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A BICATEGORY OF DECORATED COSPANS

KENNY COURSER

Abstract. If C is a category with pullbacks then there is a bicategory with the same
objects as C, spans as morphisms, and maps of spans as 2-morphisms, as shown by
Benabou. Fong has developed a theory of ‘decorated cospans’, which are cospans in
C equipped with extra structure. This extra structure arises from a symmetric lax
monoidal functor F : C → D; we use this functor to ‘decorate’ each cospan with apex
N ∈ C with an element of F (N). Using a result of Shulman, we show that when C has
finite colimits, decorated cospans are morphisms in a symmetric monoidal bicategory.
We illustrate our construction with examples from electrical engineering and the theory
of chemical reaction networks.

1. Introduction

Networks are becoming increasingly important in applied mathematics and engineering,
and developing a general theory of networks will require new ideas connecting these sub-
jects to category theory. We think of a network with some inputs X and outputs Y as
a cospan X → N ← Y in some category C, and compose these cospans using pushouts.
Typically, however, the apex N is equipped with some extra structure, so we also need
a way to compose the extra structures. This was recently developed by Fong [9], who
gave a general recipe for constructing ‘decorated cospan categories’ and functors between
these. Baez, Fong and Pollard have used decorated cospans to prove new results about
electrical circuits and Markov processes [2, 3, 15].

However, besides asking whether two networks are equal, it makes sense to ask if they
are isomorphic. Thus, cospans are not merely morphisms in a category, but morphisms
in a bicategory—indeed, this example appeared already in Benabou’s original paper on
bicategories [5]. In fact, if C is a category with finite colimits, Stay has proved there is a
symmetric monoidal bicategory whose morphisms are cospans in C [18]. For applications
to network theory, we need to generalize this result to decorated cospans. Stay’s result,
which allows C to be a 2-category, used Hoffnung’s work on tricategories [11], but for our
purposes an easier approach is to use Shulman’s technique for constructing symmetric
monoidal bicategories [17]. This involves first constructing a symmetric monoidal pseudo
double category.

Another work aimed towards the application of double categories is that of Lerman
and Spivak [13]. Following Brockett [6], they model an open dynamical system as a
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smooth map between manifolds F : Q→ TM which when composed with the projection
πM : TM → M gives a surjective submersion p : Q → M . When Q = M and this sur-
jective submersion is the identity, an open dynamical system reduces to a smooth vector
field on M , which is an ordinary dynamical system. They construct a monoidal double
category SSub� whose objects are surjective submersions, and a lax monoidal double
functor from SSub� to the monoidal double category RelVect� of vector spaces, linear
maps, linear relations and inclusions of relations assigning to each surjective submersion
p : Q → M the vector space of open dynamical systems having this as their underlying
surjective submersion. The horizontal morphisms in SSub� are ‘dynamical morphisms’,
which give maps of open dynamical systems; the vertical morphisms in SSub� are ‘in-
terconnection morphisms’, which can be used to describe the process of connecting open
dynamical systems and the 2-morphisms are certain commuting squares. Lerman and
Spivak recover one of the main results of a previous work by DeVille and Lerman [7] in
which a ‘fibration of networks of manifolds’ gives a 2-morphism in RelVect�. This is just
a special case of the above result in which dynamical morphisms give rise to maps between
certain families of open systems. In both these works, open systems are described using
objects. This differs from the framework discussed in the current paper, in which open
systems are described as morphisms, while objects describe inputs and outputs of those
systems [4].

If C is a category with finite colimits, chosen pushouts and binary coproducts and
F : (C,+)→ (D,⊗) is a symmetric lax monoidal functor, then we can decorate the apex
of a cospan in C, which is an object N ∈ C, with an element of F (N) ∈ D given by a
morphism f : I → F (N) where I is the unit object for the tensor product in D. As a
specific example, let C = FinSet and D = Set and let F : Finset→ Set be the functor
that assigns to each finite set N the set F (N) of all ways of assigning ‘weights’ given by
positive real numbers to edges of a graph whose vertex set is N . To see what this would
look like, let N be an arbitrary 3 element set. Then one possible assignment of weighted
edges to N would be:

0.2

1.3
0.8 2.0

In applications to electrical circuits, one could use a weighted graph of this type to rep-
resent an electrical circuit made of resistors where the weights are resistances. Here,
our weights are elements of the set L = (0,∞). The above diagram is an instance of a
‘weighted graph’, and is one possible example of an element of F (N).

From this graph, we can select subsets of nodes X and Y to be the inputs and outputs,
respectively, which then yield maps X → N and Y → N . These together with the
specified element of F (N) above gives us a ‘decorated cospan’ which is a cospan X →
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N ← Y in C together with a map s : 1→ F (N), where the map s specifies the decoration
on the finite set N by selecting an element out of F (N). In our example of weighted
graphs, a decorated cospan might look like:

X Y

0.2

1.3
0.8 2.0

s : 1→ F (N)

In the application to electrical circuits, the maps X → N and Y → N specify the
inputs and outputs of the circuit, respectively, and are not required to be injective maps.
In Section 5, we present an example where not all of the maps are injections. We can
then compose these electrical circuits by identifying the inputs of one with the outputs of
another. We refer the curious reader to Fong [9].

2. Overview

Throughout this paper, whenever we say C is a category with finite colimits, we mean a
category C with finite colimits and with chosen pushouts and coproducts for every pair
of objects in C. Fong’s main result on decorated cospans [9] is the following theorem:

2.1. Theorem. Let (C,+) be a category with finite colimits and let (D,⊗) be a sym-
metric monoidal category. Let F : C → D be a symmetric lax monoidal functor. Then
FCospan(C) is a symmetric monoidal category, where FCospan(C) is the category whose
objects are that of C and whose morphisms are given by isomorphism classes of F-decorated
cospans, where an F-decorated cospan is a pair N

X

i

>>

Y

o

``

,

F (N)

I

s

OO


and the composite of this F -decorated cospan with N ′

Y

i′
>>

Z

o′
``

,

F (N ′)

I

s′

OO


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is given by  N +Y N
′

X

JN◦i
::

Z

JN′◦o′
dd

,

F (N +Y N
′)

I

s′′

OO


where s′′ is the composite

I
λ−1

−−→ I ⊗ I s⊗s′−−→ F (N)⊗ F (N ′)
φN,N′−−−→ F (N +N ′)

F (JN,N′ )−−−−−→ F (N +Y N
′).

Here, φN,N ′ is the natural transformation of the lax monoidal functor F , JN,N ′ : N+N ′ →
N +Y N

′ is the natural morphism from the coproduct to the pushout, and the maps JN
and JN ′ are the map JN,N ′ restricted to N and N ′, respectively.

