion.

This illustrates how restrictive the existence of a holomorphic connection is. For
example when H3(X;Z) is torsion-free, they exist only on gerbes that are topologically
trivial.

2.14. Morphisms of Gerbes. There is a naive notion (which we do not discuss) of
isomorphism with which two gerbes may have the same Dixmier�Douady class without
being isomorphic. When wishing to emphasize this, we also call the morphisms below
stable isomorphisms, in accordance with usual terminology.

2.15. Definition. Let G = (Y, L,m), G′ = (Y ′, L′,m′) be holomorphic gerbes on X. A
morphism F from G to G′ is a triple ((ς, ς ′), R, φ) of a submersion (ς, ς ′) : Z → Y ×X Y ′,
line bundle R→ Z, and bundle isomorphism

φ : (ς [2])∗L⊗ pr∗2R→ pr∗1R⊗ (ς ′[2])∗L′.

Hence φ gives maps Ly1,y2 ⊗Rz2 → Rz1 ⊗ L′y′1,y′2 for (z1, z2) ∈ Z [2], where ς(zk) = yk and
ς ′(zk) = y′k. For (z1, z2, z3) ∈ Z [3] we require commutative diagrams:

Ly1,y2 ⊗ Ly2,y3 ⊗Rz3 Ly1,y2 ⊗Rz2 ⊗ L′y′2,y′3 Rz1 ⊗ L′y′1,y′2 ⊗ L
′
y′2,y

′
3

Ly1,y3 ⊗Rz3 Rz1 ⊗ L′y′1,y′3

m⊗ id id⊗m′

id⊗ φ φ⊗ id

φ

The composite of (Z,R, φ) : G→ G′ with (Z ′, R′, φ′) : G′ → G′′ is given by the submer-
sion Z ×Y ′ Z ′ → Y ×X Y ′′ and the line bundle R⊗R′.

2.16. Definition. A connection on a morphism F = (Z,R, φ) : G→ G′ of gerbes with
connections is a holomorphic connection on R making φ connection-preserving.

Any two morphisms (R, φ), (R̃, φ̃) : G→ G′ di�er by a line bundle on the base X: the
maps φ and φ̃ de�ne descent data for the line bundle Rz ⊗ R̃∗z on Z. Hence it is the
pullback of a bundle on X. Similarly with connections.
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2.17. Proposition. Let F : G→ G′ be a morphism of holomorphic gerbes. Then

DD(G) = DD(G′) ∈ H3(X;Z(1)D).

If the gerbes and the morphism F have connections, their classes in H3(X;Z(2)D) agree.

Similarly, for smooth gerbes the topological Dixmier�Douady classes agree [Murray�
Stevenson, 2000, Proposition 3.2]. As a consequence of the previous proposition we have
[Murray�Stevenson, 2000, Proposition 3.4]:

2.18. Corollary. Let G2 = (Y2, L2,m) be smooth gerbe on X2. Consider a commutative
diagram

Y1
φ //

π1
��

Y2

π2
��

X1
φ // X2

of smooth maps, where π1 is a submersion. Then by pullback we obtain a gerbe G1 =
(Y1, φ

∗L2, φ
∗m) on X1 with topological Dixmier�Douady class φ∗DDtop(G2) ∈ H3(X1;Z).

2.19. Transformations. We now come to the 2-morphisms of our bicategory.

2.20. Definition. Let F = (Z,R, φ) and F̃ = (Z̃, R̃, φ̃) be morphisms from G = (Y, L,m)
to G′ = (Y ′, L′,m′). A transformation α : F ⇒ F̃ consists of

1. A submersion (κ, κ̃) : W → Z ×Y×Y ′ Z̃

2. A bundle isomorphism ψ : κ∗R→ κ̃∗R̃ over W .

So ψ induces maps ψw : Rz → R̃z̃, for (κ, κ̃)(w) = (z, z̃). For (w1, w2) ∈ W [2] let (κ, κ̃)(wk) =
(zk, z̃k), (ς, ς ′)(zk) = (yk, y

′
k). We require the commutativity of

Ly1,y2 ⊗Rz2 Rz1 ⊗ L′y′1,y′2

Ly1,y2 ⊗ R̃z̃2 R̃z̃1 ⊗ L′y′1,y′2

id⊗ ψ

φ

ψ ⊗ id

φ

If the morphisms F, F̃ are equipped with connections, the transformation α is compatible
with the connections if ψ preserves connections.

Two transformations are identi�ed if they coincide on a pullback [Waldorf, 2007]. This
gives a bicategory of gerbes.
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2.21. Further Operations. Let G = (Y, L,m) be a gerbe on X and let f : X ′ → X
be a holomorphic map. The pullback gerbe f ∗G is given by Y ′ = Y ×X X ′ → X ′ and the
pullback line bundle of L.

