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A STRUCTURE THEOREM FOR QUASI-HOPF BIMODULE
COALGEBRAS

DANIEL BULACU

Abstract. Let H be a quasi-Hopf algebra. We show that any H-bimodule coalgebra
C for which there exists an H-bimodule coalgebra morphism ν : C → H is isomorphic
to what we will call a smash product coalgebra. To this end, we use an explicit monoidal
equivalence between the category of two-sided two-cosided Hopf modules over H and the
category of left Yetter-Drinfeld modules over H. This categorical method allows also to
reobtain the structure theorem for a quasi-Hopf (bi)comodule algebra given in [Panaite,
Van Oystaeyen, 2007] and [Dello, Panaite, Van Oystaeyen, Zhang, 2016].

1. Introduction

Two-sided two-cosided Hopf modules were introduced by Woronowicz [Woronowicz, 1989]
under the name of bicovariant bimodules, as a tool in the study of non-commutative
differential calculus on quantum groups. He also extended the structure theorem of Hopf
modules to the category of Hopf bimodules HMH

H and two-sided two-cosided Hopf modules
H
HMH

H over a Hopf algebra H. Later on, Schauenburg proved in [Schauenburg, 1994] that
the structure theorems provide the classification of Hopf bimodules and two-sided two-
cosided Hopf modules in the form of category equivalences HMH

H
∼= HM and H

HMH
H
∼=

H
HYD, where HM is the category of left H-representations and H

HYD is the category of left
Yetter-Drinfeld modules over H. These equivalences are even monoidal and they can be
regarded as a coordinate free versions of the classification in [Woronowicz, 1989]. Using
categorical techniques, Schauenburg [Schauenburg, 2012] also proved that all the results
mentioned above remain valid in the setting provided by quasi-Hopf algebras. Despite
the fact that a quasi-Hopf algebra H is not a coassociative coalgebra, and thus we cannot
define H-comodules, one can still consider the categories HMH

H and H
HMH

H , by using
the framework of monoidal categories. Namely, H is a coalgebra within the monoidal
category of H-bimodules HMH , and therefore we can define HMH

H := (HMH)H and
H
HMH

H := H(HMH)H , the category of right H-corepresentations and of H-bicomodules,
respectively, within HMH .

Our main goal is to give structure theorems for algebras and coalgebras in HMH
H , and

respectively in H
HMH

H . On one hand, due to the monoidal category equivalences men-
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tioned above, these are classified by algebras and coalgebras in HM, and respectively in
H
HYD. Since our equivalences are monoidal, and monoidal functors carry (co)algebras to
(co)algebras we get that, up to an isomorphism, the algebras are smash product algebras
in the sense of [Bulacu, Panaite, Van Oystaeyen, 2000], while coalgebras are H-corings
whose structure is completely determined by a cowreath defined by an H-module coalge-
bra as in [Bulacu, Caenepeel, 2014]. Of course, in the two-sided two-cosided case some
additional structures on these objects are required, mainly because of the extra left H-
colinear condition. On the other hand, it turns out that algebras in HMH

H (resp. H
HMH

H)
are H-(bi)comodule algebras A in the sense of Hausser and Nill [Hausser, Nill, 1999],
equipped with an H-(bi)comodule algebra map i : H → A. This is nothing but the con-
text considered in [Panaite, Van Oystaeyen, 2007] and [Dello, Panaite, Van Oystaeyen,
Zhang, 2016], so the main results in loc. cit. actually classify the algebras in HMH

H

and H
HMH

H , respectively. As we have explained, one gets these for free from the above
monoidal category equivalences. Furthermore, adapting categorical techniques from [Be-
spalov, Drabant, 1998], we show that coalgebras in H

HMH
H can be also characterized as

pairs (C,H) consisting of an H-bimodule coalgebra C and an H-bimodule coalgebra mor-
phism π : C → H, but also as smash product coalgebras of a coalgebra in H

HYD and H.
In particular this leads to a structure theorem for quasi-Hopf bimodule coalgebras.

The paper is organized as follows. In Section 2 we briefly recall the axioms of a quasi-
Hopf algebra H and its basic properties, the formalism of monoidal categories, functors
and monoidal equivalences, and review the Hausser and Nill monoidal equivalence between

HMH
H and HM, respectively. In Section 3 we give the structure of an algebra in HMH

H .
The main result here is Theorem 3.7, an equivalent version of [Panaite, Van Oystaeyen,
2007, Theorem 2.5]. For its proof we use an alternative monoidal equivalence between

HMH
H and HM. The latter is based on a concrete definition of the space of coinvariants of a

quasi-Hopf bimodule and has the advantage that provides an explicit monoidal equivalence
between H

HMH
H and H

HYD, too. In Section 4, we use this alternative monoidal equivalence
between H

HMH
H and H

HYD to give in Theorem 4.11 the structure of an algebra in H
HMH

H . We
also show that Theorem 4.11 and [Dello, Panaite, Van Oystaeyen, Zhang, 2016, Theorem
1.7] are equivalent. The coalgebra case is treated in Section 5. The main results of this
last section are Theorem 5.3 and Theorem 5.6 which in particular give a structure theorem
for a quasi-Hopf bimodule coalgebra.

We end our introduction with a philosophical note. Although the definition of quasi-
Hopf algebras is - essentially - very natural, the explicit formulas and computations are
often quite technical. This time, due to the categorical results we proved, we got some
complicated formulas for free and were able to avoid most of the computations involving
them.

2. Preliminaries

2.1. Quasi-bialgebras and quasi-Hopf algebras. We work over a field k. All
algebras, linear spaces, etc. will be over k; unadorned ⊗ means ⊗k. Following Drinfeld



A STRUCTURE THEOREM FOR QUASI-HOPF BIMODULE COALGEBRAS 3

[Drinfeld, 1990], a quasi-bialgebra is a quadruple (H,∆, ε,Φ) where H is an associative
algebra with unit, Φ is an invertible element in H ⊗H ⊗H, and ∆ : H → H ⊗H and
ε : H → k are algebra homomorphisms satisfying the identities

(IdH ⊗∆)(∆(h)) = Φ(∆⊗ IdH)(∆(h))Φ−1, (2.1)

(IdH ⊗ ε)(∆(h)) = h , (ε⊗ IdH)(∆(h)) = h, (2.2)

for all h ∈ H, where Φ is a 3-cocycle, in the sense that

(1⊗ Φ)(IdH ⊗∆⊗ IdH)(Φ)(Φ⊗ 1)

= (IdH ⊗ IdH ⊗∆)(Φ)(∆⊗ IdH ⊗ IdH)(Φ), (2.3)

(Id⊗ ε⊗ IdH)(Φ) = 1⊗ 1. (2.4)

The map ∆ is called the coproduct or the comultiplication, ε is the counit, and Φ is
the reassociator. As for Hopf algebras we denote ∆(h) = h1 ⊗ h2, but since ∆ is only
quasi-coassociative we adopt the further convention (summation understood):

(∆⊗ IdH)(∆(h)) = h(1,1) ⊗ h(1,2) ⊗ h2 , (IdH ⊗∆)(∆(h)) = h1 ⊗ h(2,1) ⊗ h(2,2),

for all h ∈ H. We will denote the tensor components of Φ by capital letters, and the ones
of Φ−1 by small letters, namely

Φ = X1 ⊗X2 ⊗X3 = T 1 ⊗ T 2 ⊗ T 3 = V 1 ⊗ V 2 ⊗ V 3 = · · ·
Φ−1 = x1 ⊗ x2 ⊗ x3 = t1 ⊗ t2 ⊗ t3 = v1 ⊗ v2 ⊗ v3 = · · ·

H is called a quasi-Hopf algebra if, moreover, there exists an anti-morphism S of the
algebra H and elements α, β ∈ H such that, for all h ∈ H, we have:

S(h1)αh2 = ε(h)α and h1βS(h2) = ε(h)β, (2.5)

X1βS(X2)αX3 = 1 and S(x1)αx2βS(x3) = 1. (2.6)

Our definition of a quasi-Hopf algebra is different from the one given by Drinfeld
[Drinfeld, 1990] in the sense that we do not require the antipode to be bijective. In the
case where H is finite dimensional or quasi-triangular, bijectivity of the antipode follows
from the other axioms, see [Bulacu, Caenepeel, 2003] and [Bulacu, Nauwelaerts, 2003],
so the two definitions are equivalent. Anyway, the bijectivity of the antipode S will be
implicitly understood in the case when S−1, the inverse of S, appears is formulas or
computations.