Fong’s result is actually slightly more general than this in that he only requires (D,⊗)
to be braided monoidal. But actually, without loss of generality, we may assume that
(D,⊗) = (Set,×) due to the existence of the global sections functor, which is the
braided lax monoidal functor G : D→ Set defined by d 7→ hom(I, d), where I is the unit
object for the tensor product of (D,⊗).

In this paper, we will not take isomorphism classes, and thus Fong’s result can be
viewed as a decategorification of the result in this paper. Our goal is to prove the following
theorem:

2.2. Theorem. Let (C,+) be a category with finite colimits and let (D,⊗) be a sym-
metric monoidal category. Let F : C → D be a symmetric lax monoidal functor. Then
FCospan(C) is a symmetric monoidal bicategory, where FCospan(C) is the category whose
objects are that of C, whose morphisms are given by F -decorated cospans and whose 2-
morphisms are given by globular maps of F -decorated cospans, where a globular map of
F -decorated cospans is a pair of commuting diagrams of the following form.

N

h

��

X

i

>>

i′   

Y

o

``

o′~~

N ′

,

F (N)

F (h)

��

I

s1
<<

s2
""

F (N ′)


Proof. Let C be a category with finite colimits and let D be a symmetric monoidal
category. Note that C then becomes symmetric monoidal with the coproduct as the tensor
product and the initial object, which we denote as 0, for the unit. Let F : (C,+)→ (D,⊗)
be a symmetric lax monoidal functor. By Proposition 4.1, Theorem 4.2 and the definition
of ‘fibrant’, we have that Cospan(C) is a fibrant symmetric monoidal pseudo double
category. Denote by BD the delooping of the symmetric monoidal category D into a
one-object bicategory. The one object bicategory BD can then be viewed as a symmetric
monoidal pseudo double category as proven in Proposition 4.3 and Proposition 4.4. In
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Proposition 4.5, we construct a symmetric lax monoidal double functor F ′ : Cospan(C)→
BD such that F ′ acts as F on vertical 1-morphisms and horizontal 1-cells, which are
morphisms and cospans in C, respectively. Viewing the trivial category 1 as a symmetric
monoidal pseudo double category, define a symmetric oplax monoidal double functor
E : 1→ BD where E picks out the unit object of BD. We then construct in Theorem 4.8
the pseudo comma double category (E/F ′), and show that this is the symmetric monoidal
pseudo double category of F -decorated cospans in C. We show this symmetric monoidal
pseudo double category is fibrant in Proposition 4.9, and applying the following result
of Shulman [17] yields FCospan(C) as the ‘horizontal bicategory’ of (E/F ′), denoted as
H(E/F ′). This completes the proof of the theorem.

2.3. Theorem. [Shulman] Let D be a fibrant symmetric monoidal pseudo double category.
Then H(D) is a symmetric monoidal bicategory, where H(D) is the horizontal bicategory
of D.

This then gives a symmetric monoidal bicategory whose objects are objects of C,
whose morphisms are decorated cospans, and whose 2-morphisms are pairs of commuting
diagrams as above. In what follows we denote a double category as D, using font as such,
and regular categories as well as bicategories as D.

3. Definitions and background

Pseudo double categories, also known as weak double categories, have been studied by
Fiore [8] and Pare and Grandis [10]. Before formally defining them, it is helpful to have
the following picture in mind. A pseudo double category has 2-morphisms shaped like:

A |M //

f
��
⇓a

B
g
��

C |
N
// D

We call A,B,C and D objects or 0-cells, f and g vertical 1-morphisms, M and
N horizontal 1-cells and a a 2-morphism. Note that a vertical 1-morphism is a
morphism between 0-cells and a 2-morphism is a morphism between horizontal 1-cells.
We will denote both kinds of morphisms and horizontal 1-cells as a single arrow, namely
‘→’, unless in a diagram, in which case they will be denoted as above.

We follow the notation of Shulman [17] with the following definitions.

3.1. Definition. A pseudo double category D, or double category for short, con-
sists of a category of objects D0 and a category of arrows D1 with the following functors

U : D0 → D1

S, T : D1 ⇒ D0

� : D1 ×D0 D1 → D1 (where the pullback is taken over D1
T−→ D0

S←− D1)
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such that

S(UA) = A = T (UA)
S(M �N) = SN
T (M �N) = TM

equipped with natural isomorphisms

α : (M �N)� P ∼−→M � (N � P )
λ : UB �M

∼−→M
ρ : M � UA

∼−→M

such that S(α), S(λ), S(ρ), T (α), T (λ) and T (ρ) are all identities and that the coherence
axioms of a monoidal category are satisfied. Following the notation of Shulman, objects of
D0 are called 0-cells and morphisms of D0 are called vertical 1-morphisms. Objects
of D1 are called horizontal 1-cells and morphisms of D1 are called 2-morphisms.
The morphisms of D0, which are vertical 1-morphisms, will be denoted f : A → C and
we denote a 1-cell M with S(M) = A, T (M) = B by M : A −7−→ B. Then a 2-morphism
a : M → N of D1 with S(a) = f, T (a) = g would look like:

A |M //

f
��
⇓a

B
g
��

C |
N
// D

The key difference between a ‘strict’ double category and a pseudo double category is
that in a pseudo double category, horizontal composition is associative and unital only up
to natural isomorphism. Equivalently, as a double category can be viewed as a category
internal to Cat, we can view a pseudo double category as a category ‘weakly’ internal to
Cat. We will sometimes omit the word pseudo and simply say double category.

3.2. Definition. A 2-morphism where f and g are identities is called a globular 2-
morphism.

3.3. Definition. Let D be a pseudo double category. Then the horizontal bicategory
of D, which we denote as H(D), is the bicategory consisting of objects of D, 1-morphisms
that are horizontal 1-cells of D and 2-morphisms that are globular 2-morphisms.

3.4. Definition. A monoidal double category is a double category equipped the fol-
lowing structure.

(i) D0 and D1 are both monoidal categories.

(ii) If I is the monoidal unit of D0, then UI is the monoidal unit of D1.
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(iii) The functors S and T are strict monoidal, i.e. S(M ⊗ N) = SM ⊗ SN and
T (M ⊗ N) = TM ⊗ TN and S and T also preserve the associativity and unit
constraints.

(iv) We have globular isomorphisms

x : (M1 ⊗ N1)� (M2 ⊗ N2)
∼−→ (M1 �M2) ⊗ (N1 �N2)

and
u : UA⊗B

∼−→ (UA ⊗ UB)

such that the following diagrams commute:

((M1 ⊗ N1)� (M2 ⊗ N2))� (M3 ⊗ N3)
x�1
//

α

��

((M1 �M2) ⊗ (N1 �N2))� (M3 ⊗ N3)

x

��

(M1 ⊗ N1)� ((M2 ⊗ N2)� (M3 ⊗ N3))

1�x
��

((M1 �M2)�M3) ⊗ ((N1 �N2)�N3)

α⊗α
��

(M1 ⊗ N1)� ((M2 �M3) ⊗ (N2 �N3))
x
// (M1 � (M2 �M3)) ⊗ (N1 � (N2 �N3))

(M ⊗ N)� UC⊗D
1�u
//

ρ

��

(M ⊗ N)� (UC ⊗ UD)

x

��

M ⊗ N oo
ρ⊗ρ

(M � UC) ⊗ (N � UD)

UA⊗B � (M ⊗ N)
u�1
//

λ

��

(UA ⊗ UB)� (M ⊗ N)

x

��

M ⊗ N oo
λ⊗λ

(UA �M) ⊗ (UB �N)

(v) The following diagrams commute, expressing that the associativity isomorphism for
⊗ is a transformation of double categories.