The tensor product G ⊗ G′ of two gerbes G = (Y, L,m), G′ = (Y ′, L′,m′) on X has
the submersion Y ×X Y ′ → X and the exterior product line bundle L⊗L′. Similarly, we
have a tensor product of morphisms. For more details, see [Waldorf, 2007]. The Dixmier�
Douady class is compatible with pullback and additive with respect to tensor products.
Equipping f ∗G and G ⊗ G′ with the tensor product and pullback connections, this also
holds for the 3-curvature.

3. The Canonical Gerbe on GL(n,C)

3.1. Further Notation. Using the exponential map we transport the order on [0, 2π[
to the unit circle. More generally we shall use the notation x < y for x, y ∈ C× when
x/|x| < y/|y| (only a transitive relation). Hence x < y when the ray through y is obtained
from the ray through x by a proper counterclockwise rotation not passing through the
positive reals.

Similarly the notation x ≤ y includes that x and y may lie on the same ray.

3.2. Definition. Let x = rxe
iϕx , y = rye

iϕy ∈ C× be non-zero complex numbers, written
in polar coordinates with 0 ≤ ϕy − ϕx < 2π. The sector of radii 0 ≤ r < R ≤ +∞ is

Sr,R(x, y) =
{
seiϕ | r < s < R,ϕx < ϕ < ϕy

}
.

We write S(x, y) when r = 0, R = +∞. The ray through x ∈ C× is the subset R>0x. For
x, y ∈ C− = C \ [0,∞) we de�ne also the unordered sector

Sr,R[x, y] =

{
Sr,R(x, y) (x ≤ y),

Sr,R(y, x) (y ≤ x).

For a matrixA ∈ GL(n,C) let χA =
∏

λ(X − λ)nλ be the characteristic polynomial and
write spec(A) ⊂ C× for its spectrum. Recall that Cn may be decomposed as an internal
direct sum of the nλ-dimensional generalized eigenspaces Vλ(A) = ker(A− λ · id)nλ . We
say λ ∈ C× is an eigenray of A if the ray through x meets spec(A).

3.3. Definition. For a subset S ⊂ C de�ne

VS(A) =
⊕
{Vκ(A) | κ ∈ S}

as the internal direct sum over all subspaces Vλ(A) ⊂ Cn with λ ∈ S.
For S, T,R ⊂ C with S ∩ T ∩ spec(A) = ∅ and (S ∪ T ) ∩ spec(A) = R ∩ spec(A)

VS(A)⊕ VT (A) = VR(A). (2)

The highest exterior power of a �nite-dimensional vector space with `⊕' de�nes a strong
monoidal functor Λtop to one-dimensional vector spaces with `⊗', where Λtop({0}) = C.
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3.4. Construction of the Gerbe. Let C− = C \ [0,∞) and

Y =
{

(A, z) ∈ GL(n,C)× C−
∣∣ z not an eigenray of A

}
. (3)

Using that eigenvalues are bound by the norm, one shows that the set of all (A, z) ∈
GL(n,C)× S1 with R>0z ∩ spec(A) 6= ∅ is closed. It follows that Y is an open subset, in
particular a complex manifold and also the projection

π : Y → GL(n,C), (A, z) 7→ A (4)

is a holomorphic submersion. We de�ne a family of complex vector spaces L→ Y [2] by
de�ning the �ber over (A, x, y) ∈ Y [2] = Y ×GL(n,C) Y as follows:

3.5. Definition. For x, y ∈ C× let λA(x) = Λtop(VS(1,x)(A)) and

LA,x,y = λA(x)⊗ λA(y)∗. (5)

The multiplication m of the gerbe is the restriction to Y [3] of the following operation:

3.6. Definition. For x, y, z ∈ C× we have a bilinear map

m : LA,x,y × LA,y,z → LA,x,z, m(u⊗ α, v ⊗ β) = α(v)u⊗ β, (6)

where u ∈ λA(x), α ∈ λA(y)∗, v ∈ λA(y), β ∈ λA(z)∗.

3.7. Lemma. The gerbe multiplication is associative.

Proof. Straight-forward veri�cation:

m(m(u⊗ α, v ⊗ β), w ⊗ γ) = m(α(v)u⊗ β, w ⊗ γ) = α(v)β(w)u⊗ γ,
m(u⊗ α,m(v ⊗ β, w ⊗ γ)) = m(u⊗ α, β(w)v ⊗ γ) = β(w)α(v)u⊗ γ.

3.8. Lemma. We have canonical isomorphisms:

1. LA,y,x ∼= L∗A,x,y.

2. LA,x,y ∼= Λtop(VS(y,x)), provided x ≥ y and y is not an eigenray of A. The gerbe
multiplication corresponds to the external wedge product under this identi�cation.

