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A URYSOHN TYPE LEMMA FOR GROUPOIDS

MADALINA ROXANA BUNECI

ABSTRACT. Starting from the observation that through groupoids we can express in a
unified way the notions of fundamental system of entourages of a uniform structure on
a space X, respectively the system of neighborhoods of the unity of a topological group
that determines its topology, we introduce in this paper a notion of G-uniformity for a
groupoid G. The topology induced by a G-uniformity turns G into a topological locally
transitive groupoid.

We also prove a Urysohn type lemma for groupoids and obtain metrization theorems
for groupoids unifying in two ways the Alexandroff-Urysohn Theorem and Birkhoff-
Kakutani Theorem.

1. Introduction and preliminaries

The notion of groupoid is a natural generalization of the notion of group in the following
sense: a groupoid is a set G endowed with partially defined product operation (z,y)
Ty [: G? — G} (where G® C G x G) and an inversion operation z + 2! [} G — G]
satisfying the subsequent weaker versions of the group axioms:

Gl If (z,y) € G? and (y,2) € G?, then (zy,z) € G?, (x,yz) € G? and (2y)z =
G2 (z7Y) '=zforallzeq.

G3 Forall z € G, (z,77') € G?, and if (z,7) € GP, then (z2) 27! = 2.

G4 Forallz € G, (z7%,2) € G?, and if (x,y) € G?, then 7! (zy) = v.

The maps r and d on G, defined by the formulae r (z) = zz™! and d(x) = z7 'z,
are called the range (target) map, respectively the domain (source) map. They have a
common image called the unit space of G' and denoted G©. The fibres of the range and
the domain maps are denoted G* = r~! ({u}) and G, = d~! ({v}), respectively. Also for
u,v € GO, GY =GN G,

A topological groupoid is a groupoid G together with a topology on G such that

the product operation (z,y) — zy [: G® — G| (where G® C G x G is endowed with
the topology induced by the product topology on G x ) and the inversion operation
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r — 27! [: G — G] are continuous functions. A family {W;} e, of neighborhoods of
the unit space is said to be compatible with the topology of the r-fibres (respectively,
d-fibres) if for every u € G and every open neighborhood U of u, there is j € J such
that W; NG" C UNG" and u is in the interior of W; N G* with respect to the topology
on G" coming from G (respectively, W; NG, C UNG, and u is in the interior of W; NG,
with respect to the topology on G, coming from G).

Let us also recall that a uniform space is a set X endowed with a uniform structure. A
fundamental system of symmetric entourages of a uniform structure on X is a nonempty
family W of subsets of the Cartesian product X x X that satisfies the following conditions:

Ul if Wis in W, then W contains the diagonal A = {(z,z) : v € X}.
U2 if W, and W5 are in W, then there is W35 € W such that W3 C W; N Wh.

U3 if W is in W, then there exists W5 in W such that, whenever (z,y) and (y, z) are in
Wy, then (z,z) € W;.

U4 if WeW, then W=W-"={(y,z): (z,y) € W} (W is a symmetric entourage).

The uniform space X becomes a topological space by defining a subset A C X to be
open if and only if for every € A there is W, € W such that {y : (z,y) € W, } C A.

The Cartesian product X x X can be viewed as a trivial groupoid G under the oper-
ations: (x,y) (y,2) = (z,z) and (z,y)"". In the settings of groupoids condition U1 can
be written as "G c W C G for all W € W” and condition U3 as "for every Wy € W
there is Wy € W such that WolW, C W17,

In this paper we work with a collection of subsets of a groupoid G mimicking the
properties of fundamental system of symmetric entourages of a uniform structure on X.
Such a collection will be called in this paper G-uniformity. We prove that a G-uniformity
induces a topology on G that turns G into a topological locally transitive groupoid. Let
us recall that a topological locally transitive groupoid is a topological groupoid G with the
property that for all u € G the maps r, are open, where r, : G, = GO, r, (z) = r ()
for all x € G, and G,, is endowed with the topology coming from G (see [12]). If we begin
with a topological groupoid (G, 7) and with a G-uniformity given by a fundamental system
of neighborhoods of the unit space, then the topology induced by de G-uniformity is finer
than 7 and coincides with 7 if and only if (G, 7) is locally transitive. The main result
of this paper is a Urysohn type lemma for groupoids (Theorem 2.5). The existence of a
function with properties 1 — 3 in Theorem 2.5 could also be obtained taking into account
that a G-uniformity is a base for a uniform structure on GG. However the topology defined
by the G-uniformity do not necessarily coincides with the groupoid topology, even if the
G-uniformity is given by a fundamental system of neighborhoods of the unit space. The
construction in Theorem 2.5 allows us to get a function with additional properties. In
particular, in the case of a topological groupoid with open range map and a G-uniformity
given by a fundamental system of neighborhoods of the unit space, our construction
allows us to put out a connection with the groupoid topology: the functions f associated



972 MADALINA ROXANA BUNECI

in Theorem 2.5 with open subsets of G or with G©) are upper semi-continuous on G and
their restrictions to the r-fibres as well as to the d-fibres of the groupoid are continuous
functions. Thus these functions can be used to construct convolutions algebras as in
[4] and possibly to extend the construction of a C*-algebra associated to a topological
locally compact groupoid with continuous Haar system introduced in [11]. Moreover the
property 9 in Theorem 2.5 allows us to obtain metrization theorems for groupoids and
thus to express in an unified way Alexandroff-Urysohn Theorem and Birkhoff-Kakutani
Theorem as we explain below. Let us consider the following two theorems:

1.1. THEOREM. [Alexandroff-Urysohn Theorem| A topological Hausdor{f space X is me-
trizable if and only if its topology is given by a uniformity with countable base. [1]

1.2. THEOREM. [Birkhoff-Kakutani Theorem] A topological group G is metrizable if and
only if there is a countable base for the topology at identity element in G. Furthermore,
i such a case, the distance function may be taken to be either left-invariant or right-

invariant. ([2], [6])

Let us remark that the space X, respectively the group G can be viewed as r-fibres
(as well as d-fibres) of a groupoid (X x X in the first case and G itself in the second case).
We prove in this paper that the previous two results can be express in an unified way in
the groupoid language:

1.3. THEOREM. Let G be a topological groupoid. Then there are left (respectively, right)
invariant metrics compatible with the topology on r-fibres (respectively, the d-fibres) of the
groupoid if and only if there is a countable G-uniformity {Wy,}, . compatible with the

topology of the r-fibres (respectively, d-fibres) such that (| W, = G (Proposition 3.1}
neN
and Proposition 3.15)

The proof of this theorem is based on the construction of a function on G satisfying
the hypothesis of [8, Theorem 3.26]. This function is obtained as a particular case of
Urysohn Lemma for groupoids (Theorem 2.5).

We also prove in this paper that:

1.4. THEOREM. For a topological locally transitive groupoid G the following statements
are equivalent:

(a) G is metrizable

(b) For every neighborhood W of GO there is a neighborhood W' of G0 such that W'W' C
W and G has a countable fundamental system {Wh},en of neighborhoods such that
N W,=G9 and N (r,d)(W,) = diag (G?).

neN neN

(c) There is a countable G-uniformity {Wy}, oy compatible with the topology of the fibres
such that (| W, = GO and N (r,d) (W,) = diag (G). Each W,, may be taken

neN neN
to be a neighborhood of the unit space.



A URYSOHN TYPE LEMMA FOR GROUPOIDS 973
Moreover the distance function p may be taken to satisfy the following properties:
z,y)=p(x~ty™t) forall x,y € G.
z,r(x)) = p(x,d(x)) for al x € G.
z)) < p(a,r(2)) +p(y. 7 (y) for all (z,y) € G®).

z,y) < p(x~ty,d(x)) for all z,y € G such that r (z) =1 (y).

