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A CATEGORICAL APPROACH TO PICARD-VESSIOT THEORY

ANDREAS MAURISCHAT

Abstract. Picard-Vessiot rings are present in many settings like differential Galois
theory, difference Galois theory and Galois theory of Artinian simple module algebras. In
this article we set up an abstract framework in which we can prove theorems on existence
and uniqueness of Picard-Vessiot rings, as well as on Galois groups corresponding to the
Picard-Vessiot rings.
As the present approach restricts to the categorical properties which all the categories
of differential modules resp. difference modules etc. share, it gives unified proofs for all
these Galois theories (and maybe more general ones).

1. Introduction

Since the foundation of Picard-Vessiot theory as a Galois theory for linear differential
equations (cf. [28]), many analogs have evolved. For example, Picard-Vessiot theory for
difference equations [31], for iterative differential equations [23], for C-ferential fields [30],
for Artinian simple module algebras [2] and others.
In all these theories the base ring is a commutative ring with some operators acting on
it, and the main objects are modules over that ring with the same operators acting.
The setting of Artinian simple module algebras generalizes the setting of (iterative) dif-
ferential fields as well as that of inversive difference pseudo-fields (i.e. simple difference
rings which are a product of fields), but it does not generalize the difference setting where
the given endomorphism is not bijective as in [34]. Y. André in [3] already gave a setting
which unifies the case of difference pseudo-fields and differential fields in characteristic
zero, however, it doesn’t contain the Picard-Vessiot theory for differentially simple rings
given in [26].
One could go further and generalize the operators even more or loosen the conditions on
the base ring. However, there might still be cases not covered by such generalizations.
The present approach therefore restricts to the categorical properties which all the cate-
gories of differential modules resp. difference modules etc. share, and hence gives unified
proofs for all these Picard-Vessiot theories (and more general ones).

As the referee pointed out to us, there already exist categorical Galois theories (e.g. [19]),
and a detailed comparison to our approach would be worth a paper on its own. For now
we should note that Janelidze adapted such a categorical Galois theory to differential
Galois theory in [17], and some parts resemble those in our paper, like a pair of adjoint
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functors. Furthermore in [17, Thm. 2.4] it is proven that a certain subring of a Picard-
Vessiot extension (which is exactly the Picard-Vessiot ring) is a “Γ-normal” extension,
i.e. normal for a Galois structure Γ. In [18], Janelidze generalized this to the difference
setting and addresses exactly some of the questions we answer in here.1

The main results of this paper are the construction of a universal solution ring for a
given “module” M such that all Picard-Vessiot rings (PV-rings) for M are quotients of
this ring (Thm. 5.7 and Thm. 5.12), the existence of PV-rings up to a finite extension of
constants (Thm. 5.18), and uniqueness of PV-rings inside a given simple solution ring with
same constants (Prop. 5.14). Furthermore, we prove a correspondence between isomor-
phism classes of fibre functors ω : 〈〈M〉〉 → vectk̃ and isomorphism classes of PV-rings R
for M⊗k k̃, where k is the field of constants of the base ring S and k̃ is any finite extension
of k (Thm. 6.5). We also prove that the group scheme of automorphisms Aut∂(R/S) of R
over S that commute with the extra structure, is isomorphic to the affine group scheme
of automorphisms Aut⊗(ω) of the corresponding fibre functor ω (Cor. 7.8). These two
statements are direct generalizations of the corresponding facts given for example in [10,
Ch. 9] or [3, Sect. 3.4 and 3.5].

Finally, we give a Galois correspondence between closed normal subgroup schemes of
the Galois group scheme and subalgebras of the PV-ring which are PV-rings for some
other “module”.

At this point we should mention that the setup of this article does not cover the
parametrized Picard-Vessiot theories where the constants are equipped with an additional
differential or difference operator as given for example in [6], [12], [15].

Differential setting We now recall the main properties of the differential setting for
having a better comparison with its analogs in the abstract setting.

Classically (cf. [32, Sect. 1 and Sect. 2]), one starts with some differential field (F, ∂)
of characteristic zero, i.e. a field F of characteristic zero together with an additive map
∂ : F → F satisfying the Leibniz rule ∂(xy) = ∂(x)y + x∂(y) for all x, y ∈ F . Let
k := F ∂ = {x ∈ F | ∂(x) = 0} denote its field of differentially constant elements.

The basic objects are differential modules (∂-modules) (M,∂M) which are finite dimen-
sional F -vector spaces M with a derivation ∂M : M →M , i.e. and additive map satisfying
∂M(xm) = ∂(x)m + x∂M(m) for all x ∈ F and m ∈ M . Morphisms of ∂-modules (called
differential homomorphisms) are homomorphisms f : M → N of the underlying F -vector
spaces which are compatible with the derivations, i.e. satisfy f ◦ ∂M = ∂N ◦ f . Equiva-
lently, one can define ∂-modules to be modules over the non-commutative ring F [∂] which
are finite dimensional as F -vector spaces, and differential homomorphisms are homomor-
phisms of F [∂]-modules. This implies that kernels and cokernels of ∂-homomorphisms are
again ∂-modules, turning the category of ∂-modules over (F, ∂) into an abelian category.
For ∂-modules (M,∂M) and (N, ∂N) the tensor product M ⊗F N is naturally equipped

1This, however, is a coincidence, since our paper was already submitted, when Janelidze’s paper
appeared.
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with a derivation given by ∂(m⊗ n) = ∂M(m)⊗ n+m⊗ ∂N(n).2 This provides the cate-
gory of ∂-modules with the structure of a symmetric monoidal category with unit object
1 given by the differential field (F, ∂). Furthermore, for every ∂-module (M,∂M) the dual
vector space M∨ = HomF (M,F ) carries a differential structure ∂M∨ such that the natural
homomorphisms of evaluation ev : M ⊗M∨ → F and coevaluation δ : F → M∨ ⊗M
are ∂-homomorphisms. Notice that the coevaluation homomorphism exists since M is a
finite dimensional F -vector space by definition. This means that (M∨, ∂M∨) is a dual of
(M,∂M) in the category of ∂-modules.
If we consider all F [∂]-modules – and not only those which are finitely generated as
F -vector spaces – this category obviously has inductive limits.3

The differential constants of a ∂-module (M,∂M) are given as M∂ := {m ∈ M |
∂M(m) = 0}. This is a k-vector space of dimension at most dimF (M). Therefore, one is
interested in differential field extensions of F over which the corresponding dimensions are
the same. From the view of linear differential equations this means that the differential
field extension contains a full set of solutions. Notice that a differential field extension is
not finite in general. Hence, such an extension is a monoid object in the category of all
F [∂]-modules, and not in the category of ∂-modules.

We assume now that the field of constants k is algebraically closed. A Picard-Vessiot
extension of F for a ∂-module (M,∂M) (with dimF (M) <∞) is defined to be a minimal
differential field extension (E, ∂E) of F such that dimk((E ⊗F M)∂) = dimE(E ⊗F M) =
dimF (M). A main theorem states that a Picard-Vessiot extension always exists and is
unique up to differential isomorphism.
The differential Galois group Gal(E/F ) of a Picard-Vessiot extension E/F is then defined
to be the group Aut∂(E/F ) of differential automorphisms of E fixing F . It has the
structure of (k-rational points of) a linear algebraic group over k, and one obtains a
Galois correspondence between the Zariski-closed subgroups of Gal(E/F ) and differential
subfields of E containing F .
A main role is played by the Picard-Vessiot ring R in E. It is the subring of E which
is generated as an F -algebra by the entries of a fundamental solution matrix and its
inverse4. R is a ∂-simple ∂-ring extension of F minimal with the property that R ⊗F M
has a basis of constant elements. Here, ∂-simple means that R has no nontrivial ideals
stable under the derivation, or in other words that R has no non-trivial R[∂]-submodules.
Furthermore, E is the field of fractions of R, and Aut∂(R/F ) = Aut∂(E/F ). Moreover,
the spectrum Spec(R) is a torsor of Gal(E/F ) over F . The Galois correspondence is more
or less a consequence of this torsor property, as the subfield EH corresponding to a closed
subgroup H ≤ Gal(E/F ) is nothing else than the field of rational functions on the scheme

2Naturally means that this is exactly the ∂-structure such that monoids in the category of F [∂]-modules
are the same as differential algebras over F .

3We adopt here the terminology “inductive limit” used in commutative algebra although the better
categorical term would be “directed colimit”. Nevertheless, we will denote an inductive limit by “colim”
and not by “lim−→”.

4A fundamental solution matrix is a base change matrix over E mapping an F -basis of M to a k-basis
of (E ⊗F M)∂ , both bases seen as E-bases of E ⊗F M .
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Spec(R)/H.
If the field of constants k is not algebraically closed (cf. [13] and [24]), some things

become more involved. First at all, one also requires that a Picard-Vessiot field E has the
same field of constants k – a condition which is automatically fulfilled if k is algebraically
closed. Furthermore, the Galois group has to be replaced by a representable group functor
Gal(E/F ) : Algk → Grps, i.e. an affine group scheme over k, whose group of k-rational
points is Aut∂(E/F ). Then as above, Spec(R) is a Gal(E/F )-torsor over F and one
obtains a Galois correspondence between closed subgroups of Gal(E/F ) and differential
subfields of E containing F . However, since the constants are not algebraically closed,
existence of a Picard-Vessiot field or a Picard-Vessiot ring is not guaranteed, and also
uniqueness might fail. Furthermore, assume one is given a PV-field E, the Galois group
scheme does not act algebraically on the PV-field but only on the PV-ring. On the other
hand, one does not get a full Galois correspondence on the ring level. The geometric
reason is that for a closed subgroup H ≤ Gal(E/F ) the invariant ring RH is the ring of
global sections of the orbit space Spec(R)/H. If the latter is not affine, RH becomes “too
small”.
On the ring level, at least one has a restricted Galois correspondence between closed
normal subgroups of Gal(E/F ) and differential subrings of R containing F which are
Picard-Vessiot rings for some ∂-module (cf. [26]).

In the abstract setting of this article, we will stay on the ring level, since the action
of the Galois group is naturally algebraic on the Picard-Vessiot ring.

Iterative differential and difference setting In iterative differential Galois the-
ory in arbitrary characteristic derivations are replaced by so called iterative derivations
(cf. [23]). These are a collection θ =

(
θ(n)
)
n∈N of additive maps satisfying θ(0) = id,

θ(n)(ab) =
∑

i+j=n θ
(i)(a)θ(j)(b) as well as θ(n+m) =

(
n+m
n

)
θ(n) ◦ θ(m) for all n,m ∈ N. This

means, ∂ := θ(1) is a derivation and θ(n) resembles 1
n!
∂n – the n-th iterate of ∂ divided by

n-factorial. Indeed, in characteristic zero, the iterative derivations are determined by the
derivation ∂ = θ(1) via θ(n) = 1

n!
∂n. In particular the differential setting in characteristic

zero is a special case of the iterative differential setting. The constants of an iterative
differential field (F, θ) are given by F θ := {x ∈ F | θ(n)(x) = 0 ∀n ≥ 1}. The basic objects
are iterative differential modules (M, θM), and one is interested in minimal iterative differ-
ential extensions E of F (with same constants) such that dimF θ

(
(E ⊗F M)θ

)
= dimF (M).

All the things about Picard-Vessiot rings and fields turn out the same as in the differential
setting. However, even in the case that k = F θ is algebraically closed, one has to consider
the Galois group as an affine group scheme which might be nonreduced (if E/F is not
separable) (cf. [25], [24]).

In difference Galois theory (cf. [31]) derivations are replaced by automorphisms and
constants by invariants, i.e. one starts with some field F together with an automorphism
σ : F → F and its field of invariant elements k := F σ := {x ∈ F | σ(x) = x}. The
basic objects are difference modules (M,σM), i.e. finite dimensional F -vector spaces M
together with a σ-linear automorphism σM : M → M . Again, the set of invariants



492 ANDREAS MAURISCHAT

Mσ := {m ∈ M | σM(m) = m} is a k-vector space of dimension at most dimF (M), and
one is interested in a difference extension of F over which the corresponding dimensions
are the same. In this setting another aspect appears, since in some situations every
solution ring has zerodivisors. Hence even if k is algebraically closed, there does not
exist a Picard-Vessiot field in general. Nevertheless, if k is algebraically closed, there
always exists a Picard-Vessiot ring R over F , i.e. a σ-simple σ-ring extension R of F
minimal with the property that R ⊗F M has a basis of invariant elements, and instead
of the Picard-Vessiot field one considers E = Frac(R), the total ring of fractions of R.
With these definitions one again obtains a Galois group scheme Gal(R/F ) over k as a
representable functor whose k-rational points are exactly Autσ(R/F ) = Autσ(E/F ), as
well as a Galois correspondence between closed subgroup schemes of Gal(R/F ) and total
difference subrings of E containing F .