3. LA,x,y ∼= C, provided spec(A) ∩ S[x, y] = ∅.

Proof. 1. Symmetry isomorphism of `⊗'. 2. Apply (2) to (S(1, y), S(y, x), S(1, x)) to get
VS(1,y)⊕VS(y,x) = VS(1,x). The monoidal structure on Λtop gives λ(y)⊗Λtop(VS(y,x)) ∼= λ(x).
3. VS(1,x)(A) = VS(1,y)(A), so λA(x) = λA(y).
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We still need to de�ne a complex manifold structure on the total space L for which
the bundle becomes locally trivial. For this it su�ces to produce holomorphic line bundle
structures on the restriction of L over an open cover of Y [2], making sure that on overlaps
the corresponding complex structures agree.

3.9. Holomorphic Structure. By a domain we mean an open bounded subset O ⊂ C
with piecewise smooth boundary. For example, a bounded sector is a domain.

3.10. Lemma. Let A0 ∈ GL(n,C) and let O be a domain. Let O ⊂ S be a superset
satisfying spec(A0) ∩ S̄ ⊂ O. Then there exists a neighborhood U0 of A0 such that:

1. The number of eigenvalues nA(O) = nA0(O) of A ∈ U0 in O counted with multiplicity
is constant.

2. spec(A) ∩ S = spec(A) ∩O (∀A ∈ U0).

In particular nA(S) = nA(O) = nA0(O) = nA0(S) and VS(A) = VO(A).

Proof. De�ne O′ as the union of all balls Br(λ) ⊂ C \ S̄ around λ ∈ spec(A0) \ S̄.
Since spec(A0) is �nite we may decrease the radii and assume the balls are disjoint and
d(O,O′) > 0 and then O′ is a domain. Consider the lower semi-continuous function

ϕ : GL(n,C)→ R, ϕ(A) = sup
λ∈∂O∪∂O′

| det(A− λEn)|. (7)

Since ϕ(A0) > 0 we �nd a connected open neighborhood U0 with

A0 ∈ U0 ⊂ {A ∈ U | ϕ(A) > ϕ(A0)/2 > 0}. (8)

The zero-counting integral
1

2πi

∮
χ′A(λ)

χA(λ)
dλ (9)

is a holomorphic integer-valued function on U0, hence constant. Applied to ∂O we obtain
1. unless O = ∅ in which case 1. is trivial. Applied also to ∂O′ we see that for A ∈ U0

spec(A) ⊂ O ∪O′. (10)

Then spec(A) ∩ S̄ ⊂ O since O′ ∩ S̄ = ∅ and with O ∩ ∂S = ∅ we conclude 2.

For example, for ∅ = O ⊂ S with spec(A0)∩S̄ = ∅ we get near A0 that spec(A)∩S = ∅.
More generally, this holds whenever spec(A0) ∩O = ∅.

3.11. Lemma. Let O ⊂ C be a domain. Let U ⊂ GL(n,C) be open with

spec(A) ∩ ∂O = ∅, ∀A ∈ U.

Then VO → U is a holomorphic sub vector bundle of the trivial bundle Cn.
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Proof. It su�ces to show this near each A0 ∈ U and to consider the case O 6= ∅. From
the proof of the preceeding lemma for O = S we get O′ satisfying (10) for all A ∈ U0 ⊂ U .
Since d(O,O′) > 0 the function e on O ∪ O′ de�ned by e|O = 1, e|O′ = 0 is holomorphic.
Functional calculus gives us eA ∈Mn(C) depending holomorphically on A ∈ U0. This is
the projection onto the generalized eigenspaces VO(A) in the support of e. Consider the
holomorphic map

ψ : (U0 × imeA0)⊕ (U0 × kereA0)→ U0 × Cn, ψ(A, v) =

{
(A, eA(v)) v ∈ imeA0 ,

(A, v) v ∈ kereA0 .

Then ψ|A0 is the identity and ψ remains invertible on �bers close to A0. By restricting we
get an isomorphism from the trivial bundle U0× imeA0 to ψ(U0× imeA0). By the previous
lemma the number of eigenvalues near A0 counted with multiplicity in O is constant.
Since the multiplicity equals the dimension of the corresponding generalized eigenspace,
the �ber dimensions in ψ(U0 × imeA0) ⊂ im(e) coincide, hence ψ(U0 × imeA0) = im(e) and
so ψ|U0×imA0

is a trivialization of im(e) = VO near A0.