—~

Y, r

D
A/\/Qr\/\

d()a:) ,d(y) <2p(x,y) and p(r(z),r(y)) < 2p(x,y) for all z,y € G. (Theorem
.16

2. Urysohn’s lemma for groupoids

2.1. DEFINITION. Let G be a groupoid. By a G-uniformity we mean a collection {W },;, o)
of subsets of G satisfying the following conditions:

1. GO CcW CG foral WewWw.

2. If Wy, Wy € W, then there is W3 C Wy N Wy such that W5 € W.
3. For every W1 € W there is Wy € W such that WoW, C Wi

4. W =W-for all W e W.

2.2. DEFINITION. Let G be a groupoid. Two G-uniformities W and W' are said to be
equivalent if for every W € W there is W' € W' such that W' C W and conversely, for
every W' € W' there is W € W such that W C W".

Let W be a family of subsets of a groupoid G satisfying conditions 1—4 from Definition

2.1 and let .

Let Wy € W and W, € W be such that W W, C W,. Inductively we can construct
an [-indexed family {W;},.,;. Suppose that for W; € W has already been built. Then
according condition 3 in Definition 2.1, there is a W/ € W such that W/W/ C W,.
Let Wi, = W/. Thus we obtain an I-indexed family {W;},_, satisfying the following
properties:

1. Wye Wioralliel.
2. MWiCWQifOIalliEI,iS%.
3. W1W1CWO.
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Hence W; C W, W; C Wy, for alli € I, i < % and
...Wl/gn C Wl/gnwl/gn C Wl/znfl - W1/2n71W1/2n71 C ...Wl/g C W1/2W1/2 c W
Let us note that:

1.
2.
3.

If 7,7 € I, then ¢ < j iff there is p € N* such that j = 2P.
If7,7€ I and i < j, then 2¢ < j.

If i,7 € I and ¢ < j, then W; C Wj.

CIf 11, 12, ., 1k € Tand i < ipg < ipn < ...< 1 < 1, then M/ikWikfy”Wh C W2i1

and W;, .. W, _ W, C Wy, . Indeed,
mkmk—lmk—2“‘ml - Wik—lmk—lmk—2“'Wi1
C WQik71Wik72"'Wi1
c Wiy Wi _,..Wy
Cc ...C W2i1
Similarly, V[/il...I/Vikleik C ‘/Vil"'mk71wik71 C Wz1 ik,QW%k,l C ...ngl.

If il, 7:2, ceey ik, jl, jg, ceey ]m - I, ’Lk < ik—l < ... < il < ]_, jm < jm—l < ... < jl < 1
and ’Lk + ik—l + ...+ 2:1 S ]m +jm—1 + ... —|—j1, then
Wi Wi

Wi, C W W, W,

k1" 1"

Indeed, let us remark that i, +ip_1+...+11 = 2%/9 + 2%%1 + ...+ 2%1 is the conversion
into decimal system of the following number in base 2: by, b1bs...b,, where b; = 1 if
i € {ny,na,...,n} and b; = 0 otherwise. Thus if ix+ig_1+...+01 = jm+Jm—_1+...+71,
then m = k and Zk = jk, ceey il = jl' If Zk +ik_1 + ... +i1 < ]m +jm_1 +... +j1, then
there is p € N* such that ¢; = ji, ..., ¢p—1 = Jp—1 and i, < j,. Hence

Wi Wi, Wi Wi o W C Wa Wy o W,
c W, Wi .. W,
= W, Wi, Wj
c W, W, W,

2.3. LEMMA. Let G be a groupoid, W be a G-uniformity (in the sense of Definition 2.1)
and let

1

Let us consider an I-indexed family {W;},., satisfying the following properties:

1.

W, eW foralli e 1.
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2. WW; C Wy foralliel, i<
For Wi, Wi, ., ..., Wi, € {W;}..;, let us denote
s (Wi Wi o W3,) = i + i1 + .o+

Let n € N*, and i1, i, ..., i € I be such that i, < i1 < ip_2 < ... <13 < 1. Then there
are j1, j2, ---, Jjr € I such that

1. Jr < Jro1 <idpoo < .. < j1 <max {57,201} <1
2. Wl/QHW I/Vzk L VVil C ererfl‘“Vle

3. 0<s (W, W, _,.W; ) —s (W, W,

1p—1"

Moreover j; < S(W Wi._,- Wzl) + 2,} : and if j, 7é 5w, then g, > nl_l. Also if
2% < iy, then s (WjTI/Vj

Wi )= s (W Wi .. W) < 5

PrROOF. Case 1: 5= < i Obviously, 5= < iy < ip-1 < G2 < ... < i1 < 1 and

r—

2_”'

s (Wi Wi Wiy . Wey) = s (Wi, Wi, . W) + o
Case 2: There is m € {2,3, ..., k} such that i,, = 2%
Wl/QnW W'Lk L W VVzm 1 VVil C W1/2"W2imWim,1-'-VVi1-
and we have
S (WI/Q"WQimWim_1“-M/Z'1) =
. . . 1
= s(VVi,c Wi Wi Wil)—(zk+...—|—zm)+2zm+2—n
1
S S(VVZk W I/I/’Lm 1° W11)+Zm+2_n
2
= S (V[/Zk W mm 1 Wll) _'_ 2_'”,
Moreover iy + ... + &, < ( — 2 5+ 1) I < 20 < 20, + 2% Consequently,

s (Wi jonWai, Wi, W3) > s(W W W Wi).

Case 3: There is m € {2,3,..,k} such that i,, = 5 = =L and there is ¢ €

{2,3,...,m — 1} such that 4i, <i,_1. Let p be the greatest element of the set
{g: 2<q¢<m—1, 4i, <i,}.

Then WI/Q"VVik---Wil C Wl/2”W2imVVim_1-

Wiy © WijonWay Wi

ip_1 - Wiy . Moreover

S (WQipI/Vip—l“"/Vil) =S (W Wi Wlp 1 Wil) — (tmo1+ ..+ ip) + 21y
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S (Wipr o Wi Wi Wiy) = (it + 21+ oo+ 277 ) 4+ 277 P
= s(Wip o Wi, Wi (o W3) — iy (2777 = 1) 4 1y g 2777
S (Wik...W/iPWip_l...Wil) - (Zk + ...+ Zm) -+ Z.m—la

and since 2,1%1 = iym—1, it follows that

1
S (W1/2“W2ipWip71-..Wi1) =S (WQipWip,l'uWi ) + 2_71,
= s (WikWik,l---Wil) — (g 4 oo ) iy + 2%
, . 1 1 1
= s(Wiy Wi .. Wi) = (ik + oo + img1) — > + T + o
1

On the other hand, i, + ... + 7, < (Qkf;mﬂ + Qk% + %) Im-1 < Tm-1 and therefore
s (WhjonWoi, Wi, . Wiy) > s (W, W, .. W3,). | |
Case 4: There is m € {2,3, ..., k} such that 4, = 5~ = =L =22 —  — i Then