It is well known that the antipode of a Hopf algebra is an anti-morphism of coalgebras.
For a quasi-Hopf algebra, we have the following statement: there exists an invertible
element f = f 1⊗f 2 ∈ H⊗H, called the Drinfeld twist or the gauge transformation, such
that ε(f 1)f 2 = ε(f 2)f 1 = 1 and

f∆(S(h))f−1 = (S ⊗ S)(∆cop(h)), (2.7)
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for all h ∈ H. f can be described explicitly: first we define γ, δ ∈ H ⊗H by

γ = S(x1X2)αx2X3
1 ⊗ S(X1)αx3X3

2

(2.3,2.5)
= S(X2x1

2)αX3x2 ⊗ S(X1x1
1)αx3, (2.8)

δ = X1
1x

1βS(X3)⊗X1
2x

2βS(X2x3)
(2.3,2.5)

= x1βS(x3
2X

3)⊗ x2X1βS(x3
1X

2). (2.9)

With this notation f and f−1 are given by the formulas

f = (S ⊗ S)(∆op(x1))γ∆(x2βS(x3)), (2.10)

f−1 = ∆(S(x1)αx2)δ(S ⊗ S)(∆cop(x3)). (2.11)

Moreover, f satisfies the following relations:

f∆(α) = γ , ∆(β)f−1 = δ. (2.12)

We will need the appropriate generalization of the formula h1⊗h2S(h3) = h⊗1 in clas-
sical Hopf algebra theory. Following [Hausser, Nill, 1999] and [Hausser, Nill, unpublished],
we define

pR = p1 ⊗ p2 = x1 ⊗ x2βS(x3), (2.13)

qR = q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2, (2.14)

pL = p̃1 ⊗ p̃2 = X2S−1(X1β)⊗X3, (2.15)

qL = q̃1 ⊗ q̃2 = S(x1)αx2 ⊗ x3. (2.16)

For all h ∈ H, we then have

(1⊗ S−1(h2))qR∆(h1) = (h⊗ 1)qR, (2.17)

∆(h2)pL(S−1(h1)⊗ 1) = pL(1⊗ h). (2.18)

We also have that

q1Q1
1x

1 ⊗ q2Q1
2x

2 ⊗Q2x3

= q1X1
1 ⊗ S−1(f 2X3)q2

1X
1
(2,1) ⊗ S−1(f 1X2)q2

2X
1
(2,2), (2.19)

X1 ⊗ S(X2)q̃1X3
1 ⊗ q̃2X3

2 = q1x1
1 ⊗ S(q2x1

2)x2 ⊗ x3, (2.20)

q1
1x

1 ⊗ q1
2x

2 ⊗ q2x3 = X1 ⊗ q1X2
1 ⊗ S−1(X3)q2X2

2 , (2.21)

where Q1 ⊗Q2 is a second copy for qR in H ⊗H.

2.2. Monoidal categories. For the definition of a (co)algebra in a monoidal category
C and related topics we refer to [Kassel, 1995] and [Majid, 1995]. Usually, for a monoidal
category C, we denote by ⊗ the tensor product, by 1 the unit object, and by a, l, r the
associativity constraint and the left and right unit constraints, respectively.

If H is a quasi-bialgebra, then the category HM of left H-representations is monoidal.
If U, V are left H-modules then the tensor product between U and V is the tensor product
over k equipped with the left H-module structure given by ∆, i.e. h·(u⊗v) = h1 ·u⊗h2 ·v,
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for all h ∈ H, u ∈ U and v ∈ V . The associativity constraint on HM is the following: for
U, V,W ∈ HM, aU,V,W : (U ⊗ V )⊗W // U ⊗ (V ⊗W ) is given by

aU,V,W ((u⊗ v)⊗ w) = X1 · u⊗ (X2 · v ⊗X3 · w).

The unit object is k considered as a left H-module via ε, the counit of H. The left and
right unit constraints are the same as for the category kM of k-vector spaces.

A (co)algebra in HM is called a left H-module (co)algebra.

HMH , the category of H-bimodules is monoidal as well, since it can be identified
with the category of left modules over the quasi-Hopf algebra Hop ⊗ H, where Hop is
the opposite quasi-bialgebra associated to H. We provide the explicit construction of the
monoidal structure on HMH .

• The associativity constraints a′M,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P ) are given by

a′M,N,P ((m⊗ n)⊗ p) = X1 ·m · x1 ⊗ (X2 · n · x2 ⊗X3 · p · x3); (2.22)

• the unit object is k viewed as an H-bimodule via the counit ε of H;

• the left and right unit constraints are given by the natural isomorphisms k ⊗M ∼=
M ∼= M ⊗ k.

We call a (co)algebra in HMH an H-bimodule (co)algebra.
A (op)monoidal functor between two monoidal categories is a functor that respects

the two monoidal structures. More precisely:

2.3. Definition. Let (C,⊗, 1, a, l, r) and (C ′,⊗′, 1′, a′, l′, r′) be monoidal categories and
F : C → C ′ a functor.

i) F is called monoidal if there exists a family of morphisms

ϕ2 = (ϕ2,X,Y : F (X)⊗′ F (Y )→ F (X ⊗ Y ))X,Y ∈C,

natural in X and Y , and ϕ0 : 1′ → F (1) a morphism in C ′ such that, for all X, Y, Z ∈ C,

ϕ2,X,Y⊗Z(IdF (X) ⊗′ ϕ2,Y,Z)aF (X),F (Y ),F (Z) = F (aX,Y,Z)ϕ2,X⊗Y,Z(ϕ2,X,Y ⊗′ IdF (Z)),

F (lX)ϕ2,1,X(ϕ0 ⊗′ IdF (X)) = l′F (X),

F (rX)ϕ2,X,1(IdF (X) ⊗′ ϕ0) = r′F (X).

ii) F is called opmonoidal if there exists a family of morphisms

ψ2 = (ψ2,X,Y : F (X ⊗ Y )→ F (X)⊗′ F (Y ))X,Y ∈C,

natural in X and Y , and ψ0 : F (1)→ 1′ a morphism in C ′ such that, for all X, Y, Z ∈ C,

(IdF (X) ⊗′ ψ2,Y,Z)ψ2,X,Y⊗ZF (aX,Y,Z) = aF (X),F (Y ),F (Z)(ψ2,X,Y ⊗′ IdF (Z))ψ2,X⊗Y,Z , (2.23)

l′F (X)(ψ0 ⊗′ IdF (X))ψ2,1,X = F (lX), (2.24)

r′F (X)(IdF (X) ⊗′ ψ0)ψ2,X,1 = F (rX). (2.25)
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iii) F is called a strong monoidal functor if it is monoidal and, moreover, ϕ0 and ϕ2

are defined by isomorphisms in C ′. Equivalently, F is strong monoidal if it is opmonoidal
and, moreover, ψ0 and ψ2 are defined by isomorphisms in C ′.