Other settings The three basic settings described above have been generalized in var-
ious ways. First at all, the operators acting have become more general: Takeuchi in [30]
considered an action of a pointed irreducible cocommutative coalgebra C on the base field
F (which he then calls a C-ferential field). This amounts to having a collection of several
commuting higher derivations. Later Amano-Masuoka in [2] have considered an action
of a pointed cocommutative Hopf-algebra D on the base field F (then called D-module
algebra), though generalizing to a collection of commuting iterative derivations and au-
tomorphisms. André in [3] used so called noncommutative differentials in characteristic 0
resembling a collection of derivations and endomorphisms.

On the other hand, also the bases have become more general: the base field F has
been generalized to (i) an Artinian algebra (i.e. finite product of fields) which is simple
as D-module algebra in [2], (ii) a Noetherian ring which is simple with respect to the
differentials in [3], and (iii) any differentially simple (iterative) differential ring in [26].

In [20, Ch. 2], N. Katz even considers schemes X of finite type over k, and obtains
Picard-Vessiot extensions for finitely generated OX -modules with integrable connections.

All these settings have in common that you start with a base ring (or even base scheme)
F with some extra structure and such that no non-trivial ideal of F is respected by the
extra structure, i.e. that F is simple. The basic objects for which one considers Picard-
Vessiot rings are finitely generated modules over F with corresponding extra structure
having a dual in the category of modules with extra structure, and the Picard-Vessiot
rings are algebra objects in the category of (all) modules with extra structure.

Abstract setting In the abstract setting this is reflected by the following basic setup:

(C1) C is an abelian symmetric monoidal category with unit object 1 ∈ C. We assume
that 1 is a simple object in C.

(C2) C is small cocomplete, i.e. small inductive limits exist in C.



CATEGORICAL PV-THEORY 493

(F1) There is a scheme X , and an additive tensor functor υ : C → Qcoh(X ) from C to the
category of quasi-coherent OX -modules which is faithful, exact and preserves small
inductive limits. (In particular, υ(1) = OX .)

(F2) M ∈ C is dualizable whenever υ(M) is a finitely generated OX -module.

It is this basic setup from which all the statements on Picard-Vessiot rings and their
Galois groups follow. For stating those, one has to transfer several concepts into the
abstract setting; most important the concept of constants/invariants:

It is not hard to see that for every differential module (M,∂M) over F the constants M∂

of M can also be given as the vector space Hom∂
F (F,M) of differential homomorphisms

f : F → M , since every F -homomorphism f : F → M is uniquely determined by the
image of 1 ∈ F ∂ ⊆ F . Similarly, the invariants Mσ of a difference module (M,σM) can
be given as Homσ

F (F,M). Hence, in the abstract setting, “taking constants” is given by
the functor ()C := MorC(1,−) : C → Vectk where k is the field k = EndC(1) corresponding
to the constants of a differential field F resp. the invariants of a difference field F .

The condition on a Picard-Vessiot ring R for M that the module R ⊗F M has
a basis of constants/invariants is given abstractly by the condition that the natural
morphism εR⊗M : R ⊗ ι

(
(R⊗M)C

)
→ R ⊗ M is an isomorphism in the category C

(cf. Prop. 4.6). Here ι : Vectk → C is a functor corresponding to the construction of a
differential/difference module out of a F ∂-vector space by tensoring with the base differ-
ential/difference ring F .

The article is structured as follows. In Section 2, we prove a theorem on commutative
algebras which will later be used for showing that the constants of minimal simple solution
rings are just a finite extension of the constants k, and in particular guarantee the existence
of Picard-Vessiot rings up to a finite extension of constants.

In Section 3, we investigate some properties of the functors ()C and ι. In particular,
we show that the functor ()C is right adjoint to ι. Furthermore, we show that the unit
η : idVectk → ()C ◦ ι of the adjunction is a natural isomorphism, and that the counit
ε : ι ◦ ()C → idC of the adjunction provides a monomorphism εM for every M ∈ C. The
latter corresponds to the fact in the differential setting that the natural homomorphism
F ⊗k M∂ →M is injective.

Section 4 is dedicated to commutative algebras R in the category C and the category
CR of R-modules in C as given in [21], as well as properties of the functors ιR and ()CR

similar to those of ι and ()C, under certain assumptions on the algebra R.
Solution rings and Picard-Vessiot rings are then the subject of Section 5, where also

the theorems on existence and uniqueness of Picard-Vessiot rings are proven.
The objective of Section 6 is the correspondence between isomorphism classes of

Picard-Vessiot rings for a given dualizable M ∈ C and isomorphism classes of fibre functors
from the strictly full abelian tensor subcategory 〈〈M〉〉 of C to Vectk.

In Section 7 we consider the group functors AutC−alg(R) of automorphisms of R and
Aut⊗(ωR) of automorphisms of the corresponding fibre functor ωR, and we show that they
are both isomorphic to the spectrum of the k-algebra ωR(R) = (R ⊗ R)C. As the latter
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will be proven to be a Hopf-algebra of finite type over k, both group functors are indeed
affine group schemes of finite type over k.

Finally, in Section 8 we prove the Galois correspondence between normal closed sub-
groups of the Galois group scheme AutC−alg(R) and C-subalgebras of R that are Picard-
Vessiot rings for some dualizable N ∈ C.

Acknowledgements I would like to thank G. Böckle and F. Heiderich for their
comments on earlier versions which helped a lot to improve the paper. I would also like
to thank M. Wibmer, as only a common project with him drew my attention to this
general abstract setting.
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2. A commutative algebra theorem

We will be faced with the question whether there exists a Picard-Vessiot ring up to a finite
extension of constants. The following theorem will be a key ingredient to the existence
proof. All algebras are assumed to be commutative with unit.

2.1. Theorem. Let k be a field, S an algebra over k and R a finitely generated flat S-
algebra. Furthermore, let ` be a field extension of k such that S ⊗k ` embeds into R as an
S-algebra. Then ` is a finite extension of k.

2.2. Remark. The claim in the theorem is equivalent to ` being finitely generated as a
k-algebra, and hence that S⊗k ` is a finitely generated S-algebra. There are already some
theorems on finite generation of subalgebras of finitely generated S-algebras (see e.g. [14],
[7, 8, 9] or [16]), but we don’t know of any that applies to our hypothesis. Hence, we give
an own proof.

Proof of Theorem 2.1. The proof is split in several steps:
1) Reduction to S being a field

Choose a minimal prime ideal p of S, and let Sp denote the localization of S at p. Since
localizations are flat, the inclusion of rings S ⊆ S ⊗k ` ⊆ R induces an inclusion of rings

Sp ⊆ Sp ⊗k ` ⊆ Sp ⊗S R,

and Sp⊗S R is a finitely generated Sp-algebra. Since flatness is stable under base change,
Sp ⊗S R is a flat Sp-algebra.
Since pSp is the maximal ideal of Sp, S̄ := Sp/pSp is a field, and R̄ := Sp/pSp ⊗S R is a
finitely generated flat algebra over S̄. It remains to show that S̄ ⊗k ` embeds into R̄.

Since Sp ⊗k ` and Sp ⊗S R are both flat over Sp, the exact sequence 0→ pSp → Sp →
Sp/pSp → 0 leads to a commutative diagram with exact rows

0 // pSp ⊗k ` //
� _

��

Sp ⊗k ` //
� _

��

(Sp/pSp)⊗k ` //

��

0

0 // pSp ⊗S R // Sp ⊗S R // (Sp/pSp)⊗S R // 0.
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Then the last vertical arrow is an injection if the left square is a pullback diagram. Hence,
we have to proof that any element in Sp⊗k` whose image in Sp⊗SR actually lies in pSp⊗SR
is an element of pSp ⊗k `.

Hence, let z =
∑n

i=1 si ⊗ xi ∈ Sp ⊗k ` with k-linearly independent x1, . . . , xn ∈ `, and
let w =

∑m
j=1 aj⊗ rj ∈ pSp⊗SR such that their images in Sp⊗SR are the same. Since all

elements in pSp are nilpotent, there is e1 ≥ 0 maximal such that ae11 6= 0. Inductively for
j = 2, . . . ,m, there is ej ≥ 0 maximal such that ae11 · · · a

ej
j 6= 0. Let a :=

∏m
j=1 a

ej
j ∈ Sp.

Then by construction, a 6= 0 but a ·w =
∑m

j=1 aaj ⊗ rj = 0. So 0 = a · z =
∑n

i=1 asi ⊗ xi,
i.e. asi = 0 for all i. Since a 6= 0, one obtains si 6∈ (Sp)

×, i.e. si ∈ pSp.

From now on, we may and will assume that S is a field. In this case R is Noetherian
as it is a finitely generated S-algebra.

2) Proof that ` is algebraic over k
Assume that ` is not algebraic over k, then there is an element a ∈ ` transcendental over

k. By assumption, a is also transcendental over S insideR, i.e. the polynomial ring S[a] is a
subring of R. The image of the corresponding morphism ψ : Spec(R)→ Spec(S[a]) ∼= A1

S

is a dense subset of Spec(S[a]), since the homomorphism of rings is an inclusion, and
it is locally closed by [4, Cor. 3, Ch. V, §3.1]. Hence, the image is open. But for all
0 6= f ∈ k[a], the irreducible factors of f in S[a], are invertible in ` ⊆ R. Hence, infinitely
many maximal ideals of Spec(S[a]) are not in the image of ψ – contradicting that the
image is open.

3) Proof that ` is finite over k
For showing that ` is indeed finite over k, we give a bound on [`′ : k] for any `′ ⊆ `

which is finite over k, and this bound only depends on data of R. Since ` is the union of
all its finite subextensions this proves finiteness of `.

For simplicity we again write ` for the finite extension `′ of k.
Let

(0) =
c⋂
i=1

qi

be a primary decomposition of the zero ideal (0) ⊆ R and pi :=
√
qi the corresponding

prime ideals. Furthermore, let Ni ∈ N satisfy pNii ⊆ qi, i.e. for all y1, . . . , yNi ∈ pi, one
has y1 · y2 · · · yNi ∈ qi.

5 Furthermore, for each i = 1, . . . , c let mi ⊆ R be a maximal ideal
containing pi. Then di := dimS R/mi is finite for all i.

We claim that dimk(`) is bounded by 2 ·
∑c

i=1 di ·Ni:
First at all R →

∏c
i=1R/qi is an injective S-algebra homomorphism and R/qi is

irreducible with unique minimal ideal pi.
Letting q̃i := qi ∩ (S ⊗k `), and p̃i := pi ∩ (S ⊗k `) =

√
q̃i, then (S ⊗k `)/q̃i embeds

into R/qi, and S ⊗k ` →
∏c

i=1(S ⊗k `)/q̃i is injective. It therefore suffices to show that
dimS ((S ⊗k `)/q̃i) ≤ 2diNi holds for each i. In the following we therefore consider an
arbitrary component and will omit the index i.

5This Ni exists since R is Noetherian and therefore pi is finitely generated.
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Since (S⊗k`)/q̃ is a finite S-algebra, and p̃ is its unique minimal prime ideal, (S⊗k`)/q̃
is a local Artinian algebra with residue field (S ⊗k `)/p̃. Since (S ⊗k `)/p̃ is a field, the
composition

(S ⊗k `)/p̃ ↪→ R/p→ R/m

is injective. Hence,
dimS ((S ⊗k `)/p̃) ≤ dimS (R/m) = d.

It remains to show that dim(S⊗k`)/p̃ ((S ⊗k `)/q̃) ≤ 2N .
As a tensor product of fields and as `/k is finite, S ⊗k ` is a finite direct product of

local artinian algebras with residue fields being finite extensions of S. The local algebra
over some finite extension S ′ of S is given as S ′⊗k′ k̃ for a finite extension k′ of k contained
in S ′ and a purely inseparable extension k̃/k′.