2n 2 22 gm—1"*
Wl/gn Qg -Wil C Wl/2n ngm I/VZ . 'Wil C Wl/gn W2i1 and

p—1°°*

m—1°

1
S (Wl/Z”W2i1) = S (M/ZmVV“) — (lm —+ ..+ 21) + 211 + —

2n
1
= s(Wi,,..Ws,) = (i + 20p + ... 2770, + 24, + 3
1
= s (Wi W) =i (27 = 1) +im2™ + 57
1
= S (Wz --'Wim+1Wim'-' il) - (Zk + ...+ im—l) + Zm + 2_n
1
< S (Wlkmkflm ) + on 1"
Also s (WijonWai, ) = 3¢ + 20y > 26y > s (Wi, W, _,..W;,) and
. . 1
= 211 < S (Wzkmkflm ) + F
Case 5: There is m € {2,3, ..., k} such that i, < 2%1 < Z’“T‘l Then
Wi oWy We W Wi W & Wy Wy Wi Wy
C Wl/gnwl/gnWimfl...Wil
C Wl/gn—lwim_l...Wil.
and
s (WijgnaWi o Wiy) = s (Wi Wi, Wo o Way) = (ik + oo+ i) + =

1
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Moreover iy, + ... + im < (55 + g0 + s + 1) by < 20 < 5 <
s (Wijgna Wi, W) > s (Wi .. W, Wi W)

Tm—1"

Case 6: There is m € {2,3,...,k} such that i, < 5 = ! and there is ¢ €

{2,3,...,m — 1} such that 4i, <i,_1. If p is the greatest element of the set

2711,1 . Consequently,

{g: 2<q¢<m—1, 4i, <i,.},

then
Wl/QnW V[/Zk 1° V[/imWim—l'“Wil C WI/Z"WZimmm_1“'Wi1
C Wl/anl/ZnWim71"‘M/Z‘1
C WI/Z”_IWimfl"‘Wil
C ngpwip_l...VVil.
Moreover
s (Woi, Wiy . W) = s (Wi o Wi, Wi W3y ) = (i1 + o+ 1) + 21,
= S(Wim_1 -I/VipVVip 1° W ) (Zm 1+2Zm 1+ - _|_2m P 1zm 1)"’2 _pzm 1
= s(Wipy o W Wi Wi)) =it (2777 = 1) + ipq2™7P
= s(W .. Wi, Wi, .. W;,) — (zk—l— cFim) F et
Hence 1
S (WQiPWip_l'“Wil) (W VVZk 1° VV“) + 2n—1'

Since we have i + ... + 7, < (2,%;,,#rl + Q,im + ... ;) t—1 < Tm—1, it follows that 7,,_1 —
(i + ... +4m) > 0. Thus s (Wg,-pW- .Wil) (W Wi Wi Wil). We also have

1 Ip—1-" Tm—1"
Yr = 2ip 2 57-7-

Case 7: There is m € {2,3, ..., k} such that i, < 2% = “” L = “’;22 = ... = z=r. Then
Wl/QnW Wi1 C W1/2nW21mWim_1---W/i1 C Wl/Z”—lwim 1 W“W1/2nW2“ C. Wgzl and

S (ngl) =S (Wim—l"'Wil) — (im,1 =+ ..+ Zl) + 27/1

1
on—1 :

= s(Wip 1 Wiy) = (ime1 + 201 + oo+ 27 i) + 27 1
= 5 (Wi W) =it (277 = 1) a2
= s (Wi Wi, Wi . Wi) = (i + oo i) + i

(

Wi Wi . Wiy) +
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Also s (Way) = 2iy > (g 4+ 3+ 1) 00 > dp + i1 + iy > s (W Wiy, W),

Moreover j; = 2i; = s (Wy;,) < s (VVikWik_l---Wi ) + 2,},1.
Case 8&: zln = 7;. We have

Wl/2nmkmkfl“'m1 - W1/27LW21'1,
1 ] 1 '
S (W1/2nW2z‘1) = 2—n + 211 <s (VV%VV%?IVV, ) —+ 2—n + 1
1
= S (VV%VV%AVVZ ) + o1

and 2% + 2Z1 > 211 > Qk;—l + ...+ % + 1) il Z Zk + ik—l + Zl =S (VVZ Wl,HWZ ) We
also have j; = 21; < s W]_/gnWQil) <s (I/Vzk ik_l...Wil) + w%l
Case 9: 2% > 7;. We have

Wl/Z”WikWik_l-.-M/il - Wl/Q"ngl C Wl/2”W1/2n C Wl/gnfl,
1 1
s (Wijgn-1) = T <8 (Wi Wiy, Wiy) + ST

and Qn—l,l > 29 > (2,%1 + ...+ % + 1) W2l +ip1+..91=35 (mkWik,l---Wil)- Moreover
= 2";—1 <sS (W'Lk ikfl"'Wil) -+ Qn—l_l

Let us also remark that if 2% = iy , then Wy W, Wy .. Wi C Wo, Wi Wi,
where m is the greatest element of the set {¢: 2 <¢q <k, 4i, <i,1} if the set is not
empty or m = 1, otherwise. We have

m—1°"

s Woin, Wi War) =8 (Wi W, Wiy ooe Wi ) = (i o+ ) o+ 20
1 2k—m+1
- 3<W/ikw/ik_1~-~m1) — (1+2+‘.‘+2k—m)2_n_’_ —
1

= s (W'LlcVV’Lk71VV11> + 2_n

Moreover i + ... + i < (2’im + zklm + % + 1) im < 21i,,. Consequently,
§ (Wa, Wiy W) > (Wi Wi, We W)
]

2.4. REMARK. In the preceding lemma since Wy oWy W;, . Wy C W; W, W | it

follows that (W1/2nm/ikWik_1---Wi )71 C (I/VjTW/jT_l...le)fl and consequently,

Wi, Wiy Wi, Wi jan C W, Wi, W
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2.5. THEOREM. Let G be a groupoid, W be a G-uniformity (in the sense of Definition 2.1)
and let W € W. Let us consider an I = {2%, n e N}-indexed subfamily Wi = {W;},o; of
W as in Lemma 2.3 such that Wy C W. Then for every subset A of G there is a function
f = faw, : G — |0, 1] satisfying the following conditions:

1.

SN

10.

IfneN,n>2 ze€G andy € WipmaWijom, then |f (z) — [ (y)] < 5.

f(x)=0 for all x € A.

f(z)=1 forallx ¢ WAW.

If A= A7 then f(z) = f(z71) for all x € G.

If G is endowed with a topology such that W;, W, _ . Wy A W, . W, _ W, is open
for all iy, 19, ..., i €1, 1) <ip_1 < .. <1y <1, then [ is upper semi-continuous.

For alln € N, n > 2, we have
1
W1/2n+1AW1/2n+1 Cex: f (.Z') < 2—n C Wl/gn—lAwl/Qn—l.
In particular, if A =G, then

1
W1/2n+1W1/2n+1 C {.T : f (l‘) < 2_n} C Wl/zn—lwl/Qn—l C W]_/Qn—Q

for allnm € N, n > 2.
If A=GO, then f (zy) < 3f (z) + f (y) for all (z,y) € G?.
If A= GO then f (vy) < 2(f (z) + f (v)) for all (z,y) € G?.

If A=GO, then f(x179..7,) < 3(f (w1) + f (v2) + ... + f (z)) for alln € N and
X1, 22, .oy Tp € G such that d (x;) = 1 (x;41) for alli € {1,2,....,n — 1},

If A = GO and for every x € G\ G there is i, € I such that x ¢ W;, (or
equivalently, Wi = G©), then f~1 ({0}) = G©.

PRrOOF. For each x € G, let us define

Z(ZL’) —inf g+ lg—1 + ... 41 21, 12, ..., Ix € I <1 < ... < i1,

k—1° k—1""V g

(with convention inf () = co) and

f(x)=min{i(x),1}.
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1. Let x € G and y € WyjgnaWijon. If i (z) > 1 and i (y) > 1, then f(z) = f (y) = 1.
Let us suppose that 7 (z) < 1 ori(y) < 1.