((M1 ⊗ N1) ⊗ P1)� ((M2 ⊗ N2) ⊗ P2)
a�a
//

x

��

(M1 ⊗ (N1 ⊗ P1))� (M2 ⊗ (N2 ⊗ P2))

x

��

((M1 ⊗ N1)� (M2 ⊗ N2)) ⊗ (P1 � P2)

x⊗1
��

(M1 �M2) ⊗ ((N1 ⊗ P1)� (N2 ⊗ P2))

1⊗x
��

((M1 �M2) ⊗ (N1 �N2)) ⊗ (P1 � P2)
a // (M1 �M2) ⊗ ((N1 �N2) ⊗ (P1 � P2))
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U(A⊗B)⊗C
Ua //

u

��

UA⊗(B⊗C)

u

��

UA⊗B ⊗ UC

u⊗1
��

UA ⊗ UB⊗C

1⊗u
��

(UA ⊗ UB) ⊗ UC
a // UA ⊗ (UB ⊗ UC)

(vi) The following diagrams commute, expressing that the unit isomorphisms for ⊗ are
transformations of double categories.

(M ⊗ UI)� (N ⊗ UI)
x
//

r�r
��

(M �N) ⊗ (UI � UI)
1⊗ρ
��

M �N oo r (M �N) ⊗ UI

UA⊗I
u //

Ur
%%

UA ⊗ UI

r

��

UA

(UI ⊗M)� (UI ⊗ N)
x
//

`�`
��

(UI � UI) ⊗ (M �N)

λ⊗1
��

M �N oo ` UI ⊗ (M �N)

UI⊗A
u //

U`
%%

UI ⊗ UA

`
��

UA

Similarly, a braided monoidal double category is a monoidal double category with the
following additional structure.

(vii) D0 and D1 are braided monoidal categories.

(viii) The functors S and T are strict braided monoidal (i.e. they preserve the braidings).

(ix) The following diagrams commute, expressing that the braiding is a transformation
of double categories.

(M1 �M2) ⊗ (N1 �N2)
s //

x

��

(N1 �N2) ⊗ (M1 �M2)

x

��

(M1 ⊗ N1)� (M2 ⊗ N2) s�s
// (N1 ⊗M1)� (N2 ⊗M2)
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UA ⊗ UB

s

��

UA⊗B
uoo

Us

��

UB ⊗ UA UB⊗A
uoo

Finally, a symmetric monoidal double category is a braided one such that

(x) D0 and D1 are in fact symmetric monoidal.

3.5. Definition. Let D be a double category and f : A → B a vertical 1-morphism. A
companion of f is a horizontal 1-cell f̂ : A −7−→ B together with 2-morphisms

�f̂ //

f
��

⇓
�

UB
//

and

�UA //

⇓ f
���

f̂

//

such that the following equations hold.

�UA //

⇓ f
��

f̂ //

f
��
⇓
�

UB
//

=

�UA //

f
��

⇓Uf f
���

UB
//

�UA //

⇓

�f̂ //

f
��
⇓

�

f̂

// �
UB
//

=

�f̂ //
⇓1f̂
�

f̂

//

A conjoint of f , denoted f̌ : B −7−→ A, is a companion of f in the double category Dh·op

obtained by reversing the horizontal 1-cells, but not the vertical 1-morphisms, of D.

In a pseudo double category, the second equation above requires an insertion of unit iso-
morphisms to make sense due to horizontal composition only holding up to isomorphism.

3.6. Definition. We say that a double category is fibrant if every vertical 1-morphism
has both a companion and a conjoint.

3.7. Definition. Let A and B be pseudo double categories. A lax double functor is a
functor F : A→ B that takes items of A to items of B of the corresponding type, respecting
vertical composition in the strict sense and the horizontal composition up to an assigned
comparison φ. This means that we have functors F0 : A0 → B0 and F1 : A1 → B1 such
that the following equations are satisfied:

S ◦ F1 = F0 ◦ S

T ◦ F1 = F0 ◦ T
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For brevity, we will omit the subscripts and simply say F . As to whether we mean F0 or
F1 will be clear from context.

Also, every object A is equipped with a special globular 2-morphism φA : 1F (A) → F (1A)
(the identity comparison), and every horizontal composition N1 � N2 is equipped with a
special globular 2-morphism φ(N1, N2) : F (N1)� F (N2) → F (N1 �N2) (the composition
comparison), in a coherent way. This means that the following diagrams commute.

(i) For a horizontal composite, β ? α,

F (A) |
F (N2)

//

��
F (α)

F (B)

��

|
F (N1)

//

F (β)

F (C)

��

F (A) |
F (N2)

//

φ(N1,N2)1
��

F (B) |
F (N1)

// F (C)

1
��

F (A′) |
F (N4)

//

φ(N3,N4)1
��

F (B′) |
F (N3)

// F (C ′)

1
��

= F (A) |
F (N1�N2)

//

��
F (β?α)

F (C)

��

F (A′) |
F (N3�N4)

// F (C ′) F (A′) |
F (N3�N4)

// F (C ′)

.

(ii) For a horizontal 1-cell N : A→ B, the following diagrams are commutative (under
horizontal composition).

F (N)� 1F (A) F (N)

F (N)� F (1A) F (N � 1A)

1F (B) � F (N)

F (1B)� F (N)

F (N)

F (1B �N)

1� φA Fρ

ρF (N)

φ(N, 1A)

φB � 1

φ(1B , N)

λF (N)

Fλ

(iii) For consecutive horizontal 1-cells N1, N2 and N3, the following diagram is commu-
tative.

(F (N1)� F (N2))� F (N3)
a′ //

φ(N1,N2)�1
��

F (N1)� (F (N2)� F (N3))

1�φ(N2,N3)
��

F (N1 �N2)� F (N3)

φ(N1�N2,N3)

��

F (N1)� F (N2 �N3)

φ(N1,N2�N3)

��

F ((N1 �N2)�N3)
Fa // F (N1 � (N2 �N3))

3.8. Definition. Let A and B be pseudo double categories and F̂ : A → B a lax double
functor. An oplax double functor is a functor F : A→ Bco such that F and F̂ agree on
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all objects, vertical 1-morphisms and horizontal 1-cells and where Bco denotes the pseudo
double category B with all 2-morphisms reversed. In other words, we reverse the direction
of the assigned comparison φ for horizontal composition in the definition of lax double
functor.