In particular, also the algebra (S ⊗k `)/q̃ is of that form (as it is just isomorphic
to one factor of (S ⊗k `)). Hence, let S ′, k′ and k̃ be such that (S ⊗k `)/p̃ ∼= S ′ and
(S ⊗k `)/q̃ ∼= S ′ ⊗k′ k̃. As k̃ is purely inseparable over k′, there are x1, . . . , xt ∈ k̃,
m1, . . . ,mt ∈ N and a1, . . . , at ∈ k′ such that

k̃ = k′[x1, . . . , xt]/
(
xp

m1

1 − a1, . . . , x
pmt
t − at

)
.

where p denotes the characteristic of the fields. As S ′ ⊗k′ k̃ is local with residue field S ′,

there are also s1, . . . , st ∈ S ′ such that sp
mj

j = aj for all j = 1, . . . , t, and S ′ ⊗k′ k̃ is given
as

S ′ ⊗k′ k̃ ∼= S ′[x1, . . . , xt]/
(
(x1 − s1)p

m1 , . . . , (xt − st)p
mt
)
.

In particular its nilradical (corresponding to p̃) is generated by (x1 − s1, . . . , xt − st).
Since p̃N ⊆ q̃, and (x1 − s1)p

m1−1 · · · (xt − st)p
mt−1 6= 0 we obtain that

N >
t∑

j=1

(pmj − 1) ≥
t∑

j=1

1

2
pmj =

1

2
dimS′(S

′ ⊗k′ k̃).

Therefore, we have shown that dim(S⊗k`)/p̃ ((S ⊗k `)/q̃) < 2N .

3. Setup and basic properties

In this section, we set up an abstract framework in which we can prove theorems on
Picard-Vessiot extensions, as well as their Galois groups. The theorems thus apply to
all kinds of differential and difference Galois theories which match the basic setup given
below. The setup therefore provides a uniform approach to the existing theories.

We consider the following setup:

(C1) C is a locally small abelian symmetric monoidal category with unit object 1 ∈ C.
We assume that 1 is a simple object in C.
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(C2) C is cocomplete, i.e. C is closed under small inductive limits.

(F1) There is a scheme X , and an additive tensor functor υ : C → Qcoh(X ) from C to the
category of quasi-coherent OX -modules which is faithful, exact and preserves small
inductive limits. (In particular, υ(1) = OX .)

(F2) M ∈ C is dualizable whenever υ(M) is a finitely generated OX -module.

3.1. Remark.

1. The presence of a faithful functor υ : C → Qcoh(X ) as stated in (F1) already implies
that all MorC(M,N) are abelian groups, i.e. that C is locally small. Hence, we could
have omitted this condition in (C1). However, in this section and Section 4, we will
not use conditions (F1) and (F2) and therefore need the condition “locally small”
in (C1).

2. By an object M ∈ C being dualizable, we mean that M admits a (right) dual, i.e. an
object M∨ ∈ C together with two morphisms evM : M ⊗M∨ → 1 (evaluation) and
δM : 1→M∨ ⊗M (coevaluation) such that the diagrams

M∨ ∼= 1⊗M∨ δM⊗idM∨//

idM∨ ))

M∨⊗M⊗M∨

idM∨⊗evM
��

M∨⊗1 ∼= M∨

and M ∼= M⊗1
idM⊗δM//

idM ((

M⊗M∨⊗M
evM⊗idM
��

1⊗M ∼= M

commute.

3.2. Remark. Readers which are not too familiar with algebraic geometry should just
think of X being the spectrum of a ring S in which case the category of quasi-coherentOX -
modules is equivalent to the category of S-modules, the structure sheaf OX corresponds
to S, and finitely generated OX -modules to finitely generated S-modules.

Furthermore, as proven in [4, Section II.5.2, Theorem 1], a finitely generated S-module
is locally free (in the geometric sense) if and only if it is projective. This will come up in
Lemma 5.1.

3.3. Example. For a differential field (F, ∂), the category of F [∂]-modules as in the
introduction is an example of such a category C with 1 = (F, ∂). Here, X = Spec(F )
and υ : C → Qcoh(X ) ∼= VectF is the forgetful functor mapping an F [∂]-module to its
underlying F -vector space. The objects M mentioned in (F2) are just the F [∂]-modules
with dimF (M) < ∞, i.e. ∂-modules, and it is explained in the introduction that these
are dualizable. All the other settings mentioned in the introduction are examples for this
categorical setup, too.

In the remainder of this section, C will be a category satisfying properties (C1) and
(C2).
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Let k := EndC(1) denote the ring of endomorphisms of the unit object 1. Then by
simplicity of 1, k is a division ring, and even a field, as EndC(1) is always commutative.

Let Vectk denote the category of k-vector spaces, and vectk the subcategory of finite
dimensional k-vector spaces. There is a functor ⊗k : C × vectk → C such that M ⊗k kn =
Mn and in general M ⊗k V ∼= Mdim(V ) (cf. [11], p. 21 for details; see also [22], IV.4).
As C is cocomplete, the functor ⊗k can be extended to ⊗k : C × Vectk → C via

M ⊗k V := colim
W⊂V

fin.dim.

M ⊗k W.

This functor fulfills a functorial isomorphism of k-vector spaces

MorC(N,M ⊗k V ) ∼= MorC(N,M)⊗k V for all M,N ∈ C, V ∈ Vectk,

where the tensor product on the right hand side is the usual tensor product of k-vector
spaces. Recall that MorC(N,M) is a k-vector space via the action of k = EndC(1).

The functor ⊗k induces a tensor functor ι : Vectk → C given by ι(V ) := 1 ⊗k V , and
one obviously has M ⊗k V ∼= M ⊗ ι(V ) (the second tensor product taken in C). The
functor ι is faithful and exact by construction. Since ι is an exact tensor functor and all
finite dimensional vector spaces have a dual (in the categorical sense), all objects ι(V ) for
V ∈ vectk are dualizable in C.

There is also a functor (−)C := MorC(1,−) : C → Vectk from the category C to the
category of all k-vector spaces.

3.4. Remark. As already mentioned in the introduction, in the differential case MC =
M∂ is just the k-vector space of constants of the differential module M . In the difference
case (with endomorphism σ), MC equals the invariants Mσ of the difference module M .
The functor ι corresponds to the construction of “trivial” differential (resp. difference)
modules by tensoring a k-vector space with the differential (resp. difference) base field F .

The following proposition gives some properties of the functors ι and (−)C which are
well known for differential resp. difference modules.

3.5. Proposition. Let C be a category satisfying (C1) and (C2), and let ι and ()C be as
above. Then the following hold.

1. If V ∈ Vectk, then any subobject and any quotient of ι(V ) is isomorphic to ι(W ) for
some W ∈ Vectk.

2. If V ∈ vectk, then ι(V ) ∈ C has finite length and length(ι(V )) = dimk(V ).

3. If M ∈ C has finite length, then MC ∈ vectk and dimk(M
C) ≤ length(M).
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Proof.

1. First consider the case that V ∈ Vectk is of finite dimension. We show the claim by
induction on dim(V ).
The case dim(V ) = 0 is trivial. Let V ∈ vectk and N ∈ C be a subobject of ι(V ),
and let V ′ ⊆ V be a 1-dimensional subspace. Then one has a split exact sequence of
k-vector spaces 0→ V ′ → V → V/V ′ → 0 and therefore a split exact sequence

0→ ι(V ′)→ ι(V )→ ι(V/V ′)→ 0

in C. Since N is a subobject of ι(V ), the pullback N ∩ ι(V ′) is a subobject of ι(V ′) ∼= 1.
As 1 is simple, N ∩ ι(V ′) = 0 or N ∩ ι(V ′) = ι(V ′).
In the first case, N ↪→ ι(V/V ′), and the claim follows by induction on dim(V ).
In the second case, by induction N/ι(V ′) is isomorphic to ι(W ) for some subspace
W ⊆ V/V ′. If W ′ denotes the preimage of W under the epimorphism V → V/V ′, one
has a commutative diagram with exact rows

0 // ι(V ′) //

∼=
��

N //

��

ι(W ) //

∼=
��

0

0 // ι(V ′) // ι(W ′) // ι(W ) // 0

,

and therefore N ∼= ι(W ′).

If V ∈ Vectk has infinite dimension, we recall that ι(V ) = colim
W⊂V

fin.dim.

ι(W ) and hence, for

any subobject N ⊆ ι(V ), one has

N = colim
W⊂V

fin.dim.

N ∩ ι(W ).

From the special case of finite dimension, we obtain N ∩ ι(W ) = ι(W ′) for some W ′

related to W , and therefore

N = colim
W⊂V

fin.dim.

ι(W ′) = ι

(
colim
W⊂V

fin.dim.

W ′

)
.

Now let V ∈ Vectk be arbitrary and, let N be a quotient of ι(V ). Then by the previous,
Ker(ι(V ) → N) is of the form ι(V ′) for some V ′ ⊆ V , and hence N ∼= ι(V )/ι(V ′) ∼=
ι(V/V ′), as ι is exact.

2. By part 1.), every sequence of subobjects 0 = N0 ( N1 ( · · · ( ι(V ) is induced via ι
by a sequence of subvector spaces 0 = W0 ( W1 ( · · · ( V . Hence, length(ι(V )) =
dimk(V ).
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3. We use induction on the length of M . If M has length 1, then M is a simple
object. Since 1 also is simple, every morphism in MC = MorC(1,M) is either 0
or an isomorphism. In particular, k = EndC(1) acts transitively on MorC(1,M),
which shows that dimk(MorC(1,M)) is 0 or 1. For the general case, take a subob-
ject 0 6= N 6= M of M . Applying the functor ()C = MorC(1,−) to the exact sequence
0→ N →M →M/N → 0 leads to an exact sequence

0→ NC →MC → (M/N)C,

as the functor MorC(X,−) is always left-exact.
Hence, dimk(M

C) ≤ dimk(N
C) + dimk((M/N)C). Since N and M/N have smaller

length than M , we obtain the claim by induction using length(M) = length(N) +
length(M/N).

3.6. Proposition. Let C be a category satisfying (C1) and (C2) and let ι and ()C be as
above. Then the following hold.

1. The functor ι is left adjoint to the functor ()C, i.e. for all V ∈ Vectk, M ∈ C, there
are isomorphisms of k-vector spaces MorC(ι(V ),M) ∼= Homk(V,M

C) functorial in
V and M .

2. For every V ∈ Vectk, the homomorphism ηV : V → (ι(V ))C which is adjoint to idι(V )

is an isomorphism.

3. For every M ∈ C, the morphism εM : 1 ⊗k MorC(1,M) = ι(MC) → M which is
adjoint to idMC is a monomorphism.

3.7. Remark.

1. Whereas in the differential resp. difference settings, part 1 and 2 are easily seen,
part 3 amounts to saying that any set v1, . . . , vn ∈MC of constant (resp. invariant)
elements of M which are k-linearly independent, are also independent over the
differential (resp. difference) field F . This is proven in each setting separately.
However, Amano and Masuoka provide an abstract proof (which is given in [1,
Prop. 3.1.1]) which relies on the Freyd embedding theorem.

2. The collection of homomorphisms (ηV )V ∈Vectk is just the natural transformation
η : idVectk → (−)C ◦ ι (unit of the adjunction) whereas the morphisms εM form
the natural transformation ε : ι ◦ (−)C → idC (counit of the adjunction). By the
general theory on adjoint functors, for all V,W ∈ Vectk, the maps Homk(V,W ) →
MorC(ι(V ), ι(W )) induced by applying ι are just the compositions

Homk(V,W )
ηW ◦(−) //Homk(V, ι(W )C) MorC(ι(V ), ι(W ))'

adjunctionoo
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(cf. [22],p. 81,eq. (3) and definition of η). This implies that ηW is a monomorphism
for all W ∈ Vectk if and only if the map Homk(V,W ) → MorC(ι(V ), ι(W )) is
injective for all V,W ∈ Vectk, i.e. if ι is a faithful functor. Furthermore, ηW is a
split epimorphism for all W ∈ Vectk if and only if Homk(V,W )→ MorC(ι(V ), ι(W ))
is surjective for all V,W ∈ Vectk, if and only if ι is a full functor. In particular,
ηW being an isomorphism for all W ∈ Vectk is equivalent to ι being a fully faithful
functor.

Proof of Prop. 3.6.