3.12. Lemma. Let (A0, x0, y0) ∈ Y [2] and let O ⊂ C− be a domain with

spec(A0) ∩ Ō = spec(A0) ∩ S[x0, y0]. (11)

Then in a neighborhood W ⊂ Y [2] of (A0, x0, y0) we have

VO(A) = VS[x,y](A), ∀(A, x, y) ∈ W. (12)

Proof. Since 0 /∈ spec(A0) is �nite, there are sectors x0 ∈ S(x−0 , x
+
0 ), y0 ∈ S(y−0 , y

+
0 ) in

C− containing no eigenvalues of A0. Also spec(A0) is contained in an annulus of radii
0 < r < R. Applying Lemma 3.10 to ∅ ⊂ S(x−0 , x

+
0 ) and ∅ ⊂ S(y−0 , y

+
0 ) we see that in

neighborhood of A0 we have

spec(A) ∩ S(x−0 , x
+
0 ) = ∅, spec(A) ∩ S(y−0 , y

+
0 ) = ∅.

Apply Lemma 3.10 again to O ⊂ O ∪ S[x0, y0] to get a possibly smaller neighborhood
(note that our assumptions imply spec(A0) ∩ ∂O = ∅) in which by Lemma 3.10 2.

spec(A) ∩ S[x0, y0] ⊂ spec(A) ∩O (13)

and nA(O) = nA0(O) = nA0(S[x0, y0]). After passing to a smaller neighborhood, ap-
ply Lemma 3.10 to Sr,R[x0, y0] ⊂ S[x0, y0]. Then near A0 we have nA0(S[x0, y0]) =
nA(S[x0, y0]). Hence (the cardinalities in) (13) agree. SetW = U0×S(x−0 , x

+
0 )×S(y−0 , y

+
0 ).

For (A, x, y) ∈ W we have spec(A)∩S[x, y] = spec(A)∩S[x0, y0] = spec(A)∩O and (12)
follows.
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3.13. Definition. Near (A0, x0, y0) with x0 ≥ y0 the complex structure is de�ned as
follows. Pick O ⊂ C− satisfying (11). Then VS[x,y](A) = VO(A) for all (A, x, y) in a
neighborhood W . By Lemma 3.11 the right hand side of the identi�cation of Lemma 3.8

L|W ∼= Λtop(VO)|W (14)

is a holomorphic line bundle. Declare (14) to be a biholomorphism. This gives a well-
de�ned complex structure on L|{A,x≥y}, using that (12) is independent of the choice of O.
Let τ(A, x, y) = (A, y, x). Declare also a biholomorphism

L|{A,x≤y} ∼= τ ∗L∗{A,x≥y}. (15)

On a neighborhood of (A0, x0, y0) with x0 and y0 on the same ray, L is Λtop({0}) = C or
its dual (which are biholomorphic), so (14), (15) de�ne the same complex structure there.

3.14. Proposition. The gerbe multiplication m is holomorphic.

Proof. The problem is local, so �x (A0, x0, y0, z0). There are six cases to consider.
Suppose x0 ≥ y0 ≥ z0. Choose disjoint domains O and O′ whose closures contain precisely
those eigenvalues of A0 that belong to S[x0, y0] and S[y0, z0], respectively. According to
De�nition 3.13, the canonical identi�cations of L with Λtop(VO) near (A0, x0, y0) and with
Λtop(VO′) near (A0, y0, z0) are biholomorphisms. Similarly O′′ = O ∪O′ is a domain with
which L is biholomorphic to Λtop(VO′′) near (A0, x0, z0). In the commutative diagram

pr∗12L⊗ pr∗23L

��

m // pr∗13L

��
Λtop(VO)⊗ Λtop(VO′)

∧ // Λtop(VO′′)

the vertical maps are therefore biholomorphisms (all bundles are restricted to a neighbor-
hood of (A0, x0, y0, z0)). Because `∧' is also holomorphic it follows that m is holomorphic.
The remaining �ve cases are reduced to this one. For example, near x0 ≥ z0 ≥ y0 using
the biholomorphism (15) the multiplication is identi�ed with a �berwise isomorphism

π∗12L⊗ π∗32L∗ → π∗13L. (16)

Taking the tensor product of this map with idπ∗32L gives the map

π∗12L⊗ → π∗13L⊗ π∗32L

which is easily checked to be the inverse of m considered above, which is already known
to be holomorphic. It follows that (16) is also holomorphic.
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3.15. Theorem. Gcan = (Y, L,m) de�ned above in (4), (5), (6) is a holomorphic gerbe
with DD(Gcan) the canonical generator of H3(GL(n,C);Z).

Corollary 4.5 below will complete the proof of Theorem 1.1.

Proof. It remains only to compute the Dixmier�Douady class. For this we will compare
Gcan with the basic gerbe Gbasic = (Y1, E,m1) on U(n) of Murray�Stevenson [Murray�
Stevenson, 2008] using Corollary 2.18. We �rst recall their de�nitions in our notation
[Murray�Stevenson, 2008, p. 7]:

Y1 = {(A, z) ∈ U(n)× S1 | z /∈ spec(A) ∪ {1}}

Their line bundle [Murray�Stevenson, 2008, (3.1)] is

E(x,y,A) = Λtop
(
VS(y,x)(A)

)
over the set of x > y with S(y, x)∩ spec(A) 6= ∅. For x, y ∈ S1 with spec(A)∩S[x, y] = ∅
they de�ne E(x,y,A) = C. Finally, for x < y with S(x, y) ∩ spec(A) 6= ∅ they de�ne

E(x,y,A) = E∗(y,x,A).