3.9. Definition. A lax double functor F : C → D between monoidal pseudo double cat-
egories is (lax) monoidal if it is equipped with:

(i) a morphism ε : 1D → F (1C)

(ii) a natural transformation µA,B : F (A)⊗ F (B)→ F (A⊗ B) for all objects A and B
of C

(iii) a morphism δ : U1D → F (U1C)

(iv) a natural transformation νM,N : F (M)⊗F (N)→ F (M⊗N) for all horizontal 1-cells
N and M of C

such that the following diagrams commute: for objects A,B and C of C,

(F (A)⊗ F (B))⊗ F (C) α′ //

µA,B⊗1
��

F (A)⊗ (F (B)⊗ F (C))

1⊗µB,C
��

F (A⊗B)⊗ F (C)

µA⊗B,C
��

F (A)⊗ F (B ⊗ C)

µA,B⊗C
��

F ((A⊗B)⊗ C) Fα // F (A⊗ (B ⊗ C))

F (A)⊗ 1D F (A)

F (A)⊗ F (1C) F (A⊗ 1C)

1D ⊗ F (A)

F (1C)⊗ F (A)

F (A)

F (1C ⊗ A)

1⊗ ε F (rA)

rF (A)

µA,1C

ε⊗ 1

µ1C,A

`F (A)

F (`A)

and for horizontal 1-cells N1, N2 and N3 of C,

(F (N1)⊗ F (N2))⊗ F (N3)
α′ //

νN1,N2
⊗1
��

F (N1)⊗ (F (N2)⊗ F (N3))

1⊗νN2,N3

��

F (N1 ⊗N2)⊗ F (N3)

νN1⊗N2,N3

��

F (N1)⊗ F (N2 ⊗N3)

νN1,N2⊗N3

��

F ((N1 ⊗N2)⊗N3)
Fα // F (N1 ⊗ (N2 ⊗N3))
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F (N1)⊗ U1D F (N1)

F (N1)⊗ F (U1C) F (N1 ⊗ U1C)

U1D ⊗ F (N1)

F (U1C)⊗ F (N1)

F (N1)

F (U1C ⊗N1)

1⊗ δ F (rN1 )

rF (N1)

νN1,U1C

δ ⊗ 1

νU1C ,N1

`F (N1)

F (`N1 )

We also require that:

(i) We have equalities S ◦ F1 = F0 ◦ S and T ◦ F1 = F0 ◦ T of lax monoidal functors.

(ii) The composition constraints for the lax double functor F are monoidal natural trans-
formations.

Note that our monoidal lax double functors laxly preserve both the tensor product
and composition, so that we in fact have lax monoidal lax double functors. We will simply
say ‘lax monoidal double functor’ to avoid repetitiveness.

3.10. Definition. A braided lax monoidal double functor F : C → D between
braided monoidal pseudo double categories is a lax monoidal double functor that makes
the following diagrams commute for all objects A and B of C and all horizontal 1-cells M
and N of C.

F (A)⊗ F (B) F (B)⊗ F (A)

F (A⊗B) F (B ⊗ A)

F (M)⊗ F (N)

F (M ⊗N)

F (N)⊗ F (M)

F (N ⊗M)

µA,B µB,A

βF (A),F (B)

F (βA,B)

νM,N

F (βM,N )

βF (M),F (N)

νN,M

3.11. Definition. A symmetric lax monoidal double functor is a braided lax
monoidal double functor between symmetric monoidal pseudo double categories.

4. Main Results

First we will construct a symmetric lax monoidal double functor F ′ : Cospan(C) → BD
where BD is the symmetric monoidal category D viewed as a one object bicategory
and where Cospan(C) is a symmetric monoidal bicategory whose objects are that of C,
morphisms are cospans and 2-morphisms are maps of cospans, where a map of cospans is
a map between the apices of two cospans such that the resulting two adjacent triangles
commute. We will do this in the following sequence of propositions.
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4.1. Proposition. There exists a pseudo double category Cospan(C).

Proof. Objects are given by objects of C and vertical 1-morphisms are morphisms of C.
Horizontal 1-cells are cospans in C and 2-morphisms are triples of maps (a, φ, c) between
two cospans in C such that two adjacent commuting squares result.

A B C

A′ B′ C ′

f

f ′

a

g

g′

φ c

The source, target and unit functors S, T and U , respectively, are obvious. The associator
comes from the universal property of a pushout and the left unit law comes from B+B A

and A both being colimits of the span B
id←− B → A and the right unit law is similar. By

definition, this gives us a pseudo double category Cospan(C).

4.2. Proposition. The pseudo double category Cospan(C) is symmetric monoidal.

Proof. This follows from the definition of symmetric monoidal pseudo double category
with the trivial cospan 0 → 0 ← 0 as the unit for the horizontal edge category and that
we have isomorphisms between the cospans

A1 + A2

C1 + C2

B1 +B2

D1 +D2

E1 + E2

(C1 + C2) +B1+B2 (D1 +D2)

and
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A1

C1

B1

D1

E1 A2

C2

B2

D2

E2

C1 +D1 C2 +D2

C1 +B1 D1 C2 +B2 D2

(C1 +B1 D1) + (C2 +B2 D2)

.

Both (C1 + C2) +B1+B2 (D1 + D2) and (C1 +B1 D1) + (C2 +B2 D2) are colimits of the
following diagram consisting of cospans M1,M2 and N1, N2 with shared feet B1 and B2,
respectively

A1

C1

B1

D1

E1 A2

C2

B2

D2

E2

and this gives the globular isomorphism x : (M1 ⊗ N1) � (M2 ⊗ N2)
∼−→ (M1 �M2) ⊗

(N1 �N2). The globular isomorphism x makes the rest of the diagrams in the definition
straightforward. The pentagon and triangle equations are also straightforward; all of the
maps are given by maps of cospans, which in the double category case, are triples of
isomorphisms between cospans as in the diagram in the previous proposition.

4.3. Proposition. The one-object bicategory BD forms a pseudo double category with
one object {∗}, whose only vertical 1-morphism is the identity, whose horizontal 1-cells are
objects of D and whose 2-morphisms are corresponding squares. We denote this double
category as BD.

Proof. We have one object which we denote as {∗}, and trivial composition of vertical
1-morphisms as we only have id∗ : {∗} → {∗}. The objects of D appear as horizontal
1-cells and 2-morphisms are boxes as in the chart below.
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BD
Objects {∗}

Vertical 1-morphisms
∗

∗
Identity morphism

Horizontal 1-cells ∗ ∗d
Objects of D

2-morphisms

∗ ∗

∗ ∗

d

id∗id∗

d′

Composition of vertical 1-morphisms is trivial. For composition of horizontal 1-cells
and 2-morphisms, we have

∗ ∗ �d ∗ ∗d′

= ∗ ∗d⊗ d′

and

∗ ∗

∗ ∗

d1

id∗ �id∗

d′1

∗ ∗

∗ ∗

d2

id∗ =id∗

d′2

∗ ∗

∗ ∗

d1 ⊗ d2

id∗id∗

d′1 ⊗ d′2 .