1. For V ∈ vectk and M ∈ C we have natural isomorphisms

MorC(ι(V ),M) ∼= MorC(1,M ⊗ ι(V )∨) ∼= MorC(1,M ⊗k V ∨)
∼= MorC(1,M)⊗k V ∨ ∼= Homk(V,MorC(1,M))

= Homk(V,M
C)

If V is of infinite dimension the statement is obtained using that MorC and Homk

commute with inductive limits, i.e.

MorC(ι(V ),M) = MorC(colim
W⊂V
fin.dim

ι(W ),M) = lim
W⊂V
fin.dim

MorC(ι(W ),M)

∼= lim
W⊂V
fin.dim

Homk(W,M
C) = Homk(V,M

C).

2. We have, (ι(V ))C = MorC(1, 1⊗kV ) ∼= MorC(1, 1)⊗kV ∼= k⊗kV = V , and the morphism

idι(V ) corresponds to idV : V
ηV−→ (ι(V ))C ∼= V via all these natural identifications.

3. Let M ∈ C and N := Ker(εM) ⊆ ι(MC). By Prop. 3.5(i), there is a subspace W of MC

such that N = ι(W ). Hence, we have an exact sequence of morphisms

0→ ι(W )→ ι(MC)
εM−→M.

Since ()C is left exact, this leads to the exact sequence

0→ (ι(W ))C → (ι(MC))C
(εM )C−−−→ MC

But ηV : V → (ι(V ))C is an isomorphism for all V by part (ii). So we obtain an exact
sequence

0→ W →MC (εM )C◦η
MC−−−−−−→MC,

and the composite (εM)C ◦ ηMC is the identity on MC by general theory on adjoint
functors (cf. [22, Ch. IV, Thm. 1]). Hence, W = 0.
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4. C-algebras and base change

We recall some notation which are already present in [21, Ch. 17 & 18], and refer to
loc. cit. for more details. The reader should be aware that a “tensored category” in [21]
is the same as an “abelian symmetric monoidal category” here.
A commutative algebra in C (or a C-algebra for short) is an object R ∈ C together
with two morphisms uR : 1 → R and µR : R ⊗ R → R satisfying several commuting
diagrams corresponding to associativity, commutativity and the unit. For instance,

µR ◦ (uR ⊗ idR) = idR = µR ◦ (idR ⊗ uR)

says that uR is a unit for the multiplication µR (cf. [21, Ch. 17]; although the term
“C-algebra” in [21] does not include commutativity).

For a C-algebra R we define CR to be the category of R-modules in C, i.e. the category
of pairs (M,µM) where M ∈ C and µM : R ⊗M → M is a morphism in C satisfying
the usual commuting diagrams for turning M into an R-module (cf. [21, Ch. 18]).6 The
morphisms in CR are morphisms in C which commute with the R-action. The category
CR is also an abelian symmetric monoidal category with tensor product ⊗R defined as

M ⊗R N := Coker((µM ◦ τ)⊗ idN − idM ⊗ µN : M ⊗R⊗N →M ⊗N),

where τ : M ⊗R→ R⊗M is the twist morphism (see [21, Prop. 18.3]).
A C-ideal I of a C-algebra R is a subobject of R in the category CR, and R is called a

simple C-algebra, if 0 and R are the only C-ideals of R, i.e. if R is a simple object in CR.

4.1. Definition.
For a C-algebra R, the additive right-exact functor ()R : (C,⊗)→ (CR,⊗R),M 7→ MR :=
(R ⊗M,µR ⊗ idM) is called the base change functor. It is even a tensor functor, and it
is a left adjoint to the forgetful functor CR → C (see [21, Thm. 18.2]).
We can also base change the functors ι and ()C. In more details, having in mind that
EndCR(R) = MorC(1, R) = RC:

ιR : ModRC → CR, V 7→ R⊗ι(RC) ι(V )

and
()CR : CR → ModRC ,M 7→ MorCR(R,M) = MorC(1,M) = MC.

A special case is given, if R = ι(A) for some commutative k-algebra A. In this case,
ιR is “the same” as ι. This case corresponds to an extension by constants in the theory
of differential or difference modules.

4.2. Proposition. The functor ιR is left adjoint to the functor ()CR.

6Most times, we will omit the µM in our notation, and just write M ∈ CR.
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Proof. Let V ∈ ModRC and M ∈ CR, then

MorCR(ιR(V ),M) = MorCR(R⊗ι(RC) ι(V ),M) = MorC
ι(RC)

(ι(V ),M)

is the subset of MorC(ι(V ),M) given by all f ∈ MorC(ι(V ),M) such that the diagram

ι(RC)⊗ ι(V )
id⊗f //

ι(µV )

��

ι(RC)⊗M
µM

��
ι(V )

f //M

commutes. On the other hand, HomRC(V,M
CR) = HomRC(V,M

C) is the subset of
Homk(V,M

C) given by all g ∈ Homk(V,M
C) such that the diagram

RC ⊗k V
id⊗g //

µV
��

RC ⊗k MC

(µM )C

��
V

g //MC

commutes. Assume that f and g are adjoint morphisms (i.e. correspond to each other via
the bijection MorC(ι(V ),M) ∼= Homk(V,M

C) of Prop.3.6(i)), then the commutativity of
the first diagram is equivalent to the commutativity of the second, since the bijection of
the hom-sets is natural.

4.3. Lemma. Let A be a commutative k-algebra. Then ιι(A) and ()Cι(A) define a bijection
between the ideals of A and the C-ideals of ι(A).

Proof. By definition ιι(A)(I) = ι(I) for any I ∈ ModA. Furthermore, by Prop. 3.5(i),
ι induces a bijection between the k-subvector spaces of A and the subobjects of ι(A)
in C. The condition on I being an ideal of A (resp. of ι(I) being an ideal of ι(A)) is

equivalent to the condition that the composite A⊗k I
µA−→ A→ A/I (resp. the composite

ι(A) ⊗ ι(I)
µι(A)−−−→ ι(A) → ι(A)/ι(I)) is the zero map. Hence, the condition for ι(I) is

obtained from the one for I by applying ι, and using that ι is an exact tensor functor.
Since ι is also faithful, these two conditions are indeed equivalent.

In the special case that A is a field, one obtains the following corollary.

4.4. Corollary. Let ` be a field extension of k, then ι(`) is a simple C-algebra.

4.5. Remark. As ιR and ()CR are adjoint functors, there are again the unit and the counit
of the adjunction. By abuse of notation, we will again denote the unit by η and the counit
by ε. There might be an ambiguity which morphism is meant by εM if (M,µM) is an object
in CR. However, when M is explicitly given as an object of CR, then εM : ιR(MCR)→ M
is meant. This is the case, for example, if M = NR is the base change of an object N ∈ C.
In cases where the right meaning of εM would not be clear, we always give the source and
the target of εM .
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4.6. Proposition. Assume that, ιR is exact and faithful 7, and that any subobject of Rn

is of the form ιR(W ), then the following holds.

1. For every V ∈ ModRC , every subobject of ιR(V ) is isomorphic to ιR(W ) for some
W ⊆ V .

2. For every V ∈ModRC , the morphism ηV : V → (ιR(V ))CR is an isomorphism.

3. For every M ∈ CR, the morphism εM : ιR(MCR)→M is a monomorphism.

The most important cases where the proposition applies is on the one hand the case
R = ι(A) for some commutative k-algebra A (in which case ιR = ι), and on the other
hand R being a simple C-algebra.

Proof.

2. We show that ηV : V → (ιR(V ))CR is an isomorphism for all V ∈ ModRC . As ι is
faithful by assumption, all ηV are monomorphisms (cf. Rem. 3.7). For showing that
ηV is an epimorphism, it is enough to show that the natural map

RC ⊗k V = (R⊗ ι(V ))CR → (ιR(V ))CR

is an epimorphism, where on the left hand side, V is considered just as a k-vector
space. Saying that this map is epimorphic is equivalent to saying that any morphism
g : R → ιR(V ) in CR can be lifted to a morphism f : R → R ⊗ ι(V ) in CR. So let
g : R→ ιR(V ) be a morphism in CR, and let P be the pullback of the diagram

P
pr1 // //

pr2
��

R

g

��
R⊗ ι(V )

p // // ιR(V )

.

Then P is a subobject of R ⊕ (R ⊗ ι(V )) ∼= R1+dimk(V ), and hence by assumption,
P = ιR(W ) for some W ∈ ModRC . By adjointness, pr1 corresponds to some RC-
homomorphism q : W → RCR = RC, i.e. pr1 = εR◦ιR(q). Since εR : R = ιR

(
RCR

)
→ R

is the identity, and pr1 is an epimorphism, faithfulness of ιR implies that also q is
an epimorphism. Therefore, there is a RC-homomorphism s : RC → W such that
q ◦ s = idRC . Let f be the morphism f := pr2 ◦ ιR(s) : R→ R⊗ ι(V ), then

p ◦ f = p ◦ pr2 ◦ ιR(s) = g ◦ pr1 ◦ ιR(s) = g ◦ ιR(q ◦ s) = g.

Hence, f is a lift of g.

7For differential rings this means that the ring R is faithfully flat over ι(RC).
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1. We show that any subobject of ιR(V ) is of the form ιR(W ) for some submodule W of
V . The case of a quotient of ιR(V ) then follows in the same manner as in Prop. 3.5. Let
N ⊆ ιR(V ) be a subobject in CR. Then the pullback of N along p : R⊗ ι(V )→ ιR(V )
is a subobject of R ⊗ ι(V ), hence by assumption of the form ιR(W̃ ) for some W̃ ⊆
(RC)dimk(V ). Furthermore, as ηV is an isomorphism, the restriction p|ιR(W̃ ) : ιR(W̃ ) →
ιR(V ) is induced by some homomorphism f : W̃ → V (cf. Remark 3.7). By exactness
of ιR, we finally obtain N = Im(ιR(f)) = ιR(Im(f)) = ιR(W ) for W := Im(f).

3. The proof that εM : ιR(MCR)→M is a monomorphism is the same as in Prop. 3.6.

4.7. Lemma. Let R be a simple C-algebra. Then for N ∈ CR, the morphism εN is an
isomorphism if and only if N is isomorphic to ιR(V ) for some V ∈ModRC .

Proof. If εN is an isomorphism, then N ∼= ιR(V ) for V := NCR . On the other hand, let
N ∼= ιR(V ) for some V ∈ModRC . Since ιR(ηV )◦ειR(V ) = idιR(V ) (cf. [22, Ch. IV, Thm. 1])
and ηV is an isomorphism, ειR(V ) is an isomorphism. Hence, εN is an isomorphism.

4.8. Proposition. Let R be a simple C-algebra. Then the full subcategory of CR con-
sisting of all N ∈ CR such that εN is an isomorphism is a monoidal subcategory of CR
and is closed under taking direct sums, subquotients, small inductive limits, and duals of
dualizable objects in CR.

Proof. Using the previous lemma, this follows directly from Prop. 4.6(i), and the fact
that ιR is an additive exact tensor functor.

5. Solution rings and Picard-Vessiot rings

From now on we assume that C satisfies all conditions (C1), (C2), (F1) and (F2).

5.1. Lemma. Let M ∈ C be dualizable. Then υ(M) is a finitely generated locally free
OX -module of constant rank.8

Proof. If M ∈ C is dualizable, then υ(M) is dualizable in Qcoh(X ), since υ is a tensor
functor, and tensor functors map dualizable objects to dualizable objects (and their duals
to the duals of the images). By [10, Prop. 2.6], dualizable objects in Qcoh(X ) are exactly
the finitely generated locally free OX -modules. Hence, υ(M) is finitely generated and
locally free whenever M is dualizable.

To see that the rank is constant, let d ∈ N be the maximal local rank of υ(M), and
consider the d-th exterior power Λ := Λd(M) ∈ C which is non-zero by the choice of d.
Hence, the evaluation morphism evΛ : Λ⊗Λ∨ → 1 is non-zero. Since 1 is simple, and the

8Recall from Remark 3.2 that in the case of X = Spec(S) this amounts to say that υ(M) is a finitely
generated projective S-module whose localizations at primes all have the same rank.
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image of evΛ is a subobject of 1, the morphism evΛ is indeed an epimorphism. Hence the
evaluation

evυ(Λ) = υ(evΛ) : υ(Λ)⊗OX υ(Λ)∨ → OX
is surjective which implies that υ(Λ)⊗OX OX ,x 6= 0 for any point x of X . But this means
that any local rank of υ(M) is at least d, i.e. υ(M) has constant rank d.