It is well known that a (op)monoidal functor carries (co)algebras to (co)algebras, see
[Majid, 1995].

The notion of natural transformation extends to the monoidal setting as follows.

2.4. Definition. Let C, C ′ be monoidal categories and (F, ϕF2 , ϕ
F
0 ), (G,ϕG2 , ϕ

G
0 ) : C → C ′

monoidal functors. A natural monoidal transformation ω from (F, ϕF2 , ϕ
F
0 ) to (G,ϕG2 , ϕ

G
0 )

is a natural transformation ω : F → G such that, for any objects X, Y of C, the following
equalities hold:

ωX⊗Y ϕ
F
2,X,Y = ϕG2,X,Y (ωX ⊗′ ωY ),

ω1ϕ
F
0 = ϕG0 .

The transformation ω is called a natural monoidal isomorphism if ω is both a natural
monoidal transformation and a natural isomorphism.

Reversing the arrows in the above diagrams we get the definition of a natural op-
monoidal transformation between two opmonoidal functors.

We are now able to define the concept of monoidal equivalence, a concept intensively
used throughout this paper.

2.5. Definition. Let C, C ′ be monoidal categories and F : C → C ′ a monoidal (op-
monoidal, resp. strong monoidal) functor. We say that F is a monoidal (opmonoidal,
resp. strong monoidal) equivalence if there exists a monoidal (opmonoidal, resp. strong
monoidal) functor G : C ′ → C such that FG is naturally monoidally (opmonoidally, resp.
strong monoidally) isomorphic to IdC′ and GF is naturally monoidally (opmonoidally,
resp. strongly monoidally) isomorphic to IdC.

If a functor F : C → C ′ defines a monoidal (opmonoidal, resp. strong monoidal) equiv-
alence between C and C ′ we say that the categories C and C ′ are monoidally (opmonoidally,
resp. strongly monoidally) equivalent.

2.6. The Hausser and Nill structure theorem for quasi-Hopf bimodules.
Throughout this subsection, H is a quasi-bialgebra or a quasi-Hopf algebra with antipode
S and distinguished elements α and β.

Although H is not necessarily a coassociative coalgebra, its comultiplication ∆ and its
counit ε endow H with a coalgebra structure in the monoidal category of H-bimodules,

HMH . Otherwise stated, H is an H-bimodule coalgebra. This allows us to define

HMH
H := (HMH)H and H

HMH := H(HMH) as the categories of right, respectively left, H-
corepresentations within HMH . These categories were introduced by Hausser and Nill in
[Hausser, Nill, unpublished] under the name of the categories of quasi-Hopf H-bimodules.

Explicitly, a right quasi-Hopf H-bimodule M is an H-bimodule together with an H-
bimodule map ρ : M 3 m 7→ m(0) ⊗ m(1) ∈ M ⊗ H such that the following relations
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hold:

(IdM ⊗ ε) ◦ ρ = IdM , (2.26)

Φ · (ρ⊗ IdM)(ρ(m)) = (IdM ⊗∆)(ρ(m)) · Φ, ∀ m ∈M. (2.27)

Up to an isomorphism, a quasi-Hopf H-bimodule is of the form N ⊗H, for a certain
left H-module N ; see the details below.

We have a well defined functor F : HM→ HMH
H . If M ∈ HM then F (M) = M ⊗H

regarded as an object in HMH
H via

h(m⊗ h)h′ = h1 ·m⊗ h2hh
′,

ρ(m⊗ h) = x1 ·m⊗ x2h1 ⊗ x3h2,

for all m ∈M and h, h′ ∈ H. F sends a morphism f in HM to f ⊗ IdH .
The functor F provides a (monoidal) equivalence. To see this we have to recall first

the structure theorem for quasi-Hopf bimodules proved by Hausser and Nill [Hausser, Nill,
unpublished].

For M ∈ HMH
H , define E : M →M given by

E(m) = X1 ·m(0) · βS(X2m(1))αX
3, (2.28)

for all m ∈ M , where M 3 m 7→ ρM(m) := m(0) ⊗ m(1) ∈ M ⊗ H denotes the right
coaction of H on M . The space M coH = {n ∈ M | E(n) = n} is called the space of
coinvariants of M . By [Hausser, Nill, unpublished, Corollary 3.9] it can be also described
as

M coH = {n ∈M | ρ(n) = E(x1 · n) · x2 ⊗ x3}. (2.29)

M coH becomes a left H-module under the action given by h¬n = E(h · n), for all
h ∈ H and n ∈M coH . Also, for further use, record that the following relations hold:

h · E(m) = [h1¬E(m)] · h2 , (2.30)

E(m · h) = ε(h)E(m) , E(h · E(m)) = E(h ·m) , (2.31)

E2 = E,E(m(0)) ·m(1) = m and E(E(m)(0))⊗ E(m)(1) = E(m)⊗ 1, (2.32)

for all m ∈M and h ∈ H.
The following structure theorem for quasi-Hopf bimodules is [Hausser, Nill, unpub-

lished, Theorem 3.8].

2.7. Theorem. If M is a right quasi-Hopf H-bimodule then the map

νM : M coH ⊗H →M, νM(n⊗ h) = n · h, ∀ n ∈M coH , h ∈ H

is an isomorphism of right quasi-Hopf H-bimodules, where M coH⊗H is a right quasi-Hopf
H-bimodule via the structure defined by

a · (n⊗ h) · b = E(a1 · n)⊗ a2hb and ρ(n⊗ h) = E(x1 · n)⊗ x2h1 ⊗ x3h2,
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for all n ∈ N , a, h, b ∈ H. The inverse of ν is given by

ν−1
M (m) = E(m(0))⊗m(1), ∀ m ∈M. (2.33)

As we already mentioned, the structure theorem presented above was used by Hausser
and Nill in [Hausser, Nill, unpublished] in order to extend to the quasi-Hopf algebra setting
a result of Schauenburg [Schauenburg, 1994, Theorem 5.7], which says that HMH

H and HM
are monoidally equivalent categories. Here HMH

H is viewed as a (strict) monoidal category
with tensor product ⊗H , the usual tensor product over H, unit object H considered
as a quasi-Hopf H-bimodule under its regular multiplication and comultiplication, and
canonical associativity constraint and left and right unit constraints, respectively.