4.4. Proposition. The pseudo double category BD is symmetric monoidal.

Proof. Tensoring of types of objects corresponds with compositions as in the previ-
ous proposition. Namely, tensoring of objects and vertical 1-morphisms is trivial. For
tensoring of horizontal 1-cells and 2-morphisms, we have

∗ ∗ ⊗d ∗ ∗d′

= ∗ ∗d⊗ d′

and

∗ ∗

∗ ∗

d1

id∗ ⊗id∗

d′1

∗ ∗

∗ ∗

d2

id∗ =id∗

d′2

∗ ∗

∗ ∗

d1 ⊗ d2

id∗id∗

d′1 ⊗ d′2
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The unit for horizontal composition is given by ∗ I−→ ∗ where I is the unit object of D
and the unit for 2-morphisms is

∗ ∗

∗ ∗

I

id∗id∗

I

As D is symmetric monoidal, it follows that BD is symmetric monoidal.

4.5. Proposition. There exists a symmetric lax monoidal double functor F ′ : Cospan(C)
→ BD.

Proof. The functor F ′ maps every object c ∈ Ob(Cospan(C)) to the one object {∗} of
BD and vertical 1-morphisms of C map to the vertical 1-morphism I in BD, which is the
identity morphism on the single object {∗} of BD. Horizontal 1-cells of Cospan(C), which
are cospans in C, map to the horizontal 1-cell F (c), where c is the apex of a cospan in C
and F (c) is an object of D. Then a 2-morphism, which is a triple of maps between two
cospans in C, maps to the 2-morphism which is a box with top F (c), left and right sides
I and bottom F (d) where d is the apex of the second cospan in C.

a c b

a′ d b′

7→

∗

∗

∗

∗

⇓ F (h)f h g id∗ id∗

F (c)

F (d)

If (f, h, g) is the underlying 2-morphism in Cospan(C), this gives us F (h) : F (c)→ F (d).
For notational purposes, we will consider the following cospans and pushouts with shared
feet:

X

N1

Y

N2

Z

N3

W

N1 +Y N2 N2 +Z N3

As F : (C,+, 0)→ (D,⊗, I) is symmetric lax monoidal, we have morphisms e : I → F (0)
and φN1,N2 : F (N1)⊗ F (N2)→ F (N1 ⊗N2) such that the following diagrams commute:
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(F (N1)⊗ F (N2))⊗ F (N3)
a′ //

φN1,N2
⊗1
��

F (N1)⊗ (F (N2)⊗ F (N3))

1⊗φN2,N3

��

F (N1 +N2)⊗ F (N3)

φN1+N2,N3

��

F (N1)⊗ F (N2 +N3)

φN1,N2+N3

��

F ((N1 +N2) +N3)
Fa // F (N1 + (N2 +N3))

F (N1)⊗ I
1⊗e
//

ρ

��

F (N1)⊗ F (0)

φN1,0

��

F (N1) oo
Fρ

F (N1 + 0)

I ⊗ F (N1)
e⊗1
//

λ
��

F (0)⊗ F (N1)

φ0,N1

��

F (N1) oo
Fλ

F (0 +N1)

Our goal is to prove that the corresponding hexagon for F ′ : Cospan(C)→ BD commutes:

(F (N1)⊗ F (N2))⊗ F (N3)
a′ //

(F (JN1,N2
)◦φN1,N2

)⊗1
��

F (N1)⊗ (F (N2)⊗ F (N3))

1⊗(F (JN2,N3
)◦φN2,N3

)

��

F (N1 +Y N2)⊗ F (N3)

F (JN1+Y N2,N3
)◦φN1+Y N2,N3

��

F (N1)⊗ F (N2 +Z N3)

F (JN1,N2+ZN3
)◦φN1,N2+ZN3

��

F ((N1 +Y N2) +Z N3)
F (a)

// F (N1 +Y (N2 +Z N3))

We do this by realizing the hexagon as one of the horizontal faces, say the bottom, of a
hexagonal prism, all of whose sides commute and whose top is the commutative hexagon
that comes from F : (C,+, 0) → (D,⊗, I) being symmetric lax monoidal. Denoting the
coequalizer maps JN1+Y N2 : N1 + N2 → N1 +Y N2 and JN2+ZN3 : N2 + N3 → N2 +Z N3

simply as J , consider the following hexagonal prism:
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(F (N1)⊗ F (N2))⊗ F (N3) F (N1 +N2)⊗ F (N3)

F ((N1 +N2) +N3)
F (N1)⊗ (F (N2)⊗ F (N3))

F (N1)⊗ F (N2 +N3) F (N1 + (N2 +N3))

(F (N1)⊗ F (N2))⊗ F (N3) F (N1 +Y N2)⊗ F (N3)

F ((N1 +Y N2) +Z N3)
F (N1)⊗ (F (N2)⊗ F (N3))

F (N1)⊗ F (N2 +Z N3) F (N1 +Y (N2 +Z N3))

φ⊗ 1

φa′

1⊗ φ
φ

F (a−1)

(F (J) ◦ φ)⊗ 1

F (J) ◦ φa′

1⊗ (F (J) ◦ φ)

F (J) ◦ φ

F (a−1)

1
F (J)⊗ 1

F (J) ◦ F (J)

1

1⊗ F (J)
F (J) ◦ F (J)

F (N1)⊗ F (N2 +N3) F (N1 + (N2 +N3))

(F (N1)⊗ F (N2))⊗ F (N3) F (N1 +Y N2)⊗ F (N3)

The six lateral sides are given as follows:

(F (N1)⊗ F (N2))⊗ F (N3) F (N1)⊗ (F (N2)⊗ F (N3))

(F (N1)⊗ F (N2))⊗ F (N3) F (N1)⊗ (F (N2)⊗ F (N3))

a′

1 1

a′
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F (N1)⊗ (F (N2)⊗ F (N3)) F (N1)⊗ F (N2 +N3)

F (N1)⊗ (F (N2)⊗ F (N3)) F (N1)⊗ F (N2 +Z N3)

1⊗ φN2,N3

1 1⊗ F (JN2,N3)

1⊗ (F (JN2,N3) ◦ φN2,N3)

(F (N1)⊗ F (N2))⊗ F (N3) F (N1 +N2)⊗ F (N3)

(F (N1)⊗ F (N2))⊗ F (N3) F (N1 +Y N2)⊗ F (N3)