5.2. Remark. With respect to the previous lemma, condition (F2) implies that if υ(M)
is finitely generated for some M ∈ C, then υ(M) is even locally free and of constant rank.
This also implies the following:
If M is dualizable, then υ(M) is finitely generated and locally free. Further, for every
epimorphic image N of M , the OX -module υ(N) is also finitely generated and hence,
locally free. But then for any subobject N ′ ⊆ M the sequence 0 → υ(N ′) → υ(M) →
υ(M/N ′)→ 0 is split exact, since υ(M/N ′) as an epimorphic image is locally free. There-
fore υ(N ′) is also a quotient of υ(M), in particular υ(N ′) is finitely generated and locally
free.
So given a dualizable M ∈ C, all subquotients of finite direct sums of objects M⊗n ⊗
(M∨)⊗m (n,m ∈ N) are dualizable. Hence, the strictly full tensor subcategory of C gen-
erated by M and M∨ – which is exactly the full subcategory of C consisting of all objects
isomorphic to subquotients of finite direct sums of objects M⊗n⊗ (M∨)⊗m (n,m ∈ N) – is
a rigid abelian tensor category and will be denoted by 〈〈M〉〉. Furthermore by definition, υ
is a fibre functor and therefore 〈〈M〉〉 is even a Tannakian category (cf. [10, Section 2.8]).

By [10, Cor. 6.20], there exists a finite extension k̃ of k and a fibre functor ω : 〈〈M〉〉 →
vectk̃. In view of Thm. 6.5 in Section 6, this implies that there is a Picard-Vessiot ring
for M over k̃.

We will see later (cf. Cor. 5.13) that for every simple minimal solution ring R, the
field RC = EndCR(R) is a finite field extension of k.

5.3. Definition. Let M ∈ C.
A solution ring for M is a C-algebra R such that the morphism

εMR
: ιR

(
(MR)CR

)
→MR = R⊗M

is an isomorphism.
A Picard-Vessiot ring for M is a minimal solution ring R which is a simple C-algebra,

and satisfies RC := EndCR(R) = k. Here, minimal means that for any solution ring
R̃ ∈ C that admits a monomorphism of C-algebras to R, this monomorphism is indeed an
isomorphism.

5.4. Remark. Comparing with the differential setting, (MR)CR is just the so called so-
lution space (R ⊗F M)∂ of M over R, and εMR

is the canonical homomorphism R ⊗R∂
(R⊗F M)∂ → R⊗F M .
When R is a simple C-algebra (i.e. in the differential setting a simple differential ring),
then by Prop.4.6(iii), εMR

is always a monomorphism. Hence, for a simple C-algebra R,
the condition for being a solution ring means that the solution space is as large as possible,
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or in other words that R⊗M has a basis of constant elements, i.e. is a trivial differential
module over R.

5.5. Proposition. Let R be a solution ring for some dualizable M ∈ C, and let f : R→
R′ be an epimorphism of C-algebras. Assume either that R′ is a simple C-algebra or that
(R⊗M)C is a free RC-module. Then R′ is a solution ring for M as well.

5.6. Remark. If (R ⊗M)C is a free RC-module, then it is automatically free of finite
rank, and the rank is the same as the global rank of υ(M) as OX -module which exists by
Lem. 5.1.

Proof of Prop. 5.5. As f : R→ R′ is an epimorphism and M is dualizable, f ⊗ idM :
R⊗M → R′ ⊗M is an epimorphism, too. As the diagram

ιR
(
(R⊗M)C

) εMR //

��

MR = R⊗M

f⊗idM
����

ιR′
(
(R′ ⊗M)C

) εMR′ //MR′ = R′ ⊗M

commutes and εMR
is an isomorphism by assumption on R, the morphism εMR′

is an
epimorphism.

If R′ is simple, then by Prop. 4.6(iii) the morphism εMR′
is a monomorphism, hence

an isomorphism. Therefore, R′ is a solution ring.
Assume now, that (R ⊗ M)C is a free RC-module of rank n. Then ιR(R ⊗ M)C ∼=

ιR
(
(RC)n

)
= Rn. Composing with εMR

leads to an isomorphism Rn
∼=−→ R ⊗ M . We

therefore obtain an isomorphism α : (R′)n → R′⊗M by tensoring with R′. Applying the
natural transformation ε to this isomorphism, we get a commutative square

R′n = ιR′
(
(R′n)C

) ιR′ (α
C)

∼=
//

εR′n∼=
��

ιR′
(
(R′⊗M)C

)
εMR′

��
R′n

α
∼=

// R′⊗M,

which shows that εMR′
is an isomorphism, too.

5.7. Theorem. Let M ∈ C be dualizable. Then there exists a non-zero solution ring
for M .

Proof. We show the theorem by explicitly constructing a solution ring. This construction
is motivated by the Tannakian point of view in [11] and by Section 3.4 in [3].
Let n := rank(υ(M)) be the global rank of the OX -module υ(M) which exists by Lemma

5.1. We then define U to be the residue ring of Sym
(

(M ⊗ (1n)∨)⊕ (1n ⊗M∨)
)

subject

to the ideal generated by the image of the morphism

(−ev, idM ⊗ δ1n ⊗ idM∨) : M ⊗M∨ → 1⊕ (M ⊗ (1n)∨ ⊗ 1n ⊗M∨)

⊂ Sym
(

(M ⊗ (1n)∨)⊕ (1n ⊗M∨)
)
.
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First we show that U 6= 0 by showing υ(U) 6= 0. By exactness of υ, the ring υ(U) is
given as the residue ring of Sym ((υ(M)⊗OX (O n

X )∨)⊕ (O n
X ⊗OX υ(M)∨)) subject to the

ideal generated by the image of (−evυ(M), id⊗ δO nX ⊗ id).

Let U = Spec(S) ⊆ X be an affine open subset such that M̃ := υ(M)(U) is free over
S. Let {b1, . . . , bn} be a basis of M̃ and b∨1 , . . . , b

∨
n ∈ M̃∨ the corresponding dual basis.

Then υ(U)(U) is generated by xij := bi⊗ e∨j ∈ M̃ ⊗ (Sn)∨ and yji := ej ⊗ b∨i ∈ Sn⊗ (M̃)∨

for i, j = 1, . . . , n, where {e1, . . . , en} denotes the standard basis of Sn and {e∨1 , . . . , e∨n}
the dual basis. The relations are generated by

b∨k (bi) = evM̃(bi ⊗ b∨k ) = (idM̃ ⊗ δSn ⊗ idM̃∨)(bi ⊗ b∨k ) =
n∑
j=1

(bi ⊗ e∨j )⊗ (ej ⊗ b∨k ),

i.e. δik =
∑n

j=1 xijyjk for all i, k = 1, . . . , n. This just means that the matrix Y = (yjk) is

the inverse of the matrix X = (xij). Hence υ(U)(U) = S[X,X−1] is the localisation of a
polynomial ring over S in n2 variables.

For showing that U is indeed a solution ring, we consider the following diagram

M
idM⊗δ1n //

idM⊗δM

��

(M⊗(1n)∨)⊗1n
incl.⊗id1n //

id⊗δM
��

U⊗1n

id⊗δM
��

M⊗M∨⊗M idM⊗δ1n⊗id //

evM⊗idM

��

(M⊗(1n)∨)⊗(1n⊗M∨)⊗M incl.⊗id //

µU⊗idM

��

U⊗(1n⊗M∨)⊗M

µU⊗idM

��
1⊗M uU⊗idM // U⊗M id // U⊗M.

It is easy to see that the upper left, upper right and lower right squares all commute. The
lower left square also commutes by definition of U , since the difference of the two compo-
sitions in question is just (−evM , idM ⊗ δ1n ⊗ idM∨)⊗ idM . Furthermore the composition
of the two vertical arrows on the left is just the identity on M by definition of the dual.
Tensoring the big square with U leads to the left square of the next diagram

U ⊗M //

id
��

U ⊗ U ⊗ 1n
µU⊗id1n //

idU⊗α
��

U ⊗ 1n

α
��

U ⊗M idU⊗uU⊗idM // U ⊗ U ⊗M µU⊗idM // U ⊗M

where α := (µU ⊗ idM) ◦ (id ⊗ δM). The right square of this diagram also commutes, as
is easily checked, and the composition in the bottom row is just the identity according
to the constraints on the unit morphism uU and the multiplication map µU . Hence,
α : U ⊗ 1n → U ⊗M is a split epimorphism in C, and even in CU (since the right square
commutes). Since the rank of υ(U ⊗ 1n) = υ(U)n and the rank of υ(U ⊗M) as υ(U)-
modules are both n, the split epimorphism υ(α) is in fact an isomorphism, i.e. α is an
isomorphism.
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Applying the natural transformation ε, we finally obtain the commutative square

Un = ιU
(
(U⊗1n)C

) ιU (αC)

∼=
//

εUn∼=
��

ιU
(
(U⊗M)C

)
εMU
��

Un = U⊗1n α
∼=

// U⊗M,

which shows that εMU
is an isomorphism. Hence, U is a solution ring for M .

5.8. Remark. In the case of difference or differential modules over a difference or differ-
ential field F , respectively, the ring U constructed in the previous proof is just the usual
universal solution algebra F [X, det(X)−1] for a fundamental solution matrix X having
indeterminates as entries. We will therefore call U the universal solution ring for M .
This is moreover justified by the following theorem which states that U indeed satisfies a
universal property.

5.9. Theorem. Let R be a solution ring for M , such that (R⊗M)C is a free RC-module,
and let U be the solution ring for M constructed in Thm. 5.7. Then there exists a mor-

phism of C-algebras f : U → R. Furthermore, the image of ι(RC)⊗U εR⊗f−−−→ R⊗R µR−→ R
does not depend on the choice of f .

Proof. By assumption, we have an isomorphism in CR:

α : Rn ∼=−→ ιR
(
(MR)CR

)
= R⊗ι(RC) ι

(
(R⊗M)C

) ∼=−→ R⊗M.

Since M is dualizable, one has bijections

MorCR(Rn, R⊗M) ' MorCR(R⊗ (1n ⊗M∨), R) ' MorC(1
n ⊗M∨, R)

α 7→ α̃R := (idR ⊗ evM) ◦ (α⊗ idM∨) 7→ α̃ := α̃R|1n⊗M∨

Similarly, for the inverse morphism β := α−1 : R⊗M → Rn, one has

MorCR(R⊗M,Rn) ' MorCR(R⊗ (M ⊗ (1n)∨), R) ' MorC(M ⊗ (1n)∨, R)

β 7→ β̃R := (idR ⊗ ev1n) ◦ (β ⊗ id(1n)∨) 7→ β̃ := β̃R|M⊗(1n)∨

Therefore the isomorphism α induces a morphism of C-algebras

f : Sym
(

(M ⊗ (1n)∨)⊕ (1n ⊗M∨)
)
→ R.

We check that this morphism factors through U , i.e. we have to check that the morphisms

M ⊗M∨ id⊗δ1n⊗id−−−−−−→M ⊗ (1n)∨ ⊗ 1n ⊗M∨ β̃⊗α̃−−→ R⊗R µR−→ R

and
M ⊗M∨ evM−−→ 1

uR−→ R
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are equal. For this we consider the R-linear extensions in the category CR. By [10,
Sect. 2.4], the composition

M∨
R

δRn⊗idM∨
R−−−−−−→ (Rn)∨ ⊗R Rn ⊗RM∨

R
id⊗α⊗id−−−−−→M∨

R ⊗RMR ⊗R (Rn)∨
id⊗evMR−−−−−→ (Rn)∨

is just the transpose tα : M∨
R → (Rn)∨ of the morphism α, and this equals the contragre-

dient β∨ of β = α−1.
Hence the equality of the two morphisms reduces to the commutativity of the diagram

MR ⊗RM∨
R

β⊗β∨ //

evMR
))

Rn ⊗R (Rn)∨

evRn

��
R.

But by definition of the contragredient (see [10, Sect. 2.4]), this diagram commutes.