Actually, for M,N two right quasi-Hopf H-bimodules, M ⊗H N is a right quasi-Hopf
H-bimodule with the structure given by

h · (m⊗H n) · h′ = h ·m⊗H n · h′, (2.34)

ρM⊗HN : M ⊗H N 3 m⊗H n 7→ m(0) ⊗H n(0) ⊗m(1)n(1) ∈M ⊗H N ⊗H, (2.35)

for all m ∈M , n ∈ N and h, h′ ∈ H.
The equivalence functor between the categories HMH

H and HM is G : HMH
H → HM,

defined as follows. If M ∈ HMH
H then G(M) = M coH , regarded as a left H-module via

the action ¬. G sends a morphism f : M → N in HMH
H to its restriction at M coH and

corestriction at N coH , a well defined left H-linear morphism.
If we consider the maps iM,N : M coH⊗N coH →M⊗HN and jM,N : M⊗HN →M coH⊗

N coH , determined by iM,N(m⊗n) = EM(X1 ·m)⊗H EN(X2 ·n) ·X3 and jM,N(m⊗H n) =
EM(m(0))⊗EN(m(1) ·n), for all m ∈M and n ∈ N , we then have jM,N iM,N = IdMcoH⊗NcoH

and iM,NjM,N = EM⊗HN . Consequently, the image of iM,N is (M ⊗H N)coH , and so iM,N

induces a left H-module isomorphism between M coH ⊗N coH and (M ⊗H N)coH . We will
denote it by

φ2,M,N : M coH ⊗N coH → (M ⊗H N)coH .

If ι : (M ⊗H N)coH ↪→ M ⊗H N is the inclusion map, then the inverse of φ2,M,N is
φ−1

2,M,N := jM,N ι : (M ⊗H N)coH → M coH ⊗ N coH , which is well defined. Finally, if

φ0 : k → G(H) = k1H is the canonical isomorphism, then the functor G : HMH
H → HM

is strong monoidal with the structure provided by (φ2, φ0).
By [Hausser, Nill, unpublished, Proposition 3.11] we then have the following.

2.8. Theorem. If H is a quasi-Hopf algebra then the functor G : HMH
H → HM is

an equivalence of monoidal categories. The quasi-inverse functor of G is F = • ⊗ H :

HM → HMH
H ; F is a strong monoidal functor via the structure given by ϕ2 defined by

the following composition of isomorphisms:

F (M)⊗H F (N) = (M ⊗H)⊗H (N ⊗H) ∼= M ⊗ (N ⊗H) ∼= (M ⊗N)⊗H = F (M ⊗N),

for all M,N ∈ HM. Explicitly, we have that

ϕ2,M,N((m⊗ h)⊗H (n⊗ h′)) = (x1 ·m⊗ x2h1 · n)⊗ x3h2h
′, (2.36)
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for all m ∈ M , h, h′ ∈ H and n ∈ N . The second morphism is ϕ0 = IdH : H → F (k) =
k ⊗H ∼= H.

Note that a different approach for the monoidal equivalence in Theorem 2.8 was pro-
posed by Schauenburg in [Schauenburg, 2012, Theorem 3.10]. In the sequel, a third
approach will be derived from the structure theorem for quasi-Hopf bimodules proved in
[Bulacu, Torrecillas, 2006].

3. A structure theorem for quasi-Hopf comodule algebras

In this section we will see that the structure theorem for quasi-Hopf comodule algebras
given in [Panaite, Van Oystaeyen, 2007] can be easily obtained from the monoidal equiv-
alence between HMH

H and HM. Towards this end, we prefer to make use of a second pair
of functors that define a monoidal equivalence between HMH

H and HM. In other words,
we prefer to work with the alternative structure theorem for quasi-Hopf bimodules from
[Bulacu, Torrecillas, 2006, Remark 2.4].

3.1. An alternative structure theorem for quasi-Hopf bimodules. In the
Hopf algebra case, the set of coinvariants of a Hopf module over H is defined as being
the set of those elements on which H coacts trivially. When H is a Hopf algebra we can
always define a projection onto the set of coinvariants of a Hopf module and, moreover, it
covers the natural inclusion and is closed under the adjoint action. In the quasi-Hopf case,
Hausser and Nill walked backwards through these facts: they first defined the projection
and then, using it, the set of coinvariants of a quasi-Hopf bimodule.

An approach closely related to what we have in the Hopf case was proposed in [Bulacu,
Torrecillas, 2006]. We recall it below; for full details we refer to [Bulacu, Torrecillas, 2006,
Remark 2.4].

For M ∈ HMH
H we define M co(H), the set of alternative coinvariants of M , as being

the set

M co(H) := {m ∈M | ρ(m) = x1 ·m · S(x3
2X

3)f 1 ⊗ x2X1βS(x3
1X

2)f 2},

where f is the Drinfeld’s twist. M co(H) is a left H-module under the action given by

h . m := h1 ·m · S(h2), ∀ h ∈ H, m ∈M.

Furthermore, if E : M →M is given by

E(m) := m(0) · βS(m(1)), ∀ m ∈M,

then it can be proved that M co(H) = {E(m) | m ∈M}. In addition, we have that

E : M coH //M co(H) and E : M co(H) //M coH
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are inverse each other and at the same time left H-linear morphisms. Consequently, for
all M ∈ HMH

H , the morphism

M 3 m 7→ E(m(0))⊗m(1) ∈M co(H) ⊗H

is an isomorphism in HMH
H with inverse given by

M co(H) ⊗H 3 m⊗ h 7→ X1 ·m · S(X2)αX3h ∈M,

and this provides an alternative structure theorem for quasi-Hopf bimodules.
At this point it is clear that a second category equivalence between HMH

H and HM is
produced by the functors F : HM→ HMH

H and G : HMH
H → HM defined as follows. If

M ∈ HMH
H then G(M) = M co(H), and if f : M → N is a morphism in HMH

H then G(f)

is the restriction and corestriction of f at M co(H) and N co(H), respectively, a well defined
morphism in HM. The functor F equals to F , the functor defined in Subsection 2.6.

3.2. Corollary. Let H be a quasi-Hopf algebra and F : HM→ HMH
H and G : HMH

H →
HM the functors defined above. Then F , G are strong monoidal functors and they induce
a monoidal equivalence between HMH

H and HM.

Proof. The functors G,G are naturally isomorphic. The natural isomorphism between
them is given by the natural transformation

E =
(
EM : G(M) = M co(H) → G(M) = M co(H)

)
M∈HMH

H
.

Note that the inverse natural transformation of E is E, and that F = F . Thus, by
Theorem 2.8 it follows that F , G are strong monoidal functors, and that they provide a
monoidal equivalence of categories.

We end by pointing out that the strong monoidal structure of G is given by φ2,M,N :

M co(H) ⊗N co(H) → (M ⊗H N)co(H) determined by the composition

M co(H) ⊗N co(H) EM⊗EN−→ M co(H) ⊗N co(H) φ2,M,N−→ (M ⊗H N)co(H)
EM⊗HN−→ (M ⊗H N)co(H),

and φ0 : k → G(H) = kβ defined by φ0(κ) = κβ, for all κ ∈ k. Explicitly, we have

φ2,M,N(m⊗ n) = q1x1
1 ·m · S(q2x1

2)x2 ⊗H n · S(x3), (3.1)

for all M,N ∈ HMH
H and m ∈ M co(H), n ∈ N co(H). Indeed, by taking into account the

above definitions and structures we compute that

φ2,M,N(m⊗ n)

= EM⊗HNφ2,M,N(EM(m)⊗ EN(n))

= EM⊗HN(EM(X1 · EM(m))⊗H EN(X2 · EN(n)) ·X3)
(2.31)
= EM⊗HN(EM(X1 ·m)⊗H EN(X2 · n) ·X3)
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= EM(X1 ·m)(0) ⊗H EN(X2 · n)(0) ·X3
1βS(EM(X1 ·m)(1)EN(X2 · n)(1)X

3
2 )

(2.5)
= EM(m)(0) ⊗H EE(n) · S(EM(m)(1))

(2.29)
= EM(x1 · EM(m)) · x2 ⊗H n · S(x3)

(2.31)
= EM(x1 ·m) · x2 ⊗H n · S(x3)

= q1x1
1 ·m(0) · βS(q2x1

2m(1))x
2 ⊗H n · S(x3)

= q1x1
1 · EM(m) · S(q2x1

2)x2 ⊗H n · S(x3)

= q1x1
1 ·m · S(q2x1

2)x2 ⊗H n · S(x3),

for all m ∈M co(H) and n ∈ N co(H), as stated.