Case 1: i(x) < 1. Then there are iy, da, ..., i € I, iy < lp_1 < .. < i3 < 1
such that = € W, W;,_,..W;, A W, .W,;, W, and iy + ix_1 + ... + i1 < i(x)+ 57. By
Lemma 2.3, there are ji, jo, ..., jr € I, jr < Jroq1 < Gp_g < ... < j1 < 1 such that
V@}/inlﬁkllﬁk_l.“llﬁl C LLGTL¢3T71.0‘¢91 and

. . . . . 3
0<(pr+.o+J1) = (g +ig—1+ ... +101) < on
Hence 1
ikt g1+ oo+ i < g+ ... +j1 <i(x)+ =
and since
y E Wl/QnZUWl/Qn C
C Wl/2nmkmk71'“m1f4m1“‘ ikilwikwl/gn

C W Wy Wy AW, W, W,

it follows that i (y) < i (z) + 525 If i (y) < 1, then since y € Wy 2axW9n is equivalently
to & € WijpayWijon it follows that i(z) < i(y) + 5. Therefore |f (z)— f(y)| =
i (2) =i ()] < z=- Wiy) = 1, then |f (@) = f )] = li(@) —1] =1—i(2) <i(y) -

Case 2: i (y) < 1. Since y € Wi an W1 jon is equivalently to x € Wy anyWy on, the case
i(y) <1 can be treated similarly as the case i (z) < 1.

2. Let us prove that f(z) = 0 for all € A. Since A C Wi /on AWy/9n for all n, it
follows that i (x) = 0, and consequently, f () = 0 for all z € A.

3. Let us prove that f (z) = 1 for all x ¢ WAW. Let x ¢ WAW. By contradiction, let
us suppose f (x) < 1. We necessarily have i (x) < 1, and hence there are iy, is, ..., i € I,
I < lp—1 < ... <11 < 1such that

xr € VLQkLLQk_l.”nglfq L@an.
C LLH[4L¢G,(: W AW

Wi, C Way, AWy,

Tg—1

This is in contradiction to the hypothesis ¢ WAW.
4. Since A = A~! it follows that

(ngklmgk—1'“‘¢21/4 vv21”'L¢2k—1L¢Qk)471 = LVikVVik—l'“VVilf4 LL21“'LLQk—1 i
Thus x € W, W;, .. Wi, A W;, . W, _ W, if and only if
e W, Wi Wy AW, W, Wi .

Therefore f (z) = f(xz71) for all z € G.
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5. Let o € R and let us consider the set
Uo={x€G: f(z)<a}.

If « > 1, then U, = G, hence U, is an open set. Let us consider a < 1 and let
x € Uy Then f(x) < 1. Thus i(x) < 1, and hence there are iy, iy, ..., iy € I,
I < lp—1 < ... <11 <1 such that

xr € Wszz VV“A VVil---VVik,l ik

ik +ik_1 + ... +Zl < Q.
Wi AW, Wi W,

tg—1 "V ik

Wi, AW, Wi, Wi, CU,.

k—1"

For all y € W;, W, _,. we have i (y) < a. Consequently,

x € Wszz

k—1°

Therefore U, is open.

6. If v € Wy ont1 AWy jgnia, then i (z) < 2n1+1. Thus f(x) < # < 2% If f(z) < 2% <
1, then i(x) < % and there are iy, io, ..., i € I, 7 < ip_1 < ... < 71 < 1 such that
xe W, Wi Wiy AW, W, W, and iy +ig_1 + ... + 41 < i(z)+ 2% < Qn—l,l Hence
i < zn%l and therefore x € Wy, AWy, C Wy jon1 AW, jgn—1.

7. Let (x,y) € G®. If 3f (z) + f (y) > 1, then obviously, f (zy) < 3f (z) + f (y).
Let us suppose that 3f (z) + f (y) < 1 or equivalently, 3i (z) + i (y) < 1 (consequently,
i(z) < 5 and i(y) < 1). Let e > 0 such that ¢ < 1 —3i(2) —i(y). Then there are
11, 19, ..., Ik € I, g < ey < ... <11 < éll such that x € WikWik—r"Wilml"'mk—1W’ik7
ig +ip—1+ ... i1 <i(x)+ 5 and there are ji, j2, ..., Jm € 1, i < o1 < ... <J1 < %
such that y € W; W, _ .. W; W; W, - Wi . jm + jm-1 + ...+ 51 < i(y)+5. By
Lemma 2.3, there are ¢f, ¢3, ..., ¢, € I, ¢;, < ¢, 1 < ¢, _5 < ... < ¢ < 1 such that
WiijmI/Vi ..le C Wq%IW 1 ...Wq%,

qufl

m—1"°
0< (g, +-+a1) = G+ Jmo1 + . + J1) < 2y

and g1 < o+ Jmo1+ ..+ J1+ 20 < i(y)+5+2 (a:)—l—%e < 1. Repeatedly applying Lemma
2.3, for p=2,3,...,k there are ¢, ¢3, ..., ¢%, € I, ¢ < qp 1 < g, 5 <..<gq <1such
that VVikprqu:l W o ...Wq;ly—1 C qu W » ...qu ,

Tp=1 qrp7 1—1 Tp qrp -1

0< (qu + ... +qf> — (qf;fl + .t Q’f_1> < 2igpy1-
and
@ < qf;_ll ot @ 20
< @+ G 2k + 2k

< Gt e g1 20k e+ 2y + ik
, 3 . 2e
z(y)+§+2z($)+§ < 1.
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k+1 k+1

: : K+l ket
Applying again Lemma 2.3, there are 7', g5, ..., gt € [, ¢! < ¢ 1 < gl 5 <

< qf-%l < 1 such that mqu’ﬁqu’fkq”'quf C qu+1 W ki1 ...qulc+1 and

rk+1 qu+1—1

0< (aht + ot af™) = (df + o+ db) <in

quJrl

k+1
Tk+1

2 il- Hence W/“W/“WUWZ,CW/Jsz VVJI C qu+1 W ki ...qulc+1

Moreover ¢
rk4-1 qu+171

m—1"°

and

0 < (gf,;ﬁ+...+q’f“)—(jm+jm_1+...+j1)

< 2 (Zk + i1+ ... +i1) + i1.

Thus VVik---WiQVVhWilmQ---mijmmm_l--~Wj1 C WlkVVZQW ki1 W o1 ...qulc+1. Con-

Dok Trpyq—1
sequently,

Ty < VVik‘-‘VVigWilWilVViz-‘-VViijmVij,1'-‘lewjlu-wjm
C V[/ik...M/iQqulwqmrl...Wq;fHqum...qulIWiQ...W,-k
~ - - k+1 k+1 k+1
and i, <ip1 < .. <idp < gt <gtl o <q¢)l 5 <. <@ <1 Hence
i(2y) <ip+ip1+ ... +iz+ (qrj+1 + g )

< g Figer + i+ 20 F i+ 9) F i+ (G F e + o+ 1)
< 3k +ip-1+ o +i) + Um+ Jmar + o+ 1)

< 3i(x)+i(y)+§6

for all € > 0. Therefore i (zy) < 3i(x) + i(y) for all (z,y) € GP. Thus f(zy) <
3f (x) + f (y) for all (z,y) € G,

8. Let (z,y) € G®. We proved in 7 that
flay) <3f (@) + f(y).
On the other hand we have f (z~1) = f (z), f (y~") = f (y) and
flay)=f(y~'a™") =2 (y™')+f™)=3f(y)+ f(x).
Adding the last inequalities we obtain