In [Murray�Stevenson, 2008, (3.7)] the gerbe multiplication is the wedge product over
x > y > z, extended to all of Y [3]

1 by dualization. Let i : U(n) → GL(n,C) be the
inclusion. Our de�nitions of L and m were designed to avoid cases, but note that by
Lemma 3.8

i∗L ∼= E

and the gerbe multiplication is also given by the wedge product over x ≥ y ≥ z. As
discussed in the proof of Proposition 3.14, over other parts of Y [3] our gerbe multiplication
is also given by dualization. Hence Gbasic = incl∗Gcan, so from Corollary 2.18 DD(Gbasic) =
incl∗DD(Gcan). Since incl∗ : H3(GL(n,C);Z) ∼= H3(U(n);Z), the claim follows.

4. Cohomological Theory on Stein Manifolds

In this section we collect a number of facts for the Deligne cohomology of Stein manifolds.
These will be needed in the proof of Theorem 1.2 in the next section.

4.1. Stein manifolds.

4.2. Definition. A complex Lie group G is a Stein group if the underlying manifold is
a Stein manifold (see [Grauert�Remmert, 1979, p. 136]).

GL(n,C) and any closed complex subgroup of GL(n,C) is a Stein group. Any semi-
simple connected or simply-connected solvable complex Lie group is Stein.

4.3. Proposition. Let X be a contractible Stein manifold (for example, a polycylinder)
and let G,G′ be gerbes on X. Then any two morphisms G→ G′ are isomorphic, meaning
we �nd a transformation between them.
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Proof. Two stable morphisms di�er by a line bundle on X, which in our case is a
holomorphic line bundle L. But L is holomorphically trivial, by the Grauert�Oka Theo-
rem [Grauert, 1958], and a trivialization de�nes a transformation.

4.4. Exponential Sequence. The long exact sequence induced by

0→ Ω<p
X [−1]→ Z(p)D → Z→ 0

with the fact H∗(Ω<p) = H∗(X;C) for ∗ < p − 1 shows that Hq(Z(p)D) sits inside a
Bockstein sequence. By the Five Lemma we get

Hq(X;Z(p)D) ∼= Hq−1(X;C/Z), 0 < q < p− 1 (17)

The case q ≥ p is more di�cult and leads to the exponential sequence

→ Hq−1(X;Z)→ Hq−1(Ω<p)→ Hq(Z(p)D)→ Hq(X;Z)→ Hq(Ω<p)→

If X is a Stein manifold and q > p > 0 then Hq(Ω<p) = 0, by Cartan's Theorem B
[Cartan, 1953, p. 51]. Putting this into the exponential sequence gives

Hq(Z(p)D) ∼= Hq(X;Z), q > p. (18)

4.5. Corollary. The class Dixmier�Douady class DD(Gcan) of the canonical gerbe gen-
erates H3(GL(n,C),Z(1)D) ∼= H3(GL(n,C),Z) = Z.

Since H3(GL(n,C),Z(2)D) ∼= H3(GL(n,C),Z(1)D) there is a unique holomorphic con-
nection on Gcan, up to stable isomorphisms with connection. An important point is that
this connection may be constructed explicitly by C-linear projection Cn → VO(A) onto
the eigenspace bundles.

5. Multiplicative Structure

The existence of a multiplicative structure depends only on the stable isomorphism class
of the gerbe and is therefore a cohomological problem.

5.1. Definition. Let G be complex Lie group with product µ. A multiplicative holomor-
phic gerbe on G consists of a holomorphic gerbe G on G, a morphism M : pr∗1G⊗ pr∗2G→
µ∗G, and a transformation α : M ◦ (M ⊗ id) ⇒ M ◦ (id ⊗M). The transformation α
should �t into the usual coherence pentagon [Waldorf, 2010, p. 47]. A connection on a
multiplicative gerbe consists of connections on G and M so that α is compatible with the
connections.

In general, there are obstructions to �nding a multiplicative structure on a given gerbe.
For Stein groups, Theorem 1.2, which we shall prove in this section, asserts that this
obstruction for holomorphic multiplicative structures reduces to a topological problem.
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5.2. Simplicial spaces. A simplicial space [Deligne, 1974] is a functor

X : ∆op → Top.

For example, the constant simplicial space has Xn = X for a �xed space X and all faces
and degeneracies are the identity. For a topological group G, let BG• denote the nerve of
G with n-simplices BGn = Gn. There is a simplicial map EG• → BG• whose �bers are
the constant simplicial spaces G, see [Segal, 1968].