3.3. A structure theorem for comodule algebras. We will see that the alterna-
tive structure theorem for quasi-Hopf bimodules provides a structure theorem for algebras
within categories of quasi-Hopf bimodules.

The category of H-modules is monoidal, and an H-module (co)algebra is a (co)algebra
in this category. This categorical definition cannot be used to introduce H-comodule
(co)algebras, since we do not have H-comodules. However, to introduce the concept of
comodule algebra over a quasi-bialgebra Hausser and Nill [Hausser, Nill, 1999] generalize
the property of the comultiplication ∆ of H to an arbitrary H-coaction ρ : A → A⊗H
on an associative k-algebra A. More precisely, we have the following.

3.4. Definition. Let H be a quasi-bialgebra. A unital associative algebra A is called
a right H-comodule algebra if there exist an algebra morphism ρ : A → A ⊗ H and an
invertible element Φρ ∈ A⊗H ⊗H such that:

Φρ(ρ⊗ IdH)(ρ(a)) = (IdA ⊗∆)(ρ(a))Φρ, ∀ a ∈ A, (3.2)

(1A ⊗ Φ)(IdA ⊗∆⊗ IdH)(Φρ)(Φρ ⊗ 1H)

= (IdA ⊗ IdH ⊗∆)(Φρ)(ρ⊗ IdH ⊗ IdH)(Φρ), (3.3)

(IdA ⊗ ε) ◦ ρ = IdA, (3.4)

(IdA ⊗ ε⊗ IdH)(Φρ) = (IdA ⊗ IdH ⊗ ε)(Φρ) = 1A ⊗ 1H . (3.5)

In a similar manner we can introduce the notion of left comodule algebra over a quasi-
bialgebra.

We begin with a lemma of independent interest. As before, HMH
H is the category of

right quasi-Hopf bimodules over H equipped with the monoidal structure presented in
Subsection 2.6.

3.5. Lemma. Let H be a quasi-bialgebra. Then giving an algebra A in HMH
H is equivalent

to giving a triple (A, ρ, i) consisting of an associative k-algebra A, a k-linear map ρ : A→
A⊗H and a k-algebra morphism i : H → A such that (A, ρ,Φρ := i(X1)⊗X2 ⊗X3) is
a right H-comodule algebra and i is a right H-comodule morphism, i.e., in addition,

ρ(i(h)) = i(h1)⊗ h2, ∀ h ∈ H.
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Proof. Assume that (A,m : A ⊗H A → A, i : H → A) is an algebra in HMH
H . Since

the forgetful functor from (HMH
H ,⊗H , H) to (HMH ,⊗H , H) is strong monoidal, we get

that (A,m, i) is an algebra in (HMH ,⊗H , H), too. Otherwise stated, (A,m, i) is an H-
ring. Thus, we obtain that A is a k-algebra with multiplication m = qHA,Am and unit
1A = i(1H). Furthermore, the input H-bimodule structure of A is completely determined
by h · a · h′ = i(h)ai(h′), for all h, h′ ∈ H and a ∈ A, and i : H → A becomes a k-algebra
morphism.

Now, since A is an object in HMH
H we have a k-linear map ρ : A 3 a 7→ a〈0〉 ⊗ a〈1〉 ∈

A⊗H such that ε(a〈1〉)a〈0〉 = a and

i(X1)a〈0,0〉 ⊗X2a〈0,1〉 ⊗X3a〈1〉 = a〈0〉i(X
1)⊗ a〈1〉1X

2 ⊗ a〈1〉2X
3, ∀ a ∈ a,

that is (3.4) and (3.2) hold. Furthermore, ρ is an H-bimodule morphism, and so

ρ(i(h)ai(h′)) = i(h1)a〈0〉i(h
′
1)⊗ h2a〈1〉h

′
2, ∀ a ∈ A and h, h′ ∈ H.

Clearly, this implies ρ(i(h)) = i(h1) ⊗ h2, for all h ∈ H. The latter equality allows to
show that Φρ := i(X1)⊗X2 ⊗X3 satisfies (3.3). (3.5) is automatic.

It remains to prove that ρ is a k-algebra morphism. This follows easily from the fact
that m and i are right H-colinear morphisms, we leave the verification of this detail to the
reader. So we have shown that (A, ρ,Φρ) is a right H-comodule algebra and i : H → A
is a right H-comodule algebra morphism.

For the converse, assume that we have a datum (A, ρ, i) as in the statement. First,
A becomes an H-bimodule via i, i.e. h · a · h′ = i(h)ai(h′), for all h, h′ ∈ H and a ∈ A.
Together with ρ this turns A into an object in HMH

H , see [Panaite, Van Oystaeyen, 2007,
Lemma 2.3]. Since A is an associative k-algebra and i : H → A is a k-algebra morphism,
it follows that (A,m, i) with m : A⊗HA→ A given by m(a⊗Ha′) = aa′, for all a, a′ ∈ A,
is an algebra in (HMH ,⊗H , H). A simple inspection shows that (A,m, i) is, moreover,
an algebra in HMH

H , where HMH
H has the monoidal structure mentioned above.

It was proved in [Panaite, Van Oystaeyen, 2007] that particular examples of algebras
within HMH

H are given by the smash product construction in [Bulacu, Panaite, Van
Oystaeyen, 2000]. It associates to an algebra A in HM (i.e. to a left H-module algebra
A) an associative unital algebra A#H built on the k-vector space A⊗H as follows. The
multiplication is given by

(a#h)(b#g) = (x1 · a)(x2h1 · b)#x3h2h
′,

for all a, b ∈ A and h, h′ ∈ H, where we write a#h instead of a⊗h in order to distinguish
this new multiplication on A⊗H. The unit is 1A#1H .

The fact that A#H is an algebra in HMH
H can be also obtained from the following

monoidal categorical arguments.

3.6. Corollary. Let H be a quasi-bialgebra and A a left H-module algebra. Then A#H,
the smash product between A and H, is an algebra in HMH

H .
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Proof. Since F : HM→ HMH
H is a strong monoidal functor, F maps an algebra A in

HMH
H to an algebra in HMH

H . The multiplication on F(A) = A⊗H is determined by

mF(A) : F(A)⊗H F(A)
ϕ2,A,A−→ F(A⊗ A)

F(mA)−→ F(A),

where ϕ2 is from (2.36). The unit of F(A) is i : H
ϕ0−→ F (k)

ηA−→ F(A). Thus

(a⊗H h)(b⊗H h′) = (x1 · a)(x2h1 · b)⊗H x3h2h
′

defines a unital algebra structure on A⊗H within HMH
H , with unit i : H 3 h 7→ 1A⊗h ∈

A ⊗ H. According to Lemma 3.5 this is equivalent to the fact that A ⊗ H is a unital
associative k-algebra under the multiplication

(a⊗ h)(b⊗ h′) = (x1 · a)(x2h1 · b)⊗ x3h2h
′

and unit 1A⊗ 1H , and that A⊗H = F (A) is a right H-comodule algebra via ρ : a⊗ h 7→
x1 · a⊗ x2h1 ⊗ x3h2 ∈ A⊗H ⊗H, an algebra morphism, and Φρ = i(X1)⊗X2 ⊗X3 =
(1A ⊗X1)⊗X2 ⊗X3. Furthermore,

ρ(i(h)) = ρ(1A ⊗ h) = x1 · 1A ⊗ x2h1 ⊗ x3h2 = 1A ⊗ h1 ⊗ h2 = i(h1)⊗ h2,

since h·1A = ε(h)1A, for all h ∈ H, by the definition of a left H-module algebra. Otherwise
stated, F(A) = A#H as a k-algebra is, moreover, an algebra within HMH

H modulo the
structure we just described. This finishes the proof.