2f (wy) <3(f (@) + f (W) + (@) +f(y) =4(f (@) + [ ().
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9. We prove the inequality by mathematical induction. For n = 2 is true, since by 7 we
have f (z122) < 3f (x1) + f (22) < 3f (1) + 3f (x2). Let us suppose that the inequality
is true for some n and let us prove that it is true for n 4+ 1. Using 7 we obtain

f(flez---ﬂfnan) % 3f (371) + f('rQ---xnanrl)
< 3f(z1) +3(f (z2) + f(23) + oo + [ (70)) -

10. If z € G then by 2, f (x) = 0. Conversely, if f (z) = 0, then for all n, we have

i(x) < 2% Thus there are iy, 9, ..., ip € I, i) < lp_1 < ... < i1 < 2% such that =z €
Wi Wi, . Wi Wi, W, W, and i + i1 + ... +91 < 21n. Slnce Wi Wi, .. Wi, C Wy,
it follows that x € Wy, C Wy on—2 for all m > 2. Thus z € N Wijon = GO, n

2.6. PROPOSITION. Let G be a groupoid, W be a G-uniformity and f : G — [0, 1] be a
function satisfying conditions 2, 4, 9 and 10 in Theorem 2.5 (f associated to A = G©)).
Then there is a function f,e, : G — [0, 1] satisfying the following conditions:

1 3f < freg < f.

2. Freg(x) = freg(z™Y) for all z € G.

3. freg (1Y) < freg (x) + freg (y) for all (z,y) € GO

S | freq (57) = freg (2)] < freq (5) + freg (t) for all s,t,x € G with = € Goy;)

. W1/2n+1 C W1/2n+1W1/2n+1 C {I : freg (l‘) < 2%} - Wl/Qn:3W1/2n73 C W1/2n74 fO’I’ all
neN, n>2.

PROOF. In the spirit of [8, Theorem 3.26] let us define f,., : G — [0, 1] by

freg (x) = inf {Zf (x;) : 21290, = x} for all x € G.
i=1

Then f,., obviously satisfies conditions 1 — 3.

4. Let s,t,x € G such that x € Gféts)). Then freg (52t) < freg () + freg () + freg (£)
and consequently, frey (52t) — freg (T) < freg () + freg (t). On the other hand f.., (z) =
Freg (sTHTtt™) < freg (571) 4 freg (57) + freg (071) = freg (8) + freg (52t) + freq (t) and

).
f (z) < 5. Conversely, let x be such that

therefore foey (%) — freg (57) < freg (5) + freq (

5. Let J} € W1/2n+1W1/2n+1. Then f,,«eg( )< f(x
freg (@) < 5. Then 1f () < 3f (@) < freg (2) < Hence f(z) < 5:= and therefore
S W1/2n73W1/2n73. |
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3. A groupoid generalization of Alexandroff-Urysohn Theorem

As we remark in [5, p. 57], if G is a topological groupoid whose unit space is a Ti-space
(the points are closed in G'?), then the topologies of the r-fibres, as well as the topologies
of the d-fibres, are determined by a fundamental system of neighborhoods {W},, ., of
G©. More precisely, for each u € G® and each z € G* (respectively, z € G,,), {aW }y o
(respectively, {Wx},.,, ) is alocal basis for z with respect to the topology induced by
G on G* (respectively, G,). We also prove in [5, p. 59] that if W satisfies the conditions
imposed to a G-uniformity, then there is a topology denoted 7y;, (respectively, 7)) on G
such that for all x € G, V" (x) (respectively, V¥ (x)) is a neighborhood basis for x, where

V' (z) ={V C G : thereis W € W such that zW C V'}.
respectively,
V¥ (x) ={V C G : thereis W € W such that Wz C V}.

Unlike the case of a group, a groupoid G (that isn’t a group) is generally not a
topological groupoid with respect to 73, or 74,. That is why we define a new topology
associated to a G-uniformity.

3.1. DEFINITION. Let G be a groupoid endowed with a G-uniformity W. The topology
Ty induced by the G-uniformity VW is the topology on G defined in the following way: A €
mw if and only if for every x € A there is W, € W such that W,aW, C A.

For each = € GG let us write
V(z) ={V C G: thereis W € W such that WazW C V'}.

In order to see that 7y is indeed a topology it is enough to prove that for all V' € V (),
there is U € V (z) such that V € V(y) for all y € U. Since V € V (z), it follows that
there is W, € W such that W,aW, C V . Let W] € W such that W/ W, Cc W,. If we
take U = W.aW/, then for all y € U there is s € W/ N G¥®) and t € W, N G,)) such
that y = txs and

WyW! = WitzsW! ¢ WW! aW'W! C WoaW,.

Alternatively, we can note that 7 is the topology on G induced by the following uniform
structure Uy associated with the G-uniformity W: U € Uy, if and only if there is W € W
such that {z} x WaW C U for all x € G.

Let us remark that for two equivalent G-uniformities YW and W’ in the sense of Defi-
nition 2.2 we have my = mr.

In [5] we introduced the notions of left uniform continuity on fibres and right uniform
continuity on fibres reformulating the definition of left and right uniform continuity
[3, Definition 3.1/p. 39] in the setting of a groupoid endowed with a family of subsets
satisfying the conditions imposed to a G-uniformity. Let us define a new notion of uniform
continuity with respect to a G-uniformity.
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3.2. DEFINITION. Let G be a groupoid endowed with a G-uniformity W, A C G and E
be a Banach space. The function h : A — E is said to be uniformly continuous on fibres
(with respect to W) if and only if for each € > 0 there is W, € W such that:

|h(x) — h(sxt)|| <e forall s,t €W, andx € AN Gfgf)) such that szt € A.

3.3. REMARK. The function f defined in Theorem 2.5 as well as the function f,., in
Proposition 2.6 are uniformly continuous on fibres with respect to the corresponding G-
uniformity.

We will prove (Proposition 3.8) that if there is an appropriate connection between the
G-uniformity and the topology of G, then the restrictions of a uniformly continuous on
fibres function to r-fibres as well as to d-fibres are continuous functions.

3.4. DEFINITION. Let G be a groupoid endowed with a topology 7. Let {W;},_; be a

collection of subsets of G such that for all j € J, GO C W; and W; = VVj_l. The
collection {W/j}jej is said to be compatible with the topology of the r-fibres (respectively,

d-fibres) if for every u € G and every open neighborhood U of u, there is j € J such
that W; N G* C UNG" and u is in the interior of W; N G* with respect to the topology
on G* coming from (G, T) (respectively, W; NG, C UN G, and u is in the interior of
W; NG, with respect to the topology on G, coming from (G, T)).

The collection {Wj}jeJ is said to be compatible with the topology of the fibres if it is
compatible with the topology of the r-fibres and d-fibres.

3.5. REMARK. If GG is groupoid endowed with a topology 7 such that the inverse map is
continuous, then a collection {W;},_; is compatible with the topology of the r-fibres if
and only if it is compatible with the topology of the d-fibres.

If G is a topological groupoid and G® is a Ty-space (the points are closed in G©)),
then any fundamental system of symmetric neighborhoods of G() is compatible with the
topology of the fibres. Indeed, let u € G, Since G is a Ti-space, G'\ G* is open for all
w. If U is an open subset of G containing u, then U U (G \ G*) is an open neighborhood
of GO, Thus there is W € W such that W C U U (G'\ G%), and W N G* C U N G™.