φN1,N2 ⊗ 1

1 F (JN1,N2)⊗ 1

(F (JN1,N2) ◦ φN1,N2)⊗ 1

F (N1)⊗ F (N2 +N3) F (N1 + (N2 +N3))

F (N1)⊗ F (N2 +Z N3) F (N1 +Y (N2 +Z N3))

φN1,N2+N3

1⊗ F (JN2,N3) F (JN1,N2+ZN3) ◦ (1 + F (JN2,N3))

F (JN1,N2+ZN3) ◦ φN1,N2+ZN3

F (N1 +N2)⊗ F (N3) F ((N1 +N2) +N3)

F (N1 +Y N2)⊗ F (N3) F ((N1 +Y N2) +Z N3)

φN1,N2+N3

F (JN1,N2)⊗ 1 F (JN1+Y N2,N3) ◦ (F (JN1,N2) + 1)

F (JN1+Y N2,N3) ◦ φN1+Y N2,N3

F (N1 + (N2 +N3)) F ((N1 +N2) +N3)

F (N1 +Y (N2 +Z N3)) F ((N1 +Y N2) +Z N3)

F (a)

F (JN1,N2+ZN3) ◦ (1 + F (JN2,N3)
F (JN1+Y N2,N3) ◦ (F (JN1,N2) + 1)

F (a)
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The first diagram commutes trivially and the second and third diagrams commute by
inspection. The fourth and fifth diagrams commute by naturality of F and the last com-
mutes by universality of coequalizers. As the top face and six lateral sides of the hexagonal
prism commute, the bottom hexagon commutes as well. The two diagrams involving the
left and right unitors commute because F : C→ D is symmetric lax monoidal. It follows
that F ′ : Cospan(C)→ BD is a lax double functor.

Define ε : 1BD → F (1Cospan(C)) and µA,B : F (A) ⊗ F (B) → F (A ⊗ B), where A and
B are objects of Cospan(C), both to be the identity, as BD has only one vertical 1-
morphism, the identity of its only object. As F ′ acts as F on horizontal 1-cells, define
δ : U1BD → F (U1Cospan(C)

) and νM,N : F (M) ⊗ F (N) → F (M ⊗ N), where M and N are
horizontal 1-cells of Cospan(C), to be the maps e and φ, respectively, that arise from the
functor F : C→ D being symmetric lax monoidal. Then all of the required diagrams for
the lax double functor F ′ : Cospan(C)→ BD to be symmetric monoidal commute, as the
four diagrams involving objects and vertical 1-morphisms are trivial and the remaining
four diagrams involving horizontal 1-cells are precisely the diagrams that commute because
F : C→ D is symmetric lax monoidal.

4.6. Definition. Let f : C → E and g : D → E be functors with a common codomain.
Then their comma category is the category (f/g) whose

(i) Objects are triples (c, d, α) where c ∈ C, d ∈ D and α : f(c) → g(d) is a morphism
in E, and whose

(ii) Morphisms from (c1, d1, α1) to (c2, d2, α2) are pairs (β, γ) where β : c1 → c2 and
γ : d1 → d2 are morphisms in C and D, respectively, such that the following diagram
commutes

f(c1) f(c2)

g(d1) g(d2)

f(β)

g(γ)

α1 α2

4.7. Proposition. Let F1 : C → E be an oplax double functor and F2 : D → E be a
lax double functor where C = (C0,C1),D = (D0,D1) and E = (E0,E1) are pseudo
double categories with C0,C1 the category of objects and category of arrows of the double
category C, respectively, and similarly for D0,D1,E0 and E1. Then there is a pseudo
double category (F1/F2) consisting of a category of objects A0 and category of arrows A1

such that A0 is the comma category obtained from F1 : C0 → E0 and F2 : D0 → E0 and A1

is the comma category obtained from F1 : C1 → E1 and F2 : D1 → E1. We call (F1/F2) a
pseudo comma double category.
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Proof. The four different types of data, namely the objects and morphisms in both the
category of objects and category of arrows, are obtained as prescribed by the definition of
comma category. That these four types of data then fit together to form a pseudo double
category then follows as such. Objects are given by triples (c, d, α) where c ∈ C0, d ∈ D0

and α : F1(c)→ F2(d) a morphism in E0, and a vertical 1-morphism between two triples
(c1, d1, α1) and (c2, d2, α2) are morphism pairs (β, γ) where β : c1 → c2 and γ : d1 → d2
are morphisms in C0 and D0, respectively, such that the above square commutes in E0.
That composition of vertical 1-morphisms is strictly associative follows from composition
of vertical 1-morphisms in C0 and D0 being strictly associative.

Similarly, we have that objects in the category of arrows, which are horizontal 1-
cells, are also given as triples and composition of these triples is associative only up to
natural isomorphism. This follows from composition of horizontal 1-cells in C and D being
associative only up to natural isomorphism. Abusing notation, if we have two horizontal
1-cells (M,M ′, α : F1(M) → F2(M

′)) and (N,N ′, α′ : F1(N) → F2(N
′)) where α and α′

are 2-morphisms, then we obtain a 2-morphism F1(N�M)→ F2(N
′�M ′) by considering

the following diagram.

F1(c1) F1(c2) F1(c3)

F2(d1) F2(d2) F2(d3)

⇓ ψN,M

⇓ φN ′,M ′

⇓ α ⇓ α′

F1(M)

F1(N �M)

F2(N ′ �M ′)

F2(M ′)

F1(N)

F2(N ′)

This gives us the desired 2-morphism. The remaining details are routine.

It is worth noting the importance of the functors F1 and F2 in the above proposition
being oplax and lax, respectively. This is precisely what allows the maps ψN,M : F1(N �
M)→ F1(N)� F1(M) and φN ′,M ′ : F2(N

′)� F2(M
′)→ F2(N

′ �M ′) to go in the proper
directions.

4.8. Theorem. The pseudo comma double category (E/F ′) is the symmetric monoidal
double category of F -decorated cospans in C, where E : 1 → BD is the symmetric oplax
monoidal double functor that picks out the unit object of D.
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Proof. We will verify the definition of the pseudo comma double category (E/F ′), as
1,BD and Cospan(C) are symmetric monoidal double categories and we wish to show
that the comma category (E/F ′) is also a symmetric monoidal double category. Objects
are given by triples (∗, c, id{∗}) as 1 only has one object {∗} and BD only has the identity
on {∗} for vertical 1-morphisms, and so this triple is really just an object of C due to the
triviality of the structure of {∗} and id{∗}. Vertical 1-morphisms of (E/F ′) are given by
pairs (id1, f) where f is a morphism in C, and hence vertical 1-morphisms are morphisms
in C. This gives us the objects and morphisms of the category of objects of (E/F ′).