It remains to show that the image of ι(RC)⊗ U εR⊗f−−−→ R ⊗ R µR−→ R does not depend
on the chosen morphism f : U → R.
Given two morphism of C-algebras f, g : U → R, let α̃f , α̃g ∈ MorC(1

n ⊗M∨, R) be the
restrictions of f resp. of g to 1n⊗M∨ ⊆ U , and let β̃f , β̃g ∈ MorC(M⊗(1n)∨, R) be the re-
strictions of f resp. of g to M⊗(1n)∨ ⊆ U . Furthermore, let αf , αg ∈ MorCR(Rn,MR) and
βf , βg ∈ MorCR(MR, R

n) denote the corresponding isomorphisms. Then by similar consid-
erations as above one obtains that βf and βg are the inverses of αf and αg, respectively.
Then

βg ◦ αf ∈ MorCR(Rn, Rn) ' HomRC((R
C)n, (Rn)C) ' MorC

ι(RC)
(ι(RC)n, ι(RC)n)

is induced by an isomorphism on ι(RC)n (which we also denote by βg ◦αf ). Therefore for
the ι(RC)-linear extension α̃f,ι(RC), α̃g,ι(RC) : ι(RC)⊗ 1n ⊗M∨ → R, one has

α̃f,ι(RC) = (idR ⊗ evM) ◦ (αf |ι(RC)n ⊗ idM∨)

= (idR ⊗ evM) ◦ (αg|ι(RC)n ⊗ idM∨) ◦ ((βg ◦ αf )⊗ idM∨)

= α̃g,ι(RC) ◦ ((βg ◦ αf )⊗ idM∨) .

and similarly,
β̃f,ι(RC) = β̃g,ι(RC) ◦ ((αg ◦ βf )⊗ idM∨) .

Hence, the morphism µR ◦ (εR⊗ f) : ι(RC)⊗U → R factors through µR ◦ (εR⊗ g) and by
changing the roles of f and g, the morphism µR ◦ (εR ⊗ g) factors through µR ◦ (εR ⊗ f).
So the images are equal.

5.10. Remark. In the classical settings, every Picard-Vessiot ring for some module M
is a quotient of the universal solution ring U . This is also the case in this abstract setting
(see Thm. 5.12 below). More generally, we will see that every simple minimal solution
ring for M (i.e. without the assumption on the constants) is a quotient of U . Conversely,
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in Cor. 5.16 we show that every quotient of U by a maximal C-ideal m is a Picard-Vessiot
ring if (U/m)C = k.
Dropping the assumption (U/m)C = k, however, one still has a simple solution ring U/m
(by Prop. 5.5), but U/m may not be minimal. To see this, let M = 1. Then trivially
R := 1 is a Picard-Vessiot ring for M , and the only one, since it is contained in any other
C-algebra.
The universal solution ring for M = 1, however, is given by U ∼= 1⊗k k[x, x−1]. Hence, for
every maximal ideal I of k[x, x−1], m := ι(I) is a maximal C-ideal of U = ι(k[x, x−1]) by
Lemma 4.3. But U/m ∼= ι(k[x, x−1]/I) is only a minimal solution ring, if k[x, x−1]/I ∼= k,
i.e. U/m ∼= 1.

We continue with properties of quotients of U .

5.11. Proposition. Let U be the universal solution ring for some dualizable M ∈ C,
and let R be a quotient algebra of U . Then υ(R) is a finitely generated faithfully flat
OX -algebra. If in addition R is a simple C-algebra, then RC is a finite field extension of
k.

Proof. Since R is a quotient of U , it is a quotient of T := Sym
(

(M⊗(1n)∨)⊕(1n⊗M∨)
)

.

Since υ(M) is finitely generated, υ(T ) is a finitely generated OX -algebra and therefore
also υ(R) is a finitely generated OX -algebra.

Since M is dualizable, 〈〈M〉〉 is a Tannakian category (see Rem. 5.2), and T is an
ind-object of 〈〈M〉〉. Being a quotient of T , R also is an ind-object of 〈〈M〉〉. Therefore by
[10, Lemma 6.11], υ(R) is faithfully flat over OX .

If in addition R is simple, ` := RC is a field. By exactness of ι and Prop. 3.6(iii), we
have a monomorphism ι(`) ↪→ R, and hence by exactness of υ, an inclusion of OX -algebras
OX ⊗k ` = υ(ι(`)) ↪→ υ(R). After localizing to some affine open subset of X , we can apply
Thm. 2.1, and obtain that ` is a finite extension of k.

5.12. Theorem. Let M be a dualizable object of C, and let U be the universal solution
ring for M . Then every simple minimal solution ring for M is isomorphic to a quotient
of the universal solution algebra U . In particular, every Picard-Vessiot ring for M is
isomorphic to a quotient of U .

Proof. Let R be a simple minimal solution ring for M . Since R is simple, RC is a field,
and therefore (R⊗M)C is a free RC-module. Hence R fulfills the assumptions of Theorem
5.9, and there is a morphism of C-algebras f : U → R. As (U ⊗M)C is a free UC-module,
the image f(U) is a solution ring by Prop. 5.5. As R is minimal, we obtain f(U) = R.
Hence, R is the quotient of U by the kernel of f .

5.13. Corollary. Let R ∈ C be a simple minimal solution ring for some dualizable
M ∈ C. Then υ(R) is a finitely generated faithfully flat OX -algebra, and RC is a finite
field extension of k.

Proof. This follows directly from Thm. 5.12 and Prop. 5.11.
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5.14. Proposition. Let M be a dualizable object of C, and let R be a simple solution
ring for M with RC = k. Then there is a unique Picard-Vessiot ring for M inside R.
This is the image of the universal solution ring U under a morphism f : U → R.

Proof. As in the proof of Thm. 5.12, R fulfills the assumptions of Theorem 5.9, so there
is a morphism of C-algebras f : U → R. By assumption on R, we have ι(RC) = ι(k) = 1,
and hence εR⊗f = f : 1⊗U = U → R. So by the second part of Theorem 5.9, the image
f(U) does not depend on the choice of f . In particular, f(U) (which is a solution ring by
Prop. 5.5) is the unique minimal solution ring inside R. It remains to show that f(U) is
a simple algebra.

Let I ⊆ U be a maximal subobject in CU (i.e. an ideal of U), let R′ := U/I and let
g : U → R′ be the canonical epimorphism. Furthermore, let m ∈ C be a maximal ideal
of R′ ⊗ R. Since R and R′ are simple, the natural morphisms R → (R′ ⊗ R)/m and
R′ → (R′ ⊗ R)/m considered in CR and CR′ , respectively, are monomorphisms, and it
suffices to show that 1⊗ f(U) ⊆ (R′ ⊗R)/m is simple.

U
f //

g

��

R

1⊗idR
��

R′
idR′⊗1 // (R′ ⊗R)/m

g(U) = R′ is simple by construction, and so is g(U)⊗ 1 ⊆ (R′ ⊗ R)/m. By Theorem
5.9, we have ι(l) · (g(U)⊗ 1) = ι(l) · (1⊗ f(U)), where l = ((R′ ⊗R)/m)C, and l is a field,
since (R′⊗R)/m is simple. By Corollary 4.4, applied to the category CR′ , ι(l) · (g(U)⊗ 1)
is also simple, i.e. ι(l) · (1 ⊗ f(U)) is simple. Since, ι(l) · (1 ⊗ f(U)) ∼= l ⊗k f(U) is a
faithfully flat extension of f(U), this implies that f(U) is also simple.

5.15. Remark. The previous proposition ensures the existence of Picard-Vessiot rings
in special cases. For example, in the differential setting over e.g. F = C(t), if x is a
point which is non-singular for the differential equation, then one knows that the ring of
holomorphic functions on a small disc around that point is a solution ring for the equation.
Hence, there exists a Picard-Vessiot ring (even unique) for the corresponding differential
module inside this ring of holomorphic functions.
Similarly, in the case of rigid analytically trivial pre-t-motives (which form a special case
of the difference setting) the field of fractions of a given ring of restricted power series is
a simple solution ring for all these modules (cf. [27]).

5.16. Corollary. Let M ∈ C be dualizable, and let m be a maximal C-ideal of the
universal solution ring U for M such that (U/m)C = k. Then U/m is a Picard-Vessiot
ring for M .

Proof. By Prop. 5.5, U/m fulfills the conditions of R in the previous proposition. Hence,
the image of the morphism U → U/m (which clearly is U/m) is a Picard-Vessiot ring.
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5.17. Corollary. Let M ∈ C be dualizable, and let R and R′ be two simple minimal
solution rings for M . Then there exists a finite field extension ` of k containing RC and
(R′)C such that R⊗RC ` ∼= R′ ⊗(R′)C `.

Proof. As in the proof of the previous theorem, let f : U → R and g : U → R′

be epimorphisms of C-algebras whose existence is guaranteed by Thm. 5.12. Let m be
a maximal C-ideal of R′ ⊗ R, and let ` := (R′ ⊗R/m)C. Then R′ and R embed into
R′ ⊗ R/m and hence (R′)C and RC both embed into `. Furthermore by Thm. 5.9, the
subrings ι(`)(g(U) ⊗ 1) and ι(`)(1 ⊗ f(U)) are equal. As ` contains both RC and (R′)C,
one has ι(`)(g(U)⊗ 1) = ι(`)(R′ ⊗ 1) ∼= R′ ⊗(R′)C ` and ι(`)(1⊗ f(U)) ∼= R⊗RC `. Hence,
R′⊗(R′)C ` ∼= R⊗RC `. As in the proof of Prop. 5.11, one shows that ` is indeed finite over
k.

5.18. Theorem. Let M ∈ C be dualizable. Then there exists a Picard-Vessiot ring for
M up to a finite field extension of k, i.e. there exists a finite field extension ` of k and a
Cι(`)-algebra R such that R is a PV-ring for Mι(`) ∈ Cι(`).

Proof. Let U be the universal solution ring for M , and let m ⊂ U be a maximal C-ideal
of U . Then R := U/m is a simple solution ring for M by Prop. 5.5, and ` := RC is a finite
field extension of k by Prop. 5.11.
Considering now Mι(`) ∈ Cι(`), and R as an algebra in Cι(`) via εR : ι(RC) = ι(`) → R,
we obtain that R is a simple solution ring for Mι(`) with RC = `. Hence by Prop. 5.14,
with k replaced by ` (and C by Cι(`) etc.), there is a unique Picard-Vessiot ring for Mι(`)

inside R. Indeed also by Prop. 5.14, this Picard-Vessiot ring is R itself, since the canonical
morphism ι(`)⊗U → R is an epimorphism, and ι(`)⊗U is easily seen to be the universal
solution ring for Mι(`).

6. Picard-Vessiot rings and fibre functors

Throughout this section, we fix a dualizable object M ∈ C. Recall that we denote by
〈〈M〉〉 the strictly full tensor subcategory of C generated by M and M∨, i.e. the full
subcategory of C containing all objects isomorphic to subquotients of direct sums of objects
M⊗n ⊗ (M∨)⊗m for n,m ≥ 0.

In this section we consider the correspondence between Picard-Vessiot rings R for M
and fibre functors ω : 〈〈M〉〉 → vectk. The main result is Thm. 6.5 which states that there
is a bijection between their isomorphism classes. This generalizes [3, Thm. 3.4.2.3] to our
abstract setting.

6.1. Proposition. Assume R is a Picard-Vessiot ring for M . Then the functor

ωR : 〈〈M〉〉 → vectk, N 7→ (R⊗N)C

is an exact faithful tensor-functor, i.e. a fibre functor.
We call the fibre functor ωR the fibre functor associated to R.
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Proof. By definition of a Picard-Vessiot ring, the morphism εMR
: R ⊗k (R ⊗M)C →

R⊗M is an isomorphism. Hence, by Prop. 4.8, εNR is an isomorphism for all N ∈ 〈〈M〉〉.
Recall R⊗k (R⊗N)C = ιR((NR)C) = ιR(ωR(N)) for all N .
As υ(R) is faithfully flat over OX = υ(1) by Cor. 5.13, the functor N 7→ R ⊗ N is

exact and faithful. Hence, given a short exact sequence 0 → N ′ → N → N ′′ → 0 in
〈〈M〉〉, the sequence

0→ R⊗N ′ → R⊗N → R⊗N ′′ → 0

is exact, and R ⊗ N = 0 if and only if N = 0. Using the isomorphisms εNR etc. the
sequence

0→ R⊗k ωR(N ′)→ R⊗k ωR(N)→ R⊗k ωR(N ′′)→ 0

is exact. As ιR is exact and faithful, this implies that

0→ ωR(N ′)→ ωR(N)→ ωR(N ′′)→ 0

is exact. Furthermore, ωR(N) = 0 if and only if R⊗k ωR(N) = 0 if and only if R⊗N = 0
if and only if N = 0.