We next show that in the case when H is a quasi-Hopf algebra, any algebra A in

HMH
H is of the form presented in Corollary 3.6, for a certain algebra A in HM.

The next result is an equivalent version of [Panaite, Van Oystaeyen, 2007, Theorem
2.5].

3.7. Theorem. Let H be a quasi-Hopf algebra and A an algebra in HMH
H . Then there

exists a left H-module algebra A such that A ' A#H, as algebras in HMH
H .

Proof. We know from Corollary 3.2 that we have a strong monoidal functor G : HMH
H →

HM, so an algebra G(A) = Aco(H) in HM corresponds to the algebra A in HMH
H . Denote

G(A) = A. By the definition of G we deduce that A is a left H-module via the action
given by

h→ a = h1 · a · S(h2) = i(h1)ai(S(h2)) := h .i a,

for all h ∈ H and a ∈ A ⊆ A. Keeping in mind the strong monoidal structure of G, we
deduce that the multiplication of A in HM is

a ∗ a′ = G(m)φ2,A,A(a⊗ a′)
= (X1x1

1 · a · S(X2x1
2)αX3x2)(a′ · S(x3))

= i(X1x1
1)ai(S(X2x1

2)αX3x2)a′i(S(x3)),
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for all a, a′ ∈ A, while its unit is given by G(i)φ0(1k) = G(i)(β) = i(β). But, using (2.3)
and (2.5) we deduce easily that

a ∗ a′ = i(X1)ai(S(x1X2)αx2X3
1 )a′i(S(x3X3

2 ) := a ◦ a′, (3.6)

for all a, a′ ∈ H. The notations .i and ◦ are imposed by the analogy with the structure in
[Bulacu, Panaite, Van Oystaeyen, 2000]. Hence, summing up, the multiplication in A#H
is given by

(a#h)(a′#h′) = i(X1x1
1)bi(S(y1X2x1

2)αy2X3
1x

2
1h(1,1))b

′i(S(y3X3
2x

2
2h(1,2)))#x

3h2h
′, (3.7)

for all a, a′ ∈ A and h, h′ ∈ H.
On the other hand, by the alternative structure theorem for quasi-Hopf bimodules we

get that χ : A⊗H → A given by χ(a⊗h) = X1 ·a ·S(X2)αX3h = i(X1)ai(S(X2)αX3h),
for all a ∈ A and h ∈ H, is an isomorphism in HMH

H with inverse χ−1 : A → A ⊗ H
defined by

χ−1(a) = E(a〈0〉)⊗ a〈1〉

= a〈0,0〉 · βS(a〈0,1〉)⊗ a〈1〉

= a〈0,0〉i(βS(a〈0,1〉))⊗ a〈1〉,

for all a ∈ A. Thus to end the proof it suffices to show that χ is an algebra morphism in

HMH
H , provided that it is considered as a morphism between A#H and A. This follows

easily from the following general result: if the functors S : C → D and R : D → C define a
monoidal category equivalence, then RS(A) ∼= A is an algebra isomorphism in C, for any
algebra A within C, where RS(A) has the algebra structure provided by the monoidal
structure of RS and the algebra structure of A, respectively.

4. A structure theorem for quasi-Hopf bicomodule algebras

The goal of this section is to prove that the functors defined in Corollary 3.2 restrict to
a category equivalence between two-sided two-cosided Hopf modules and Yetter-Drinfeld
modules. This fact will allow us to give a categorical proof for the structure theorem for a
quasi-Hopf bicomodule algebra obtained in [Dello, Panaite, Van Oystaeyen, Zhang, 2016].

4.1. Two-sided two-cosided Hopf modules versus Yetter-Drinfeld mod-
ules. Recall that HMH is a monoidal category and that the underlying quasi-coalgebra
structure of H provides a monoidal coalgebra structure for H in HMH . Thus we can
define H

HMH
H , the category of two-sided two-cosided Hopf modules, as being the category

of H-bicomodules within HMH . Explicitly, we have the following.

4.2. Definition. Let H be a quasi-bialgebra. A two-sided two-cosided Hopf module over
H is a k-vector space M with the following additional structure.
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i) M is a right quasi-Hopf H-bimodule; as before, we write · both for the left and right
H-actions, and ρM(m) = m(0) ⊗m(1) for the right H-coaction on m ∈M .

ii) M is a left quasi-Hopf H-bimodule under the same H-bimodule structure as in i)
and λM : M → H ⊗M , λM(m) = m{−1} ⊗m{0}, called the left H-coaction on M ;
that is ε(m{−1})m{0} = m and

Φ · (∆⊗ IdM)(λM(m)) = (IdH ⊗ λM)(λM(m)) · Φ, (4.1)

for all m ∈M .

iii) M is an H-”bicomodule”, in the sense that, for all m ∈M ,

Φ · (λM ⊗ IdH)(ρM(m)) = (IdH ⊗ ρM)(λM(m)) · Φ. (4.2)

iv) The following compatibility relations hold:

λM(h ·m) = h1 ·m{−1} ⊗ h2 ·m{0} (4.3)

λM(m · h) = m{−1} · h1 ⊗m{0} · h2 (4.4)

for all h ∈ H and m ∈M .

H
HMH

H will be then the category of two-sided two-cosided Hopf modules over H and maps
preserving the actions by H and the coactions by H.

It was proved by Schauenburg in [Schauenburg, 2012, Thorem 5.3] that H
HMH

H is
equivalent to H

HY2D, the so-called category of left Yetter-Drinfeld modules of the second
kind, and at the same time with H

HYD, the category of left Yetter-Drinfeld modules over
H defined by Majid in [Majid, 1998]. A generalization of the equivalence between H

HMH
H

and H
HYD, based on the alternative structure theorem for quasi-Hopf H-bimodules, was

given in [Bulacu, Torrecillas, 2006]. We will recall it in what follows.

4.3. Definition. Let H be a quasi-bialgebra, with reassociator Φ. A left Yetter-Drinfeld
module over H is a left H-module M together with a k-linear map (called the left H-
coaction)

λM : M //H ⊗M, λM(m) = m[−1] ⊗m[0]

such that the following conditions hold, for all h ∈ H and m ∈M :

X1m[−1] ⊗ (X2 ·m[0])[−1]X
3 ⊗ (X2 ·m[0])[0]

= X1(Y 1 ·m)[−1]1Y
2 ⊗X2(Y 1 ·m)[−1]2Y

3 ⊗X3 · (Y 1 ·m)[0], (4.5)

ε(m[−1])m[0] = m, (4.6)

h1m[−1] ⊗ h2 ·m[0] = (h1 ·m)[−1]h2 ⊗ (h1 ·m)[0]. (4.7)

The category of left Yetter-Drinfeld modules and k-linear maps that preserve the H-action
and H-coaction is denoted by H

HYD.