For the category of arrows of (E/F ′), objects are given by triples (id1, a → c ←
b, s : I → F (c)) since 1 only has an identity for horizontal 1-cells, F ′ acts as F on horizontal
1-cells and E picks out the unit object of D. Thus objects in the category of arrows of
(E/F ′), which are horizontal 1-cells, are F -decorated cospans in C. Morphisms in the
category of arrows of (E/F ′), which are the same as 2-morphisms of (E/F ′), are pairs
(idI , (f, h, g)) such that following diagrams commute:

a c b

a′ c′ b′

1

F (c′)

F (c)

f h g

s2

s1

F (h)

These are precisely maps between apices of F -decorated cospans in C. Thus we
have that objects of (E/F ′) are given by objects of C, vertical 1-morphisms are given
by morphisms of C, horizontal 1-cells are given by F -decorated cospans in C and 2-
morphisms are given by maps between F -decorated cospans in C such that the above two
diagrams commute. That these four pieces of data fit together to form a pseudo double
category follows readily from the definition. Moreover, we have that Cospan(C) and BD
are symmetric monoidal pseudo double categories by Proposition 4.2 and Proposition 4.4,
respectively, and that the lax double functor F ′ is symmetric lax monoidal by Proposition
4.5. As 1 is trivially a symmetric monoidal pseudo double category and the functor
E is trivially a symmetric monoidal oplax double functor, it follows by definition that
the pseudo comma double category (E/F ′) is also symmetric monoidal. There are a
fair number of commuting diagrams to check, many of which use the globular morphism
x : (M1 ⊗ N1)� (M2 ⊗ N2)

∼−→ (M1�M2) ⊗ (N1�N2) between horizontal 1-cells which
we will show how to obtain.

Let M1,M2, N1 and N2 be horizontal 1-cells given by decorated cospans

M1 =

a1

c1

b1

1 F (c1)
sc1
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M2 =

b1

d1

e1

1 F (d1)
sd1

N1 =

a2

c2

b2

1 F (c2)
sc2

and

N2 =

b2

d2

e2

1 F (d2)
sd2

.

Then we have that M1 ⊗N1,M2 ⊗N2,M1 �M2 and N1 �N2 are given by

M1 ⊗N1 =

a1 + a2

c1 + c2

b1 + b2

1 1× 1 F (c1)× F (c2) F (c1 + c2)
`−1 sc1 × sc2 φc1,c2

M2 ⊗N2 =

b1 + b2

d1 + d2

e1 + e2

1 1× 1 F (d1)× F (d2) F (d1 + d2)
`−1 sd1 × sd2 φd1,d2

M1 �M2 =

a1

c1 +b1 d1

e1

1 1× 1 F (c1)× F (d1) F (c1 + d1) F (c1 +b1 d1)
`−1 sc1 × sd1 φc1,d1 F (jc1,d1 )
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and

N1 �N2 =

a2

c2 +b2 d2

e2

1 1× 1 F (c2)× F (d2) F (c2 + d2) F (c2 +b2 d2)
`−1 sc2 × sd2 φc2,d2 F (jc2,d2 )

so then (M1 ⊗N1)� (M2 ⊗N2) and (M1 �M2)⊗ (N1 �N2) are given by

(M1 ⊗N1)� (M2 ⊗N2) =

a1 + a2

(c1 + c2) +b1+b2 (d1 + d2)

e1 + e2

1 F (c1 + c2)× F (d1 + d2) F ((c1 + c2) + (d1 + d2))

F ((c1 + c2) +b1+b2 (d1 + d2))

ψ φ

F (j)

where
ψ = (φc1,c2 ◦ (sc1 × sc2) ◦ `−1)× (φd1,d2 ◦ (sd1 × sd2) ◦ `−1)

is the product of the maps given above, and

F (j) = F (jc1+c2,d1+d2)

and

(M1 �M2)⊗ (N1 �N2) =

a1 + a2

(c1 +b1 d1) + (c2 +b2 d2)

e1 + e2

1 F (c1 +b1 d1)× F (c2 +b2 d2) F ((c1 +b1 d1) + (c2 +b2 d2))
θ

φc1+b1
d1,c2+b2

d2

where

θ = (F (jc1,d1) ◦ φc1,d1 ◦ (sc1 × sd1) ◦ `−1)× (F (jc2,d2) ◦ φc2,d2 ◦ (sc2 × sd2) ◦ `−1).

The globular morphism

x : (M1 ⊗ N1)� (M2 ⊗ N2)
∼−→ (M1 �M2) ⊗ (N1 �N2)
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is then given by the universal map α : (c1 + c2) +b1+b2 (d1 + d2)→ (c1 +b1 d1) + (c2 +b2 d2)
given by Proposition 4.2 that makes

a1 + a2 (c1 + c2) +b1+b2 (d1 + d2) e1 + e2

a1 + a2 (c1 +b1 d1) + (c2 +b2 d2) e1 + e2

α

commute. This universal map α also gives us the map F (α) which makes

1

F ((c1 + c2) +b1+b2 (d1 + d2))

F ((c1 +b1 d1) + (c2 +b2 d2))

F (α)

commute. The remaining details are similar to those given here.

A more sophisticated method of proof uses the theory of 2-monads. Let Graph(Cat)
be the 2-category of graphs internal to Cat, graph morphisms internal to Cat, and
transformations between these. There is a 2-monad T on Graph(Cat) whose strict
algebras are pseudo double categories. The strict (resp. pseudo, lax) morphisms between
these algebras are strict (resp. pseudo, lax) double functors. There is thus a 2-category
TAlg` consisting of pseudo double categories, lax double functors and transformations.
As the oplax double functor E : 1 → BD constructed in Theorem 4.8 is in fact strict, a
result of Lack [12, Prop. 4.6] implies that (E/F ′) exists as a comma object in TAlg`.

4.9. Proposition. The symmetric monoidal double category (E/F ′) is fibrant.

Proof. We have that Cospan(C) is fibrant; a companion of a horizontal 1-cell f : A→ B
is the cospan f : A → B ← B : idB with corresponding conjoint idB : B → B ← A : f
and where UA is the identity cospan idA : A → A ← A : idA on the object A. It then
follows that (E/F ′) is also fibrant by choosing the trivial decoration for all of the above
cospans which will then satisfy the required equations in the definition of fibrant, as
these equations simply become the equations required to be satisfied for Cospan(C) to be
fibrant.

5. Applications

In this last section, we present two applications of the main result. The first involves
the symmetric monoidal categories studied by Rosebrugh, Sabadini and Walters [16], in
which a morphism is a directed graph with labeled edges and specified input and output
nodes. We can promote these categories to symmetric monoidal bicategories. First, we
make the following definitions:
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5.1. Definition. A graph is a finite set E of edges and a finite set N nodes equipped
with a pair of functions s, t : E → N that assign to each edge e ∈ E its source and target,
s(e) and t(e), respectively. In this case, we say that e ∈ E is an edge from s(e) to t(e).