If G is a topological groupoid and {W;},_; is compatible with the topology of the
r-fibres (and hence to d-fibres), then the topologies of the r-fibres and d-fibres are deter-
mined by {W;},_;: for each u € G° and each x € G* (respectively, z € G,,), {2W;}ie,
(respectively, {I/ij}] c; ) is alocal basis for x with respect to the topology induced by
G on G* (respectively, G,,).

3.6. PROPOSITION. If G is a groupoid endowed with a topology such that for all x € G the

map y — vyr " [: ngg — G:gﬂ is continuous at d (x) and if W is compatible with the
topology of the r- fibres or d-fibres, then for every Wy € W and x € G there is Wy € W

such that Wy N ng; C 27 Wiz (or equivalently, xWoz™' C W).
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PROOF. Let W; € W and x € G. Since zr (z)z~t € Wi N G:Ea’g, it follows that there is
(

an open neighborhood V of d (x) such that xVz™' Cc W, NG’ x; Let W5 € W such that

r(z
Wy N Gd(x) cVvn Gd(x) or Wy N Gd(:v) cVvn Gd(x)- Then l‘ng_l cazVatcC Wh. [ |

A topological groupoid is said to be locally transitive (see [12]) if for all u € G the
maps 7, are open, where r, : G, — G(© is defined by 7, (z) = r (x) for all z € G,, and
G, is endowed with the topology coming from G. Hence the maps d, are open, where
dy, : G* = GO, d,(z) = d(x) for all z € G* and G* is endowed with the topology
coming from G. Topological groups and pair groupoids X x X (X topological space) are
topological locally transitive groupoids. More general any trivial groupoid X x G x X
(X topological space and G topological group) is locally transitive. Any transitive Polish
groupoid with open range map is locally transitive [10] (see [9, p. 8] for transitive locally
compact second countable groupoids with open range maps).

3.7. PROPOSITION. Let G be a groupoid and W be a G-uniformity such that for every
Wi €W and x € G there is Wy € W such that Wy N ngg C o 'Wix (or equivalently,
aWoz™t C Wi). Then G is a topological locally transitive groupoid with respect to the
topology Ty induced by the G-uniformity W (in the sense of Definition 3.1). The topologies
Ty and T, are finer than Ty. However the topologies induced by Ty, and Ty on r-fibres
(respectively, by 3, and Ty on d-fibres) coincide.

PROOF. Let us show that the inversion map and the product map are continuous with
respect to 7yy. The fact that (WzW) ™" = Wz~ 'W (2 € G and W € W) implies that the
inversion is a homeomorphism. For all W € W, there is W; € W such that W W; Cc W
and for all y € G there is W, € W such that W, C W and W, N G:Ez; C yWyy™ ! or

equivalently, y W,y C Wy. If W; € W is such that WyIW; C Wy and z € G, then
W,aW, W, yW, C W,zyy~ W,yW, C W,ayWW, C WayW,

Therefore the product map is continuous.

Obviously, the topologies 7, and 7, are finer than 7y (zW C WaW and Wz C
WaW). For every u € GOz e G* and W € W there is Wy € W such that W, W, ¢ W
and there is W, € W such that W, ¢ W, and W, N G:Eg C zWiz~! or equivalently,
x~'Wox € W;. Thus

WoaW, N GY = zo ' WoaW, € eW W, C xW.

Hence the topologies induced by 73, and 7y on r-fibres coincide. Similarly, the topologies
induced by 7}, and 7y on d-fibres coincide.

Let u € G, In order to prove that d, : G* — G© is open it suffices to note that if
r € G* and W € W, then

d, (G* N WaW) =d, (G NnW) = (Wd(z) W)nGO.
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3.8. PROPOSITION. Let (G, 1) be a topological groupoid and W be a G-uniformity com-
patible with the topology of the fibres. Then:

1. The topology Ty (induced by the G-uniformity W) is finer than T (the original
topology of G).

2. The topologies induced by T and Ty on r-fibres (respectively, on d-fibres) coincide.

3. If (G, 1) is locally transitive, then the topology Ty coincides with T on G.

PROOF. 1. Let U be an open subset of G with respect to 7 and let x € U. Since xzd (z) € U,
it follows that there is an open neighborhood U; € 7 of  and an open neighborhood V; € 7
of d(x) such that U;V; C U. Moreover since r (z) x € Uy, it follows that there is an open
neighborhood V; € 7 of r (z) such that Voxr C Uy. Hence VoxVy C U. Let Wy € W such
that Wi NG C Vi NG, Wy € W such that Wa N Gy C Va N Gypy and let W e W
such that W C Wiy NWs. Then WaW C VoaxVy C U. Thus U is open with respect to .

2. Since 1y is finer than 7, it suffices to prove that for allu € G0, x € G* (respectively,
x € Gy) and al W € W, WaW N G* (respectively, WzW N G,) is a neighborhood of x
with respect to the topology on G" (respectively, G,,) induced by 7. Since the map y —
vy [+ GU) — G"®)] (respectively, y — yz [ Grm) = Gaw)]) is a homeomorphism (with
respect to 7), it follows that x (W N Gd(m)) = oW (respectively, (W N GT(Z)) x=Wzx)is
a neighborhood of  in G"® (respectively, G a(z)) With respect to the topology induced by
7. Therefore WaxW N G* D W (respectively, WaxW NG, D Wx) is a neighborhood of
with respect to the topology on G" (respectively, G,,) induced by 7.

3. Let us assume that (G, 7) is locally transitive, or equivalently, that for all u € G(©,
d, : G* = GO (d,(z) = d(x)) is open. Since 7y is finer than 7, in order to show
that my = 7 it suffices to prove for all x € G and all W € W, z is in the interior of
WaW with respect to 7. For each v € G let W* be the interior of G* N W seen as
a subset of the topological space G* and let Wy = |J W% and Wy = |J (W)™

u€G0) u€G0)

Then G© c Wy ¢ W and GO c W; € W. We prove that WizW, is open with respect
to 7. Let s € Wy, t € Wy and (y;); be a net in G converging to sxt (with respect to
7). Then d(y;) — d(t) = duq) (t). Since dyy : G"® — GO is open, we may pass to a
subnet and assume that there are t; € G™® such that t; — t and d (t;) = d (y;) for all i. If
si = yit; ‘a7t then s; — swttlz~! = 5. Since t; — t € WoNG™® and s; — s € WiNG (o),
it follows that s; are eventually in W; and t; are eventually in W,. Therefore y; = s;xt; is
eventually in WixW,. Thus z is in the interior of WaxW. n

3.9. PROPOSITION. Let G be a groupoid endowed with a pseudometric p satisfying the
following conditions:

1. p(x,r(x)) =p(xt,d(x)) for all z € G.

2. p(xy,r(x) < ply,r ) +p d(x) for al (z,y) € GO.
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For every n € N let

W, i {a:e G:pla,r (@) < 2—1}

Then W = {W,,},, is a G-uniformity compatible with the topology of r-fibres (induced
by the pseudometric p).

ProoOF. Obviously, satisfies condition 1, 2 and 4 from Definition 2.1. Also let us note that

Wit 1Waia C W, for all n (since p (zy,r (2)) < p(y,7 () + p (27}, d (2)) = p(y,7 (y)) +
p(z,r (z)) for all (z,y) € GP). Since for all u, W,, NG* = B (u, 2—n) NG", it follows that
W is compatible with the topology of r-fibres. n

3.10. PROPOSITION. Let G be a groupoid endowed with a pseudometric p satisfying the
following conditions:

1. p(x,d(z))=p(x',r(x)) for allx € G.
2. p(ry,d(y) < p(e.d(@) +py",r(y) for all (z,y) € G

For everyn € N let

1
W, = {x eG:p(r,d(zx)) < 2—n}
Then W = {W,,},, is a G-uniformity compatible with the topology of d-fibres (induced
by the pseudometric p).