5.3. Definition. The �ech complex of a simplicial space X• with coe�cients in a sheaf
F is the total complex Č∗(X•;F) of the double �ech complex Cpq = Čq(Xp,F). Given a
basepoint pt ∈ X0, the reduced �ech complex is Č∗(X•; pt;F) = Č∗(X•;F)/Č∗(pt•;F).

On constant simplicial spaces one recovers usual sheaf cohomology. Similarly, for a
complex of sheaves F∗ one de�nes H(X•,F

∗) using the �ech hypercomplex [Brylinski,
2008, p. 28]. From [Segal, 1968] we recall that the simplicial cohomology H(BG•;Z)
computes the cohomology of the classifying space BG = |BG•| of a Lie group G.

5.4. Multiplicative Extensions. For a double complex let F p denote the p-th vertical
�ltration Ciq, i ≥ p. We have a short exact sequence of �ech cochain complexes

0→ F 2 → Č∗(BG•, pt;F)
τ−→ Č∗(BG•, pt;F)

F 2
→ 0 (19)

Identifying the rightmost term with Č∗−1(G,F), the map τ simply collapses all but the
second column of the double complex. In cohomology τ induces the transgression map,
see [Waldorf, 2010, Lemma 2.9]. Using Lemma 2.7, a gerbe with holomorphic connection
may be described, up to isomorphism, by a cocycle in Č3(G,Z(2)D). The data for the
morphism M and transformation α in De�nition 5.1 corresponds exactly to an extension
to a cocycle of the double complex Č4(BG•, pt;Z(2)D).

To prove Theorem 1.2 it remains therefore only to show:

5.5. Lemma. The map H∗(BG•,Z(2)D)→ H∗(BG;Z) is an isomorphism (∗ > 0).

Proof. By the long exact sequence induced by 0 → Ω<2[−1] → Z(2)D → Z → 0 it
su�ces to show H∗(BG•,Ω

<2) = 0. To do this, we consider the spectral sequence for
simplicial spaces Epq

1 = Hq(BGp,Ω
<2)⇒ Hp+q(BG•; Ω<2).

From Cartan's Theorem B [Cartan, 1953, p. 51] and the sheaf hypercohomology spec-
tral sequence we deduce for any Stein manifold X that the space H∗(X,Ω<2) is H0(X;C)
for ∗ = 0, H1(X;C) for ∗ = 1, and zero else.

It follows that Epq
1 = 0 unless q = 0, 1. The �rst row Ep0

1 = H0(Gp;C) is given by
C 0−→ C 1−→ C→ · · · , so exact apart from the �rst term. The second row Ep1

1 reads

0→ H1(G;C)
δ−→ H1(G2;C)

δ−→ H1(G3;C)
δ−→ · · · (20)

where the maps are δ =
∑

i(−1)id∗i induced by the face maps di of the nerve. Identify
H1(Gn) = H1(G)⊕n. Recall that for any topological group (π1(G, 1),+) is abelian and
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that π1(µ) is the sum. It follows that µ∗ : H1(G)→ H1(G)⊕2 is µ∗(x) = (x, x). From this
one computes that the di�erentials δ : H1(G)⊕n → H1(G)⊕(n+1) in (20) are

δ(x1, . . . , xn) =

{
n even : (−x1, 0, x2 − x3, 0, . . . , xn−2 − xn−1, 0, xn),

n odd : (0, x2, x2, x4, x4, . . . , xn−1, xn−1, 0).

Hence Ep1
1 is exact. We conclude Epq

2 = 0 for p+ q > 0, whence the result.

5.6. Remark. Lemma 5.5 holds also for semisimple complex Lie groups [Brylinski�
McLaughlin, 1994, Theorem 5.11]. This relies on facts for the Hodge �ltration established
by Deligne [Deligne, 1974].

For F = Z(2)D the sequence (19) induces in cohomology the long exact sequence

· · · → H4(BG;Z(2)D)
τ−→ H3(G;Z(2)D)→ H3(F 2)→ · · ·

5.7. Definition.A choice of preimage of DD(G) ∈ H3(G;Z(2)D) under the transgression
map τ is the multiplicative class λ(G) ∈ H4(BG•;Z(2)D) of the multiplicative gerbe with
holomorphic connection (see [Waldorf, 2010] in the smooth category).

From the proof above, it is clear that the multiplicative class determines the multiplica-
tive structure, up to (multiplicative) isomorphism, see [Waldorf, 2010]. From Theorem 1.2
we now deduce:

5.8. Corollary. For G = GL(n,C) every holomorphic gerbe with connection admits a
multiplicative structure.

Proof. From Lemma 5.5 we deduce

H4(BGL(n,C)•,Z(2)D) ∼= H4(BGL(n,C);Z) = Zc21 ⊕ Zc2.