5.2. Definition. Given a set L of labels, an L-graph is a graph equipped with a func-
tion ` : E → L which assigns a label to each edge.

For example, if we take L = (0,∞), an L-graph is just a weighted graph, as discussed
in the Introduction:

0.2

1.3
0.8 2.0

To turn a graph like this into a morphism in a category, we specify input and output
nodes using a cospan of finite sets.

5.3. Definition. Given a set L and finite sets X and Y , an L-circuit from X to Y
is a cospan of finite sets

N

X

i

>>

Y

o

``

together with an L-graph

E NL
`

s

t

We call the sets i(X), o(Y ) and ∂N = i(X)∪ o(Y ) the inputs, outputs and terminals
of the L-circuit, respectively.

We saw an example of an L-circuit in the introduction:

X Y

0.2

1.3
0.8 2.0

Given another L-circuit whose inputs match up with the outputs of the above L-circuit:
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Y Z

1.7

0.3

we can compose them by making the following identifications

X
Y

0.2

1.3
0.8 2.0

Z

1.7

0.3

and obtain the following L-circuit:

X Z

0.2

1.3
0.8 2.0

1.7

0.3

Following the result of the paper’s main theorem, a 2-morphism will be a globular
2-morphism between cospans of finite sets whose apices are decorated with L-graphs.
This amounts to a map h : N → N ′ between the apices such that the decorations of the
L-graphs are preserved.

N

h

��

X

i

>>

i′   

Y

o

``

o′~~

N ′

,

F (N)

F (h)

��

I

r1
<<

r2
""

F (N ′)

If we have an L-graph

E NL
`

s

t

which decorates the set N , the L-graph

E N ′L
`

h ◦ s

h ◦ t



1022 KENNY COURSER

decorates the set N ′ and makes the diagram on the right above commute. We can also
tensor two L-circuits by formally placing them side by side; for example, if we tensor

X Y

0.2

1.3
0.8 2.0

with

X ′ Y ′

1.7

0.3

we get

X +X ′ Y + Y ′1.7

0.3

0.2

1.3
0.8 2.0

More formally, given two L-circuits

E NL

Y

N

X

`
s

t

oi

and

E ′ N ′L

Y ′

N ′

X ′

`′
s′

t′

o′i′
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their tensor product is

E + E ′ N +N ′L

Y + Y ′

N +N ′

X +X ′

(`, `′)
s+ s′

t+ t′

o+ o′i+ i′

Rosebrugh, Sabadini and Walters [16] constructed a symmetric monoidal category
where objects are finite sets and morphisms are isomorphism classes of L-circuits (see
also [1, 2]). Theorem 2.2 lets us ‘categorify’ their result, obtaining a symmetric monoidal
bicategory where the morphisms are actual L-circuits.

5.4. Theorem. For any set L, there is a symmetric monoidal bicategory L-Circ where
the objects are finite sets, the 1-morphisms are L-circuits, with composition and the tensor
product of 1-morphisms defined as above. 2-morphisms are maps between apices of two
cospans with identical feet such that the following diagrams commute.

N

h

��

X

i

>>

i′   

Y

o

``

o′~~

N ′

,

F (N)

F (h)

��

I

r1
<<

r2
""

F (N ′)

Proof. We have a symmetric lax monoidal functor F : FinSet → Set that maps each
finite set X to F (X), which is the set of all possible L-circuits on X. The functor F is

symmetric lax monoidal since we have maps F (X) × F (Y )
φX,Y−−−→ F (X + Y ) that send a

pair of L-circuits to the tensor product of the two L-circuits which gives rise to an L-
circuit on X +Y , and 1→ F (∅) given by the empty L-circuit. We also have that FinSet
is finitely cocomplete and Set is symmetric monoidal. The result follows from Theorem
2.2.

We can also obtain this theorem from the work of Stay [18] if we treat L-Circ as a
sub-bicategory of the symmetric monoidal bicategory of graphs. His work even implies
that L-Circ is a ‘compact’ symmetric monoidal bicategory.

For an example that cannot be handled using Stay’s technique, we turn to the theory
of dynamical systems. A dynamical system is a vector field, thought of as a system of first-
order ordinary differential equations. Chemical reaction networks give dynamical systems
that are algebraic vector fields on Rn: that is, vector fields with polynomial coefficients.
In studying chemical reaction networks with inputs and outputs, Baez and Pollard [4]
constructed a symmetric monoidal category where the morphisms are ‘open’ dynamical
systems. We can promote this to a symmetric monoidal bicategory as follows.
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We define a symmetric lax monoidal functor D : FinSet → Set as follows. For any
finite set S, let D(S) be the set of all algebraic vector fields on RS:

D(S) = {vS : RS → RS : vS is algebraic}

For any function f : S → S ′ between finite sets, define D(f) : D(S)→ D(S ′) by

D(f)(vS) = f∗vSf
∗,

where f ∗ : RS′ → RS is the pullback defined by

f ∗(cS′)(σ) = cS′(f(σ))

and f∗ : RS → RS′ is the pushforward defined by

f∗(cS)(σ′) =
∑

{σ∈S: f(σ)=σ′}

cS(σ)

where cS ∈ RS and cS′ ∈ RS′ . The functoriality of D follows from the pushforward being
covariant and the pullback being contravariant. We make D into a lax monoidal functor
using the unique map φ1 : 1→ F (∅) and the map φS,S′ : D(S)×D(S ′)→ D(S + S ′) that
sends a pair of vector fields vS : RS → RS and vS′ : RS′ → RS′ to vS+S′ : RS+S′ → RS+S′

defined using the canonical isomorphism RS×RS′ ∼= RS+S′ . Furthermore, if we denote the
braidings of (FinSet,+, ∅) and (Set,×, 1) by β, we have that the functor D is symmetric
as the following diagram commutes:

D(S)×D(S ′) D(S ′)×D(S)

D(S + S ′) D(S ′ + S)

φS,S′ φS′,S

βD(S),D(S′)

D(βS,S′ )

We have the following result due to Baez and Pollard [4].

5.5. Theorem. There is a decorated cospan category VectField where an object is a
finite set and a morphism is an isomorphism class of cospans of finite sets decorated by
vector fields.

We can categorify the above theorem by taking a 2-morphism between decorated
cospans to be a map h : S → T between their apices making the usual diagrams commute:
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S

h

��

X

i

>>

i′   

Y

o

__

o′��

T

,

D(S)

D(h)

��

I

r1
==

r2
!!

D(T )

As h : S → T is a function, D(h) induces a vector field on RT given a vector field on RS

as prescribed above.

5.6. Theorem. There is a symmetric monoidal bicategory VectField where an object
is a finite set, a morphism is a cospan of finite sets decorated by a vector field and a
2-morphism is a map of finite sets such that the above two diagrams commute.

Proof. We apply Theorem 2.2 to the symmetric lax monoidal functor D : FinSet→ Set
as previously described.
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