By the general result presented at the beginning of the Section 4 in [Bulacu, Torrecillas,
2006] we get the following.
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4.4. Proposition. Consider the functors F : H
HYD → H

HMH
H and G : H

HMH
H → H

HYD
defined as follows:
− For M ∈ H

HYD we have F(M) = M ⊗H ∈ H
HMH

H with the structure given by

h · (m⊗ h′) · h′′ = h1 ·m⊗ h2h
′h′′, (4.8)

λM⊗H(m⊗ h) = X1 · (x1 ·m)[−1] · x2h1 ⊗
(
X2 · (x1 ·m)[0] ⊗X3x3h2

)
, (4.9)

ρM⊗H(m⊗ h) = (x1 ·m⊗ x2h1)⊗ x3h2, (4.10)

for all h, h′, h′′ ∈ H and m ∈ M . If f : M → N is a morphisms in H
HYD then F(f) =

f ⊗ IdH .
− If M ∈ H

HMH
H then G(M) = M co(H), the set of alternative coinvariants of M , which

belongs to H
HYD via the structure defined by

h→ m = h1 ·m · S(h2), (4.11)

λ
Mco(H)(m) = X1Y 1

1 m{−1}g
1S(Z2Y 2

2 )αZ3Y 3 ⊗X2Y 1
2 ·m{0} · g2S(X3Z1Y 2

1 ), (4.12)

for all h ∈ H and m ∈M co(H), where f−1 = g1 ⊗ g2 is the inverse of the Drinfeld’s twist
f . On morphisms we have that G(f) = f |

Mco(H), for any morphism f : M → N in H
HMH

H .
Then F and G are inverse equivalence functors.

Remark that F and G are the inverse equivalence functors defined in Corollary 3.2,
restricted and corestricted to H

HYD and H
HMH

H , respectively. This is why we decided to
keep for them the same notations as in the previous section.

In the Hopf case, Schauenburg proved in [Schauenburg, 1994, Theorem 5.7] that F
and G provide a monoidal category equivalence between H

HYD and H
HMH

H . Afterwards,
he generalized this result to quasi-Hopf algebras in [Schauenburg, 2012, Corollary 8.3],
but without giving the explicit strong monoidal structure of the functors that provide the
category equivalence. For the sake of completeness we will do this now. Towards this end,
we need first some preliminary results.

The category H
HMH

H is monoidal via the monoidal structure on HMH
H defined by (2.34),

(2.35), and

λM⊗HN : M ⊗H N 3 m⊗H n 7→ m{−1}n{−1} ⊗m{0} ⊗H n{0} ∈ H ⊗M ⊗H N. (4.13)

H
HYD is identified with the left center of the monoidal category HM, and therefore is a
braided monoidal category. The pre-braided monoidal structure on the left weak center
of HM induces a monoidal structure on H

HYD. This structure is such that the forgetful
functor H

HYD //
HM is monoidal. According to [Majid, 1998] and [Bulacu, Caenepeel,

Panaite, 2006], we find that the H-coaction on the tensor product M ⊗ N of two left
Yetter-Drinfeld modules M and N is given, for all m ∈M and n ∈ N, by

λM⊗N(m⊗ n) = X1(x1Y 1 ·m)(−1)x
2(Y 2 · n)(−1)Y

3

⊗X2 · (x1Y 1 ·m)(0) ⊗X3x3 · (Y 2 · n)(0). (4.14)
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4.5. Lemma. In any quasi-Hopf algebra H the following equality holds:

q1Q1
1z

1y1
1 ⊗ S(Q2z3y1

(2,2)y
2 ⊗ S(q2Q1

2z
2y1

(2,1))y
3

= X1 ⊗ S(q2x1
2X

2
2 )x2X3

1 ⊗ S(q1x1
1X

2
1 )αx3X3

2 , (4.15)

where q1⊗ q2 = Q1⊗Q2 are two copies of the element qR = X1⊗S−1(αX3)X2 ∈ H ⊗H.

Proof. The formula (4.15) is a consequence of the following computation:

q1Q1
1z

1y1
1 ⊗ S(Q2z3y1

(2,2)y
2 ⊗ S(q2Q1

2z
2y1

(2,1))y
3

(2.1)
= q1(Q1y1

1)1z
1 ⊗ S(Q2y1

2z
3)y2 ⊗ S(q2(Q1y1

1)2z
2)y3

(2.20)
= q1X1

1z
1 ⊗ S(X2z3)q̃1X3

1 ⊗ S(q2X1
2z

2)q̃2X3
2

(2.14),(2.18)
= Y 1X1

1z
1 ⊗ S(Y 3

1 X
2z3)q̃1(Y 3

2 X
3)1 ⊗ S(Y 2X1

2z
2)αq̃2(Y 3

2 X
3)2

(2.3)
= Y 1 ⊗ S(X2Y 2

2 )q̃1X3
1Y

3
1 ⊗ S(X1Y 2

1 )αq̃2X3
2Y

3
2

(2.20)
= Y 1 ⊗ S(q2x1

2Y
2

2 )x2Y 3
1 ⊗ S(q1x1

1Y
2

1 )αx3Y 3
2 ,

as we stated.

4.6. Theorem. If H is a quasi-Hopf algebra then the categories H
HMH

H and H
HYD are

monoidally equivalent.

Proof. By Corollary 3.2, we have that the functors F and G that provide the equivalence
between H

HMH
H and H

HYD in Proposition 4.4, yield a monoidal equivalence between HMH
H

and HM. Thus it is enough to prove that the strong monoidal structures on F and G
(as they were considered as functors between HMH

H and HM) extend to strong monoidal
structures when they are considered as functors between H

HMH
H and H

HYD. Otherwise
stated, it suffices to prove that φ2,M,N defined in (3.1) is left H-colinear, for all M,N ∈
H
HMH

H , and that ϕ2,M,N in (2.36) is left H-colinear, for all M,N ∈ H
HYD.

As before, for an object M in H
HMH

H we denote by M 3 m 7→ λM(m) = m{−1}⊗m{0} ∈
H ⊗M its left H-coaction and by M 3 m 7→ ρM(m) = m(0)⊗m(1) ∈M ⊗H its right H-
coaction, respectively. If M is a left Yetter-Drinfeld module over H, then its left H-action
will be denoted by λM(m) = m[−1] ⊗m[0] ∈ H ⊗M, for all m ∈M.

With these notations, we have that, for all m ∈M co(H) and n ∈ N co(H),

λ
(M⊗HN)co(H)φ2,M,N(m⊗H n)

(3.1)
= λ

(M⊗HN)co(H)(q
1x1

1 ·m · S(q2x1
2)x2 ⊗H n · S(x3))

(4.12)
= X1Y 1

1 (q1x1
1 ·m · S(q2x1

2)x2){−1}(n · S(x3)){−1}g
1S(Q2Y 2

2 )Y 3

⊗X2Y 1
2 · (q1x1

1 ·m · S(q2x1
2)x2){0} ⊗H (n · S(x3)){0} · g2S(X3Q1Y 2

1 )
(2.7),(2.19)

= X1Y 1
1 (q1Q1

1z
1y1

1x
1
1)1m{−1}G

1S(Q2z3y1
(2,2)x

1
(2,2))y

2x2
1n{−1}g

1S(Q2Y 2
2 x

3
2)Y 3

⊗X2Y 1
2 (q1Q1

1z
1y1

1x
1
1)2 ·m{0} ·G2S(q2Q1

2z
2y1

(2,1)x
1
(2,1)y

3x2
2

⊗Hn{0} · g2S(X3Q1Y 2
1 x

3
1)

(4.15)
= X1Y 1

1 Z
1
1x

1
(1,1)m{−1}G

1S(q2y1
2Z

2
2x

1
(2,2))y

2Z3
1x

2
1n{−1}g

1S(Q2Y 2
2 x

3
2)Y 3
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⊗X2Y 1
2 Z

1
2x

1
(1,2) ·m{0} ·G2S(q1y1

1Z
2
1x

1
(2,1))αy

3Z3
2x

2
2

⊗Hn{0} · g2S(X3Q1Y 2
1 x

3
1).