The preimages cB1 ∈ H2(BG•;Z(1)D), cB2 ∈ H4(BG•;Z(2)D) in Deligne cohomology of
these classes are the Be��linson�Chern classes. On the other hand, by (18)

H3(G;Z(2)D) ∼= H3(G;Z) = Z.

The topological transgression map takes c2 to the generator of Z (see [Borel, 1953]). It
follows that every class [G] ∈ H3(G;Z(2)D) is in the image of τ .

6. Holomorphic 2-Gerbes

6.1. 2-Gerbes. Our de�nition of 2-gerbe is weaker than that in [Stevenson, 2004], where
it is demanded that the multiplication functor M be strictly associative. We only require
associativity up to coherence transformations.
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6.2. Definition. A holomorphic 2-gerbe G = (ρ,G,M, α) on X consists of

1. A holomorphic submersion ρ : V → X.

2. A holomorphic gerbe G on V [2].

3. A morphism of gerbes M : pr∗12G⊗ pr∗23G→ pr∗13G over V [3].

4. An associativity transformation α : M ◦ (M ⊗ id)⇒ M ◦ (id⊗M) between the two
composite morphisms

pr∗12G⊗ pr∗23G⊗ pr∗34G→ pr∗14G

The transformations α are required to �t into the usual commutative pentagon [Waldorf,
2010, p. 47]. In detail, this means the commutativity of diagram (22) below.

6.3. Remark. Let us unwind this de�nition and see that is entails an X-indexed family
of 2-categories. The elements v ∈ ρ−1(x) are the objects at x ∈ X. The gerbe G contains
a submersion π = (π1, π2) : Y → V [2] whose �bers y ∈ π−1(v1, v2) are the 1-arrows
from v1 to v2. Given two 1-arrows y1, y2 we have a complex line Ly1,y2 of 2-arrows.
The multiplication in the gerbe G gives a strictly associative vertical composition of 2-
arrows. Horizontal composition is encoded in the morphism M . It includes a submersion
Z → (Y π2×π1 Y )×V [2] Y onto the set of composable triangles of 1-arrows. We regard
z ∈ Z mapping to (yαβ, yβγ, yαγ) as a �ller of this triangle and then think of yαγ as a
choice of horizontal composition of yαβ and yβγ. In particular, it is not unique. Given
two �lled triangles z 7→ (yαβ, yβγ, yαγ) and z̃ 7→ (ỹαβ, ỹβγ, ỹαγ) on the same vertices, M
provides us with isomorphisms

Lyαβ ,ỹαβ ⊗ Lyβγ ,ỹβγ ⊗Rz̃ → Rz ⊗ Lyαγ ,ỹαγ .

This is the horizontal composition of 2-arrows. The morphism α includes a submersion
W → (Z ×Y Z)×Y [4] (Z ×Y Z) to �llers (zβγδ, zαγδ, zαβδ, zαβγ) of diagrams:

zαβγ

yαβ

yβγyαγ

yαδ

yγδ

yβδzαβδ

zαγδ zβγδ

vα vβ

vγ

vδ

We regard a preimage wαβγδ as a �ller of this tetrahedron. α gives an isomorphism

ψwαβγδ : Rzαβδ ⊗Rzβγδ → Rzαγδ ⊗Rzαβγ . (21)
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These mediate between the two ways to horizontally compose three 2-arrows. The commu-
tative pentagon mentioned above is then expressed as follows. Let α, β, γ, δ, ε be objects
with arrows yαβ, . . . , yδε between them, let zαβγ, . . . , zγδε be �llers of all triangles, and let
wβγδε, wαγδε, wαβδε, wαβγε, wαβγδ be �llers of the resulting tetrahedra. For every such data,
we have a commutative diagram:

Rαβγ ⊗Rαγδ ⊗Rαδε

Rβγδ ⊗Rαβδ ⊗Rαδε Rαβγ ⊗Rγδε ⊗Rαγε

Rβγδ ⊗Rβδε ⊗Rαβε Rβγε ⊗Rγδε ⊗Rαβε

id⊗ ψαγδε

id⊗ ψαβγε
ψβγδε ⊗ id

ψαβγδ ⊗ id

id⊗ ψαβδε

(22)

6.4. The Dixmier�Douady Class. Let G = (ρ,G,M, α) be a 2-gerbe on X. By
Lemma 2.7 we �nd open covers {Uα} of X with holomorphic sections as follows:

1. vα : Uα → V of ρ.

2. yαβ : Uαβ → Y of the pullback of π along (vα, vβ) : Uαβ → V [2].

3. zαβγ : Uαβγ → Z of the pullback of Z → (Y ×V Y )×V [2] Y along (yαβ, yβγ, yαγ).