PRrROOF. The proof is similar to the proof of Proposition 3.9. [

3.11. DEFINITION. Let G be a groupoid endowed with a pseudometric p satisfying con-
ditions 1 and 2 in Proposition 3.9 or in Proposition 3.10. Then the G-uniformity con-
structed in Proposition 3.9 as well as the G-uniformity constructed in Proposition 3.10
will be called the G-uniformity associated to the pseudometric p.

3.12. REMARK. If p is a left invariant pseudometric on a groupoid G (in the sense that
p(zx,zy) = p(x,y) for all x,y,z € G with d(z) = r(x) = r(y)) then p (zy,r (z)) <
p(x7t d(2))+p(y,r(y)) for all (z,y) € G? and p (z,7 (2)) = ( L.d(z)) forallz € G.
Indeed, p (zy,7 (z)) = p(zy,227) = p(y,27") < p(y,7 (¥))+ ( r(y) =py,r )+
p(z71 d(z)) for all (x,y) € GP. Also p(z,7(z)) = p(xd (v ) ) = p(d(z),z") for
all z € G.

Also if p is a right invariant pseudometric on a groupoid G (in the sense that p (zz,
=p (z,y) for all z,y,z € G with r(z) = d(z) = d(y)), then p(zy,d(x)) < p(z,d(x)
p(y~tr(y)) for all (x,y) € GPand p(z,d(v)) = p(z~L,r(x)) for all € G.

3.13. REMARK. Any topological groupoid that is paracompact admits a fundamental
system W of neighborhoods that is a G-uniformity compatible with the topology of
fibres [10]. The same is true for a topological groupoid with paracompact unit space [5].

yz)
)+
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3.14. PROPOSITION. Let G be a groupoid and W = {W,}, . be a countable G-uniformity.
Then G can be endowed with a pseudometric p satisfying the following conditions:

1. p is left invariant in the sense that p(zxz,zy) = p(x,y) for all x,y,z € G with
d(z) =r(z) =r(y).

2. p induces a G-uniformity equivalent to WW.

3. For every u € GO the restriction of p to G* is compatible with the topology induced
by 1y, on G*.
4. If | W, =GO, then p is a metric.
neN

PROOF. Let I = {5, n € N}. Let Wy € {W,,}, . and W] € W be such that W{W| C W,
and W{ C W;. Inductively we construct an /-indexed family {W}},.,. Suppose that for
Wi Jon € W has already been built. Then there is a W" € W such that W'W" C W] Jon
and W C Wy 1o. Let W] Jont1 = W”. Thus we obtain an I-indexed family W' = {W/},_,

7

as in Theorem 2.5 and if () W, = G, then G = N\ W/. Let f = fawn be the
neN el
function defined in Theorem 2.5 and f,, the function associated to f in Proposition 2.6.

Thus as in [8] we may define the following distance p (z,y) = frey (x7'y) if 7 (z) = 7 (y)
and p (z,y) = 1 otherwise. Let n € N, n >4 and v € G, For z € G* we have

1 1
Blo,— | = yeG": fie (x_ly) < —
2n 2n
C .ZUW]{/Qn—4
On the other hand according Proposition 2.6 W] Jons1 C {21 freg(2) < 3 }. Hence

WY jgnia C {y: freg(x7'y) < 55} = B(x,5). Thus the topologies induced by 77, and
the metric p|g« on G* coincide. n

3.15. PROPOSITION. Let G be a groupoid and W = {W,}, . be a countable G-uniformity.
Then G can be endowed with a pseudometric p satisfying the following conditions:

1. p is right invariant in the sense that p(xz,yz) = p(x,y) for all z,y,z € G with
r(z) = d(z) = d(y).

2. p induces a G-uniformity equivalent to W.

3. For every u € G the restriction of p to G, is compatible with the topology induced
by 7 on G,.

4. If | W, =GO, then p is a metric.

neN

PROOF. Similar as in the proof of Proposition 3.14 we may define the following distance
p(2,y) = freg (xy™) if d(z) = d (y) and p(z,y) = 1 otherwise. "
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3.16. THEOREM. A topological locally transitive groupoid. The following statements are
equivalent:

(a) G is metrizable

(b) G is paracompact and G©) has a countable fundamental system {Wht,en of neighbor-
hoods such that (\ W, = G© and (N (r,d) (W,) = diag (GV).

neN neN

(¢) For every neighborhood W of GO there is a neighborhood W' of G0 such that W'W' C
W and G has a countable fundamental system {Wh},.en of neighborhoods such that
N W,=G9 and N (r,d)(W,) = diag (G?).

neN neN

(d) There is a countable G-uniformity {Wy}, .y compatible with the topology of the fibres
such that (| W, = GO and N (r,d) (W,) = diag (G). Each W,, may be taken

neN neN
to be a neighborhood of the unit space.

Moreover the distance function p may be taken to satisfy the following properties:

plxty™) for all z,y € G.

=

<

SN~—
Il

z,7(x)) = p(z,d(x)) for allx € G.

(
(

p(zy,r(2)) < p(,7 (@) +p(y,r (y) for all (z,y) € GP.
(x,y) < p(z'y,d () for all z,y € G such that r (z) =7 (y).
(

d(z),d(y)) <2p(x,y) and p(r(z),r(y)) < 2p(x,y) for all v,y € G.

PROOF. (a) = (b). Let us assume that G is a metrizable locally transitive topological
groupoid. Then G is paracompact topological groupoid. According to [10, p. 361-362], for
each neighborhood W of G(©, there is a neighborhood W’ of G such that W/W’' c W.
Then the family W of symmetric neighborhoods of the unit space is a G-uniformity.
By Proposition 3.8, the topology 7, induced by the G-uniformity W coincides with the
topology of G. Applying [7, Metrization Theorem 13, p. 186] G is pseudometrizable if
and only if its uniformity has a countable base. Since a base for the uniform structure
Uyy induced the topology 7w is {Uw }yy ¢y, Where

Uy ={(z,y) € G xG:y € WaW}

there is a countable family {W} _ such that each W}, is a neighborhood of G and for
each W € W there is n € N such that Uy, C Uy or equivalently, W) azW, C WaW for
all z € G. In particular, for each W € W there is n € N such that W)W/ C WW. Since
for each W € W, there is W; € W such that WiW; C W and for W; there is n; € N
such that W, W) C WiWi, it follows that in fact for each for each W € W, there is
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ny € N such that W, < W) W, c W. Thus {W,} . is a fundamental system of
neighborhoods of G®. Since G is Hausdorff, for each x ¢ G(© there is a neighborhood
V of r (z) such that z ¢ V. Furthermore z ¢ V U (G\ G"®) and V U (G\ G"™) is a

neighborhood of G(. Thus [ W = G and therefore (| W) = G©. Let u,v € G
wew neN
be such that u # v. Since G is Hausdorff, G is closed and G \ G¥ is a neighborhood of

GO, Hence () (r,d) (W) = diag (G). Consequently, () (r,d) (W) = diag (G?).
wew neN

(b) => (c) Since G is a paracompact topological groupoid, [10, p. 361-362], for each
neighborhood W of G, there is a neighborhood W’ of G(® such that W/W' C W.