It remains to show that ωR is a tensor-functor which is already done by showing that
ε(N⊗N ′)R is an isomorphism if εNR and εN ′R are.

Given a fibre functor ω : 〈〈M〉〉 → vectk, we want to obtain a Picard-Vessiot ring
associated to ω.
Apparently, this Picard-Vessiot ring is already given in the proof of [11, Thm. 3.2], al-
though the authors don’t claim that it is a Picard-Vessiot ring. We will recall the con-
struction to be able to prove the necessary facts:
For N ∈ 〈〈M〉〉, one defines PN to be the largest subobject of N ⊗k ω(N)∨ such that for
all n ≥ 1 and all subobjects N ′ ⊆ Nn, the morphism

PN → N ⊗k ω(N)∨
diag−−→ Nn ⊗k ω(Nn)∨ → Nn ⊗k ω(N ′)∨

factors through N ′ ⊗k ω(N ′)∨.
For monomorphisms g : N ′ → N and epimorphisms g : N → N ′, one obtains morphisms
φg : PN → PN ′ , and therefore

Rω := colim
N∈〈〈M〉〉

P∨N ∈ Ind(〈〈M〉〉) ⊆ C

is welldefined. The multiplication µRω : Rω ⊗ Rω → Rω is induced by the natural mor-
phisms PN⊗L → PN ⊗ PL via dualizing and taking inductive limits.

6.2. Lemma. The functor C−Alg→ Sets which associates to each C-algebra R′ the set of
natural tensor-transformations from the functor R′ ⊗ (ι ◦ ω) : 〈〈M〉〉 → CR′ to the functor
R′⊗id〈〈M〉〉 : 〈〈M〉〉 → CR′ is represented by the C-algebra Rω, i.e. there is a natural bijection
between the natural transformations R′⊗ (ι ◦ ω)→ R′⊗ id〈〈M〉〉 of tensor functors and the
morphisms of C-algebras Rω → R′.



CATEGORICAL PV-THEORY 515

Proof. Let R′ be a C-algebra, and let α be a natural transformation not necessarily
respecting the tensor structure. Then for every N ∈ 〈〈M〉〉 one has a morphism

αN ∈ MorCR′ (R
′ ⊗ ι(ω(N)), R′ ⊗N) ' MorC(ι(ω(N)), R′ ⊗N)

' MorC(1, R
′ ⊗N ⊗ ι(ω(N))∨) = (R′ ⊗N ⊗ ι(ω(N))∨)C

It is straight forward to check that such a collection of morphisms (αN)N where
αN ∈ MorC(1, R

′ ⊗ N ⊗ ι(ω(N))∨) defines a natural transformation if and only if αN ∈
MorC(1, R

′⊗PN) for all N , and αN ′ = (idR′⊗φg)◦αN whenever φg : PN → PN ′ is defined.
On the other hand, one has

MorC(Rω, R
′) = MorC( colim

N∈〈〈M〉〉
P∨N , R

′)

= lim
N∈〈〈M〉〉

MorC(P
∨
N , R

′) ' lim
N∈〈〈M〉〉

MorC(1, R
′ ⊗ PN)

Hence, giving such a compatible collection of morphisms αN is equivalent to giving a
C-morphism Rω → R′.
It is also not hard to check that the natural transformations that respect the tensor
structure correspond to morphisms of C-algebras R→ R′ under this identification.

Before we show that Rω is a simple solution ring for M , we need some more results
from [11] resp. from [10]:
As ω has values in k-vector spaces, 〈〈M〉〉 together with ω is a neutral Tannakian category
(see [10]), and therefore equivalent to the category of representations of the algebraic
group scheme G = Aut⊗(ω).
This also induces an equivalence of their ind-categories, and Rω corresponds to the group
ring k[G] with the right regular representation (cf. proof of [11, Theorem 3.2]).

6.3. Proposition. The object Rω ∈ Ind(〈〈M〉〉) ⊆ C associated to ω is a simple solution
ring for M , and satisfies (Rω)C = k.

6.4. Remark. By Prop. 5.14, Rω therefore contains a unique Picard-Vessiot ring for M .
This Picard-Vessiot ring will be called the PV-ring associated to ω. Indeed, Rω is
already minimal and hence a Picard-Vessiot ring itself. This will be seen at the end of
the proof of Thm. 6.5. There is also a way of directly showing that Rω is isomorphic to a
quotient of the universal solution ring for M which would also imply that Rω is a PV-ring
(cf. Cor. 5.16). But we don’t need this here, so we will omit it.

Proof. As ω defines an equivalence of categories 〈〈M〉〉 → Repk(G) (and also of their
ind-categories), and ω(Rω) = k[G], one obtains

(Rω)C = MorC(1, Rω) ' HomG(k, k[G]) = k[G]G = k.

For showing that Rω is simple, let I 6= Rω be an ideal of Rω in C. We even have
I ∈ Ind(〈〈M〉〉), as it is a subobject of R. By the equivalence of categories ω(I) belongs to
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Ind(Repk(G)), and ω(I) is an ideal of ω(Rω) = k[G]. But k[G] does not have non-trivial
G-stable ideals. Hence, ω(I) = 0, and therefore I = 0.

As seen in Lemma 6.2, idRω ∈ MorC(Rω, Rω) induces a natural transformation α :
Rω⊗(ι◦ω)→ Rω⊗ id〈〈M〉〉, in particular it induces a CRω -morphism αM : Rω⊗ ι(ω(M))→
Rω ⊗M . By [11, Prop. 1.13], such a natural transformation is an equivalence, as 〈〈M〉〉 is
rigid9. Therefore, the morphism αM is an isomorphism. As Rω ⊗ ι(ω(M)) = ιRω(ω(M)),
Lemma 4.7 implies that εMR

is an isomorphism.
Hence, Rω is a solution ring for M .

6.5. Theorem. Let M ∈ C be dualizable, and let ` be a field extension of k. Then there is
a bijection between isomorphism classes of Picard-Vessiot rings R for Mι(`) over 1̃ := ι(`)
and isomorphism classes of fibre functors ω from 〈〈Mι(`)〉〉 into `-vector spaces.
This bijection is induced by R 7→ ωR and ω 7→ (PV-ring inside Rω) given in Prop. 6.1
and Rem. 6.4, respectively.

Proof. Clearly isomorphic Picard-Vessiot rings give rise to isomorphic fibre functors and
isomorphic fibre functors give rise to isomorphic Picard-Vessiot rings. Hence, we only
have to show that the maps are inverse to each other up to isomorphisms.
By working directly in the category Cι(`) we can assume that ` = k.

On one hand, for given ω and corresponding PV-ring R, one has natural isomorphisms

ιR(ω(N)) = R⊗k ω(N)→ NR

(see proof of Prop. 6.3). By adjunction these correspond to natural isomorphisms

λN : ω(N) ∼= (NR)C = ωR(N),

i.e. the functors ω and ωR are isomorphic.
Conversely, given a Picard-Vessiot ring R and associated fibre functor ωR, let Rω be

the simple solution ring constructed above.
As ιR = R ⊗ ι and (NR)CR = ωR(N) for all N ∈ 〈〈M〉〉, the natural isomorphisms εNR :
ιR
(
(NR)CR

)
→ NR form a natural transformation R⊗ (ι ◦ ωR)→ R⊗ id〈〈M〉〉. By Lemma

6.2, this natural transformation corresponds to a morphism of C-algebras ϕ : Rω → R.
As Rω is a simple C-algebra, ϕ is a monomorphism. But R is a minimal solution ring, and
hence ϕ is even an isomorphism. Therefore, Rω is isomorphic to R and already minimal,
i.e. Rω is a Picard-Vessiot ring itself.

7. Galois group schemes

Given a dualizable object M ∈ C and a Picard-Vessiot ring R for M , one considers the
group functor

AutC−alg(R) : Algk → Groups

9Rigidity of the target category which is assumed in loc. cit. is not needed. See also [5, Prop. 1.1].
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which associates to each k-algebra D the group of automorphisms of R⊗kD as an algebra
in Cι(D), i.e. the subset of MorCι(D)

(R⊗k D,R⊗k D) consisting of all isomorphisms which
are compatible with the algebra structure of R⊗k D.
This functor is called the Galois group of R over 1.

On the other hand, given a fibre functor ω : 〈〈M〉〉 → vectk, one considers the group
functor

Aut⊗(ω) : Algk → Groups

which associates to each k-algebra D the group of natural automorphisms of the functor
D ⊗k ω : N 7→ D ⊗k ω(N).
As 〈〈M〉〉 together with the fibre functor ω is a neutral Tannakian category, this group
functor is called the Tannakian Galois group of (〈〈M〉〉, ω). In [10] it is shown that this
group functor is indeed an algebraic group scheme.

The aim of this section is to show that both group functors are isomorphic algebraic
group schemes if ω = ωR is the fibre functor associated to R.

We start by recalling facts about group functors, (commutative) Hopf-algebras and
affine group schemes. All of this can be found in [33].

A group functor Algk → Groups is an affine group scheme over k if it is representable
by a commutative algebra over k. This commutative algebra then has a structure of a
Hopf-algebra. The group functor is even an algebraic group scheme (i.e. of finite type
over k) if the corresponding Hopf-algebra is finitely generated.
The category of commutative Hopf-algebras over k and the category of affine group
schemes over k are equivalent. This equivalence is given by taking the spectrum of a
Hopf-algebra in one direction and by taking the ring of regular functions in the other
direction.
For a Hopf-algebra H over k, and corresponding affine group scheme G := Spec(H), the
category Comod(H) of right comodules of H and the category Rep(G) of representations
of G are equivalent. This equivalence is given by attaching to a comodule V with comod-
ule map ρ : V → V ⊗k H the following representation % : G → End(V ) of G: For any
k-algebra D and g ∈ G(D) = Homk−alg(H,D), the endomorphism %(g) on V ⊗k D is the
D-linear extension of

g ◦ ρ : V → V ⊗k H → V ⊗k D.

On the other hand, for any representation % : G → End(V ), the universal element idH ∈
Homk−alg(H,H) = G(H) gives a H-linear homomorphism %(idH) : V ⊗k H → V ⊗k H,
and its restriction to V ⊗ 1 is the desired comodule map ρ : V → V ⊗k H.

For showing that the group functors AutC−alg(R) and Aut⊗(ωR) are isomorphic al-
gebraic group schemes, we show that they are both represented by the k-vector space
H := (R⊗R)C = ωR(R). The next lemma shows that H is a finitely generated (commu-
tative) k-Hopf-algebra, and hence Spec(H) is an algebraic group scheme over k.

7.1. Remark. This fact is shown for differential modules over algebraically closed con-
stants in [32, Thm. 2.33], and for t-motives in [27, Sections 3.5-4.5].
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7.2. Lemma. Let R be a PV-ring for M and H := ωR(R) = (R⊗R)C.

1. The morphism εRR : R⊗kH → RR = R⊗R is an isomorphism in CR (with R-module
structure on R⊗R given on the first factor).

2. H is a finitely generated commutative k-algebra where the structure maps uH : k →
H (unit), µH : H ⊗k H → H (multiplication) are given by

uH := ωR(uR) and µH := ωR(µR),

respectively.

3. The k-algebra H is even a Hopf-algebra where the structure maps cH : H → k
(counit), ∆ : H → H ⊗k H (comultiplication) and s : H → H (antipode) are given
as follows: Counit and antipode are given by

cH := (µR)C and s := (τ)C,

respectively, where τ ∈ MorC(R ⊗ R,R ⊗ R) denotes the twist morphism. The
comultiplication is given by

∆ := ωR
(
ε−1
RR
◦ (uR ⊗ idR)

)
10

7.3. Remark. The definition of ∆ might look strange. Compared to other definitions
(e.g. in [30, Sect. 2]), where ∆ is the map on constants/invariants induced by the map
R ⊗ R → R ⊗ R ⊗ R, a ⊗ b 7→ a ⊗ 1 ⊗ b, one might think that ∆ should be defined as
(idR⊗uR⊗ idR)C = ωR(uR⊗ idR). The reason for the difference is that in [30] and others,
one uses (R ⊗ R) ⊗R (R ⊗ R) ∼= R ⊗ R ⊗ R with right-R-module structure on the left
tensor factor (R⊗R) and left-R-module structure on the right tensor factor (R⊗R).
In our setting, however, we are always using left-R-modules. In particular, the natural
isomorphism ωR(R)⊗k ωR(R)→ ωR(R⊗R) reads as

MorCR(R,R⊗R)⊗k MorCR(R,R⊗R)→ MorCR(R,R⊗R⊗R)

where the left hand side is isomorphic to MorCR(R, (R ⊗ R)⊗R (R ⊗ R)). But here, this
is the tensor product of left-R-modules.
The additional ε−1

RR
in the definition of ∆ solves the problem. It is also implicitly present

in the identification H ⊗k H ∼= (R⊗R⊗R)C in [30] (cf. proof of Lemma 2.4(b) loc. cit.).