4. wαβγδ : Uαβγδ → W of the pullback of W → (Z ×Y Z)×Y [4] (Z ×Y Z) along
(zβγδ, zαβδ, zαβγ, zαγδ) : Uαβγδ → Z4.

5. Trivializations of z∗αβγR

Since both sides are trivialized, (21) is just a holomorphic function gαβγδ ∈ O∗(Uαβγδ).

6.5. Definition.The Dixmier�Douady class of G is [(gαβγδ)] = DD(G) ∈ Ȟ4(X,Z(1)D).

6.6. Definition. Let G = (ρ,G,M, α) be a holomorphic 2-gerbe. A connection on G
consists of a connection ∇L on the gerbe G and a connection ∇R on the morphism M .
The transformation α is required to be compatible with the connections.

Write the connection on z∗αβγR as d+Aαβγ. Since (21) preserves connections, (gαβγδ, Aαβγ)
re�nes the Dixmier-Douady class to H4(X,Z(2)D).

6.7. The Canonical 2-Gerbe. For a holomorphic vector bundle E over an algebraic
manifold X we have the Be��linson�Chern classes (see [Be��linson, 1984, Brylinski, 1999a,
Esnault�Viehweg, 1988])

cBp (E) ∈ H2p(X,Z(p)D).

By [Esnault�Viehweg, 1988, Proposition 8.2] these are characterized by functoriality and
by the requirement that they map to the Chern classes via H2p(X,Z(p)D)→ H2p(X;Z).
The construction of such classes is based on Deligne's theory of mixed Hodge structures
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[Deligne, 1974]. Our Lemma 5.5 above shows that for p ≤ 2 one may also deduce the
existence of these classes from the theory of Stein spaces.

Recall from Theorem 1.1 the canonical gerbe Gcan on GL(n,C). Using Corollary 5.8
we equip this gerbe with the multiplicative structure with multiplicative class c2.

6.8. Definition. Let E → X be a holomorphic vector bundle. Its associated 2-gerbe
G(E) is de�ned by the following data:

1. As submersion ρ we take the principal bundle of frames PGL(E)→ X.

2. The gerbe G(E) = δ∗Gcan with δ : P
[2]
GL → GL(n,C) given by pδ(p, q) = q.

3. M and α are pulled back from the multiplicative structure on Gcan.

For E = T ∗X we call G(T ∗X) the canonical 2-gerbe of the complex manifold.

Proof Proof of Theorem 1.3. Functoriality is obvious. By the de�nition of the
topological Dixmier�Douady class of a 2-gerbe one sees easily that it is the pullback of
the topological multiplicative class λ(Gcan) = c2 ∈ H4(BGL(n,C);Z) under the classifying
map X → BGL(n,C). Alternatively, one may appeal to the smooth case [Waldorf,
2010]. This proves (2). Now (3) follows from (1), (2) and [Esnault�Viehweg, 1988,
Proposition 8.2].

7. An Application and Further Outlook

The following statement makes essential use of the holomorphic structure on Gcan and the
integrability of the complex structure on X.

7.1. Theorem. Let X be a closed complex 6-manifold with b3 = 0, c2(X) = 0 (e.g. when
H4(X;Z) = 0). Then the canonical 2-gerbe G(T ∗X) of X is trivial.

Proof. We consider the long exact sequence in sheaf cohomology

· · · → H3(X;Z)→ H3(X,O)→ H3(X,O∗)→ H4(X;Z)→ · · ·
By de�nition, H3(X,O∗) = H4(X,Z(1)D). Moreover, H3(X,O) = H0,3(X) which by
Serre duality may be identi�ed with H0,3(X) = H0(X,Λ3(X)), the holomorphic sections
of the canonical bundle of X. Observe that the linear map

H3(X,Λ3(X))→ H3
dR(X)

is injective (it is well-de�ned since ∂ω = 0 by reasons of degree and ∂̄ω = 0 since ω is
holomorphic). Indeed, suppose ω = dη is a holomorphic 3-form that bounds. In a chart
neighborhood (z1, z2, z3) we may write ω = fdz1dz2dz3. Since M is closed,∫

M

|f |2dvol =

∫
M

ω ∧ ω̄ =

∫
M

d(η ∧ ω̄) =

∫
∂M

η ∧ ω̄ = 0.

This implies f = 0 on an arbitrary chart neighborhood, so ω = 0. Now our assumptions
imply H3(X,O) = 0, so that by the exact sequence H3(X,O∗) is mapped injectively into
H4(X;Z). Since the canonical 2-gerbe is mapped to c2(X), the claim follows.
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The triviality of the canonical line bundle has the topological consequence that the
middle Betti number is non-zero. We ask whether there is a similar topological obstruc-
tions against the triviality of the canonical 2-gerbe.
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