(¢) => (d) Let {W,,}, .y be a fundamental system of neighborhoods of G such that
N W, =GY and (N (r,d) (W,) = diag (G?). Replacing W,, with W,, "W, we may
neN neN
assume that W,, = W1 for all n. Let W] = Wj. Inductively we construct a G-uniformity
{W}},n consisting in neighborhoods of G*). Suppose a symmetric neighborhood W),
of G has already been built. Let W” be a symmetric neighborhood of G(® such that
W"W" c W), Let W, _,be a neighborhood of G such that W, ; C W” N W,,;;. Thus
{W}},en is a G-uniformity. Moreover {W)}  _ is a fundamental system of neighborhoods
of G, Therefore it is compatible with the topology of the fibres and (| W/ = G(© as

neN
well as () (r,d) (W}) = diag (G).
neN
(d) => (a). Let W = {W,},cy be countable G-uniformity compatible with the

topology of the fibres such that (| W,, = G and () (r,d) (W,) = diag (G). Let
neN

neN
I ={3, neN}. Let W,, € W be such that W,,W,, C Wy. Let W} = W,,,. Inductively
we construct an I-indexed family {Wj},.,. Suppose that W] jon € W has already been
built. Since W is a G-uniformity, there is a W,,, € W such that W,, W,,. C W] Jan-
Let W] Jont1 € W be such that W/ Jan+1 C Wi, N W,41. Thus we obtain an [-indexed
family W' = {W/},.; as in Theorem 2.5 that in addition satisfies G\® = (| W/ and
i€l

N (r,d) (W) = diag (G©). Moreover W' = {W/},_, is compatible with the topology
iel

of the fibres. Thus for every x € G and every Wj € W' there is W] € W' such that
aW/z™' C W/. Let f,, be the function associated in Proposition 2.6 to f = Jao wr
where f = fo  is the function constructed in Theorem 2.5. For all z,y € G, let us
define

1. _
p(z,y):= Elnf {fmg (27'sy) + freg(s): s € TEy
(
(

if G:g; # 0 and p(z,y) := 1 otherwise. Let us note that G ) # 0 if and only if
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G:Emg # () and

1. _ r(x
plz,y) = 5int {freg (#715Y) + freg (s) : s € Grgy)}
1 . 4 r(z
= §1nf{freg (y Tt ) + freg (s ( ) RS GTEy)}
1. _ r
= 5 inf {freg (y ltx) + f'reg (t) t e GT‘g’i}
= p(y, )

Thus p(z,y) = p (y, 7).
Let us prove that if 7 () = r (y), then p (z,y) < % freq (z7'y). Indeed,

p(2,) < 3 (Freg (277 (@) ) + freg (r (@) = 3 Freg (27'3)

If 2 =y, then p(z,y) < 1freg (x7'y) = 0.

Let z,y,z € G and let us prove that p(z,2) < p(x,y) + p(y,2). If p(z,y) = 1
or p(y,z) = 1, then obviously, p(z,z) < 1 < p( ) + p( z). If p(z,y) < 1 and
p (y, z) < 1, then for every € > 0 there are s; = s (¢) G vy a0d 52 =2 (¢) € G:Ei’g such
that P (ZE, y) > % reg (x7181y> + %freg (81) —¢ and P (y7 ) % reg (y 1821') + % reg (82) —¢&.
Furthermore

\_/\_/

1 1
plr,z) < 2f'r’eg ( 81522) + §freg (s152)
1 1 1
S 2freg (I’ slyy 822) + §freg (51) + §freg (32)
1 _ 1 1
S 2freg (l’ Sly) + §freg (y 1822) + Efreg (31) + Efreg (82)
< p(ay)+p(y =) + 2.

Therefore p (z,2) < p(z,y) + p (y, 2).

Let us show that if p(z,y) = 0, then z = y. If p(z,y) = 0, for every n there is

Sy € Gr(x) such that fre (sn) < 35 and freg (z7's,y) < 55. Taking into account that

freg (5n) < L applying Proposition 2.6, it follows that s, € W] Jon—4 and consequently,

(r(2),r (1) = (nd)(s0) € () (W]jus). Since N (d) (W;/Qn) = diag (G),
ne

it follows that r(z) = r(y). Moreover since freq (27 s,y) < 3, it follows that y €

W1 gn-a®W gn-s for all n > 4. Let W, € W' be such that 2~ 'W, o C W/2n+1

and W, C VVI’/TLJrl We have y € W, oW, . Consequently, y € zx IW;’nZL‘WI’

$W1/2n+1W1/2n+1 C le/Qn Hence 27 'y € N W1//2n =GO, Thus z = y.

neN
We have proved that p is a metric on G. Let us prove that the topology defined

by p coincides with the topology induced by the G-uniformity W' and consequently,
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with the topology of G. Let y € B( ,2n), n € N, n > 6. Then there is s € G:EZ))

such that f., (s) < 2%2 and fr., (z71sy) < Q,L%Q By Proposition 2.6, it follows that
s € VVl’/Qn_6 and z7lsy € Wl’/2n_6. Therefore y € Wl’/zn_ng on—s and B( ,Qn) C
W{/Q,L,fijl’/TL,G. On the other hand for every n and z, if y € W1/2an1/2n, then there
are s,t € W] 5, such that y = szt. Hence f, (27 57YY) = freg (710t) = freg (1) < 522

on—1-

Also p(z,y) < % (freg (Iilsily) + freg (371)) - % (freg (t) + Jreg (s)) < QTL%S Therefore
Wll/znxwll/w cB (x7 2"%3)

Let us prove that p(z,y) = p(z7t,y™!) for all z,y € G. We have G:Ez; = 0 if

and only if GT(:B_ ) _ = (). Thus if Gr(w) 0, then p(z,y) = 1 = p(z~t,y™!). Let us
assume that G 7é ). Then for every ¢ > 0 there is s, € G such that p(x,y) >

gfreg( Say) 2fr69 (Sa) —¢e Lett = o Sey Tber} P( yil) < %freg (xtyil) +
%freg <t> = %freg (55) 2freg( _lssy) S P <$7y) + €. SlmllarlY7 P (1'73/) < P (x_lay_l) +e.

Hence p (z,y) = p(z~1,y7").
Let us show that p( 1 (T p(xt d(z) = p(x,d(x)) = §freg(x) for all z €

) =
G.  We have p(z,7(2)) < 3freg (@717 (x)) = 3freg(x). For all s € G:g; we have
3reg (8) = 3freq (7)) co (x70s7 (2) 7)< L freg (27057 (2)) + 3felg (s71). Thus
p (2,7 () = 3 freg ().
Als p(x=t d(z) L reg (™) = Lfrey () = p(z,r(2)). Moreover p(z,d(z)) =

p(x~t d(x)) for alle:G
For all (z,y) € G© we have p(zy,7 () = §freg (2Y) < §freg (€) + freg (y) =
p(z,r(x)+py,r ().

I 7 (2) = 7 (y), then p(z,y) < 3£l (') = p a7y, d (@) = p(y"'7,d (1)),
Let us prove that p(d( ), (y)) < 2p(z,y) and p(r(z),r(y)) < ( y) for all

d
x y E G. Obviously, if GT :) = (), then p(d(x), d(y)) p(r(x),r(y) =plx,y) =1 If
7& (), then for every e > 0 there is s, € G'" r(y) ) such that p(x,y) > 5 freg (@7 sy) +
(t

gfreg (se)—e. Let t = a7 "scy. Then p(d(z) ,d(y)) < 5freg (8)+ 5 req (1) = freg (z7'529) <
freg (@7 8cy) + freg (52) < 2p(x,y) + 2e. Hence p(d (x),d (y)) < 2p (x,y). We also have

p(rz),r(y)=pdE"),dy™") <pl " y")=plzy)

for all z,y € G. [

ir
2/
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