10Hence, ∆ is the image under ωR of the morphism R
uR⊗idR−−−−−→ R⊗R

ε−1
RR−−−→ R⊗k H
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Proof of Lemma 7.2. As R is an object of Ind(〈〈M〉〉), part 1 follows from Prop. 4.8.
As ωR is a tensor functor, it is clear that the structure of a commutative algebra of R
induces a structure of a commutative algebra on ωR(R) = H via the maps uH and µH
defined in the lemma. As in the proof of Prop. 5.11, one verifies that H = ωR(R) is
finitely generated as k-algebra.
Part 3 is obtained by checking that the necessary diagrams commute. We only show that
∆ is coassociative, i.e. that (∆ ⊗k idH) ◦ ∆ = (idH ⊗k ∆) ◦ ∆, and leave the rest to the
reader.

As ∆ = ωR
(
ε−1
RR
◦ (uR ⊗ idR)

)
, ∆⊗k idH = ωR

(
(ε−1
RR
⊗k idH) ◦ (uR ⊗ idR ⊗k idH)

)
and

idH ⊗k ∆ = ωR(idR ⊗k ∆), it suffices to show that the morphisms

(ε−1
RR
⊗k idH) ◦ (uR ⊗ idR ⊗k idH) ◦ ε−1

RR
◦ (uR ⊗ idR) and

(idR ⊗k ∆) ◦ ε−1
RR
◦ (uR ⊗ idR)

are equal. This is seen by showing that the following diagram commutes:

R
uR⊗idR //

uR⊗idR
��

R⊗R
ε−1
RR //

uR⊗idR⊗R

��

R⊗k H
uR⊗idR⊗kH
��

R⊗R idR⊗uR⊗idR //

ε−1
RR
��

R⊗R⊗R
idR⊗ε−1

RR // R⊗R⊗k H
ε−1
RR
⊗kidH

��
R⊗k H

idR⊗k∆=ιR(∆) // R⊗k H ⊗k H

Obviously the upper squares commute. Let δ := ε−1
RR
◦(uR⊗idR). Then the middle horizon-

tal morphism equals idR⊗δ and the lower horizontal morphism is ιR(∆) = ιR((idR⊗δ)CR).
As ε is a natural transformation ιR ◦ ()CR → idCR , and as ε−1

RR
⊗k idH = ε−1

(R⊗kH)R
, also the

lower square commutes.

7.4. Theorem. Let R be a PV-ring for M . Then the group functor

AutC−alg(R) : Algk → Groups

is represented by the Hopf-algebra H = ωR(R) = (R⊗R)C. Furthermore Spec(υ(R)) is a
torsor of AutC−alg(R) over X.

Proof. This is shown similar to [24, Prop.10.9] or [13]. One has to use that

δ : R
uR⊗idR−−−−→ R⊗R

ε−1
RR−−→ R⊗k H

defines a right coaction of H on R. The property of a right coaction, however, is given
by the commutativity of the diagram in the proof of Lemma 7.2.

The torsor property is obtained by the isomorphism υ(ε−1
RR

) : υ(R) ⊗OX υ(R) →
υ(R)⊗k H.



520 ANDREAS MAURISCHAT

7.5. Theorem. Let R be a PV-ring for M and H = ωR(R).

1. For all N ∈ 〈〈M〉〉, ρN : ωR(N)→ H ⊗k ωR(N) given by

ρN := ωR
(
ε−1
NR
◦ (uR ⊗ idN)

)
11

defines a left coaction of H on ωR(N).

2. The collection ρ := (ρN)N∈〈〈M〉〉 is a natural transformation of tensor functors ωR 7→
H ⊗k ωR, where H ⊗k ωR is a functor 〈〈M〉〉 →ModH .

7.6. Remark. By going to the inductive limit one also gets a map ρR : ωR(R)→ H ⊗k
ωR(R). This map is nothing else then the comultiplication ∆ : H → H ⊗k H.

Proof of Thm. 7.5. Part 1 is proven in the same manner as the coassociativity of ∆.
For proving the second part, recall that ε is a natural transformation. Hence, for every
morphism f : N → N ′ the diagram

N
uR⊗idN //

f

��

R⊗N
ε−1
NR //

idR⊗f
��

R⊗k ωR(N)

ιR((idR⊗f)C)
��

N ′
uR⊗idN′// R⊗N ′

ε−1

N′
R // R⊗k ωR(N ′)

commutes. As ιR((idR ⊗ f)C) = idR ⊗k ωR(f), applying ωR to the diagram gives the
desired commutative diagram for ρ being a natural transformation. Compatibility with
the tensor product is seen in a similar way.

7.7. Theorem. Let R be a PV-ring for M and H = ωR(R). Then the group functor

Aut⊗(ωR) : Algk → Groups

is represented by the Hopf-algebra H.12

Proof. As ρ := (ρN)N∈〈〈M〉〉 defines a left coaction of H on the functor ωR by natural
transformations, one obtains a right action of Spec(H) on ωR. Composing with the
antipode (i.e. taking inverse group elements), one therefore gets a homomorphism of
group functors

ϕ : Spec(H)→ Aut⊗(ωR).

Explicitly, for any k-algebra D and h ∈ H(D) = Homk−alg(H,D), one defines ϕ(h) ∈
Aut⊗(ωR)(D) = Aut⊗(D⊗k ωR) as the natural transformation which for N ∈ 〈〈M〉〉 is the
D-linear extension of the composition

ωR(N)
ρN−→ H ⊗k ωR(N)

s⊗idωR(N)−−−−−−→ H ⊗k ωR(N)
h⊗idωR(N)−−−−−−→ D ⊗k ωR(N).

11The map ε−1NR
◦ (uR ⊗ idN ) is a morphism in C: N → R⊗N → R⊗k ωR(N)

12As shown in the following proof, the representing Hopf-algebra naturally is the coopposite Hopf-
algebra Hcop of H. However, the antipode s is an isomorphism of Hopf-algebras s : H → Hcop, hence
Hcop ∼= H.
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For showing that the homomorphism ϕ is indeed an isomorphism, we give the inverse
map:
For any k-algebra D and g ∈ Aut⊗(ωR)(D), one has the homomorphism gR ∈ EndD(D⊗k
ωR(R)) = EndD(D ⊗k H), and one defines ψ(g) ∈ H(D) as the composition

H
s−→ H

uD⊗idH−−−−−→ D ⊗k H
gR−→ D ⊗k H

idD⊗cH−−−−→ D.

It is a straight forward calculation to check that ψ(g) is indeed a homomorphism of
k-algebras and that ϕ and ψ are inverse to each other.

7.8. Corollary. The affine group schemes AutC-Alg(R) and Aut⊗(ωR) are isomorphic.

Proof. By Thm. 7.4 and Thm. 7.7 both functors are represented by the Hopf-algebra
H = ωR(R).

8. Galois correspondence

In this section we will establish a Galois correspondence between subalgebras of a PV-
ring and closed subgroups of the corresponding Galois group. As in [26], the Galois
correspondence will only take into account subalgebras which are PV-rings themselves on
the one hand, and normal subgroups on the other.

We start by recalling facts about sub-Hopf-algebras and closed subgroup schemes
which can be found in [33].

In the equivalence of affine group schemes and Hopf-algebras, closed subgroup schemes
correspond to Hopf-ideals, and closed normal subgroup schemes correspond to so called
normal Hopf-ideals. As there is a correspondence between closed normal subgroup schemes
and factor group schemes of G by taking the cokernel and the kernel, respectively, there is
also a correspondence between normal Hopf-ideals and sub-Hopf-algebras ([29, Thm. 4.3]).
This correspondence is given by

I 7→ H(I) := Ker
(
H

∆−idH⊗uH−−−−−−−→ H ⊗k H → H ⊗k (H/I)
)
,

for a normal Hopf-ideal I, and by

H ′ 7→ (H ′)+H,

for a sub-Hopf-algebra H ′, where (H ′)+ is defined to be the kernel of the counit cH′ :
H ′ → k.

Furthermore, for a sub-Hopf-algebra H ′ ⊆ H, the category Comod(H ′) embeds into
Comod(H) as a full subcategory.



522 ANDREAS MAURISCHAT

8.1. Theorem. Let M ∈ C be dualizable, R a PV-ring for M (assuming it exists), ω = ωR
the corresponding fibre functor, H = ωR(R), and G = Spec(H) = AutC-Alg(R) = Aut⊗(ω)
the corresponding Galois group. Then there is a bijection between

T := {T ∈ C-Alg | T ⊆ R is PV-ring for some N ∈ 〈〈M〉〉}

and
N := {N | N ≤ G closed normal subgroup scheme of G}

given by Ψ : T→ N, T 7→ AutCT -Alg(R) resp. Φ : N→ T,N 7→ RN .

Here, the ring of invariants RN is the largest subobject T of R such that for all k-
algebras D and all σ ∈ N (D) ⊂ AutCι(D)

(R⊗kD), one has σ|T⊗kD = idT⊗kD. Equivalently,

RN is the equalizer of the morphisms idR⊗uk[N ] : R→ R⊗k k[N ] 13 and R
δ−→ R⊗kH �

R ⊗k k[N ], where δ = ε−1
RR
◦ (uR ⊗ idR) is the comodule map of R as H-comodule, and

H � k[N ] is the canonical epimorphism.

Proof of Thm. 8.1. The functor ωR is an equivalence of categories

ωR : 〈〈M〉〉 → comod(H),

and also of their ind-categories.14 Hence, it provides a bijection between subalgebras of
R in C and subalgebras of H stable under the left comodule structure.
We will show that under this bijection sub-PV-rings correspond to sub-Hopf-algebras and
that this bijection can also be described as given in the theorem.

First, let T ⊆ R be a PV-ring for some N ∈ 〈〈M〉〉. Then 〈〈N〉〉 is a full subcategory
of 〈〈M〉〉, and the fibre functor ωT : 〈〈N〉〉 → vectk corresponding to T is nothing else
than the restriction of ωR to the subcategory 〈〈N〉〉, as T is a subobject of R. Hence,
H ′ := ωR(T ) = ωT (T ) is a sub-Hopf-algebra of H. Therefore, we obtain a closed normal
subgroup scheme of G = Spec(H) as the kernel of Spec(H) � Spec(H ′). As Spec(H) =
AutC-Alg(R) and Spec(H ′) = AutC-Alg(T ), this kernel is exactly AutCT -Alg(R).

On the other hand, let N be a closed normal subgroup scheme of G = Spec(H) defined
by a normal Hopf-ideal I of H, and

H ′ = Ker
(
H

∆−idH⊗uH−−−−−−−→ H ⊗k H � H ⊗k (H/I)
)

the corresponding sub-Hopf-algebra of H.
The subcategory comod(H ′) is generated by one object V (as every category of finite
comodules is), and the object N ∈ 〈〈M〉〉 corresponding to V via ωR, has a PV-ring T
inside R by Thm. 5.18, since R is a simple solution ring for N with RC = k. Furthermore,
since T is the PV-ring corresponding to the fibre functor ωR : 〈〈N〉〉 → comod(H ′), we
have ωR(T ) = H ′.

13k[N ] := ON (N ) denotes the ring of regular functions on the affine scheme N .
14Here, comod(H) denotes the category of left-H-comodules which are finite-dimensional as k-vector

spaces.
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It remains to show that T = RN , i.e. that

T = Ker
(
R

δ− idR⊗kuH−−−−−−−→ R⊗k H � R⊗k k[N ] = R⊗k (H/I)
)
.

As ωR is an equivalence of categories, this is equivalent to

ωR(T ) = Ker
(
ωR(R)

ωR(δ)− ωR(idR)⊗kuH−−−−−−−−−−−−−→ ωR(R)⊗k H � ωR(R)⊗k (H/I)
)
.

But, as ωR(T ) = H ′, ωR(R) = H and ωR(δ) = ∆, this is just the definition of H ′.
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