On the other hand, we compute that

(IdH ⊗ φ2,M,N)λ
Mco(H)⊗Nco(H)(m⊗ n)

(4.14)
= X1(x1Y 1→m)[−1]x

2(Y 2→ n)[−1]Y
3

⊗φ2,M,N(X2→ (x1Y 1→m)[0] ⊗X3x3→ (Y 2→ n)[0])
(4.12)
= X1U1Z1

1(x1Y 1→m){−1}g
1S(q2Z2

2)Z3x2T 1V 1
1 (Y 2→ n){−1}G

1S(Q2V 2
2 )V 3Y 3

⊗φ2,M,N

(
X2→ (U2Z1

2 · (x1Y 1→m){0} · g2S(U3q1Z2
1))

⊗X3x3→ (T 2V 1
2 · (Y 2→ n){0} ·G2S(T 3Q1V 2

1 ))
)

(4.11),(4.15)
= X1U1Z1

1(x1Y 1)(1,1)m{−1}g
1S(q2Z2

2(x1Y 1)(2,2))Z
3x2T 1V 1

1 Y
2

(1,1)n{−1}G
1

S(Q2V 2
2 Y

2
(2,2))V

3Y 3 ⊗W 1X2
1U

2Z1
2(x1Y 1)(1,2) ·m{0} ·

g2S(t1W 2X2
2U

3q1Z2
1(x1Y 1)(2,1))αt

2W 3
1X

3
1T

2V 1
2 Y

2
(1,2)

⊗Hn{0} ·G2S(t3W 3
2X

3
2x

3
2T

3Q1V 2
1 Y

2
(2,1))

(2.3)
= X1U1

1Z
1
1(x1Y 1)(1,1)m{−1}g

1S(q2Z2
2(x1Y 1)(2,2))Z

3x2T 1V 1
1 Y

2
(1,1)n{−1}G

1

S(Q2V 2
2 Y

2
(2,2))V

3Y 3 ⊗X2U1
2Z

1
2(x1Y 1)(1,2) ·m{0}

·g2S(t1X3
1U

2q1Z2
1(x1Y 1)(2,1))αt

2(X3
2U

3)1x
3
1T

2V 1
2 Y

2
(1,2)

⊗Hn{0} ·G2S(t3(X3
2U

3)2x
3
2T

3Q1V 2
1 Y

2
(2,1))

(2.17),(2.3)
= X1Z1

1Y
1

(1,1)m{−1}g
1S(q2(x1Z2Y 1

2 )2)x2Z3
1T

1V 1
1 Y

2
(1,1)n{−1}G

1S(Q2V 2
2 Y

2
(2,2))

V 3Y 3 ⊗X2Z1
2Y

1
(1,2) ·m{0} · g2S(t1q1(x1Z2Y 1

2 )1)αt2(x3Z3
2)1T

2V 1
2 Y

2
(1,2)

⊗Hn{0} ·G2S(X3t3(x3Z3
2)2T

3Q1V 2
1 Y

2
(2,1))

(2.17),(2.1)
=

(2.3)
X1Z1

1Y
1

(1,1)m{−1}g
1S(q2(t1x1Z2Y 1

2 )2)t2x2
1Z

3
(1,1)V

1
1 Y

2
(1,1)n{−1}G

1S(Q2V 2
2 Y

2
(2,2))

V 3Y 3 ⊗X2Z1
2Y

1
(1,2) ·m{0} · g2S(q1(t1x1Z2Y 1

2 )1)αt3x2
2Z

3
(1,2)V

1
2 Y

2
(1,2)

⊗Hn{0} ·G2S(X3x3Z3
2Q

1V 2
1 Y

2
(2,1))

(2.3),(2.17)
=

(2.3)
X1(Z1V 1(Y 1

1 x
1)1)1m{−1}g

1S(q2(t1Z2
1V

2(Y 1
1 x

1)2)2)t2(Z2
2V

3)1(Y 1
2 x

2)1n{−1}

G1S(Q2(Y 2x3)2)Y 3 ⊗X2(Z1V 1(Y 1
1 x

1)1)2 ·m{0}
·g2S(q1(t1Z2

1V
2(Y 1

1 x
1)2)1)αt3(Z3

2V
3)2(Y 1

2 x
2)2

⊗Hn{0} ·G2S(X3Z3Q1(Y 2x3)1)
(2.1),(2.1)

=
(2.17),(2.5)

X1Y 1
1 V

1
1 x

1
(1,1)m{−1}g

1S(q2(t1V 2x1
2)2)t2V 3

1 x
2
1n{−1}G

1S(Q2Y 2
2 x

3
2)Y 3

⊗X2Y 1
2 V

1
2 x

1
(1,2) ·m{0} · g2S(q1(t1V 2x1

2)1)αt3V 3
2 x

2
2

⊗Hn{0} ·G2S(X3Q1Y 2
1 x

3
1).

Hence, by comparing the two computations performed above we get that φ2,M,N is left
H-colinear, as needed.
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In a similar manner one can show that ϕ2,M,N is left H-colinear, for all M,N ∈ H
HYD.

Indeed, on one hand we have

λ(M⊗N)⊗Hϕ2,M,N((m⊗ h)⊗H (n⊗ h′))
(2.36)
= λ(M⊗N)⊗H((x1 ·m⊗ x2h1 · n)⊗ x3h2h

′)
(4.9)
= X1(y1 · (x1 ·m⊗ x2h1 · n))[−1]y

2x3
1h(2,1)h

′
1

⊗
(
X2 · (y1 · (x1 ·m⊗ x2h1 · n))[0] ⊗X3y3x3

2h(2,2)h
′
2

)
(4.8),(4.14)

= X1Z1(z1T 1y1
1x

1 ·m)[−1]z
2(T 2y1

2x
2h1 · n)[−1]T

3y2x3
1h(2,1)h

′
1(

(X2
1Z

2 · (z1T 1y1
1x

1 ·m)[0] ⊗X2
2Z

3z3 · (T 2y1
2x

2h1 · n)[0])⊗X3y3x3
2h(2,2)h

′
2

)
(2.3),(2.1)

= X1Z1(z1y1 ·m)[−1]z
2((y2h1)1x

1 · n)[−1](y
2h1)2x

2h′1
⊗
(
(X2

1Z
2 · (z1y1 ·m)[0] ⊗X2

2Z
3z3 · ((y2h1)1x

1 · n)[0])⊗X3y3h2x
3h′2

)
(4.7)
= X1Z1(z1y1 ·m)[−1]z

2y2
1h(1,1)(x

1 · n)[−1]x
2h′1

⊗
(
(X2

1Z
2 · (z1y1 ·m)[0] ⊗X2

2Z
3z3y2

2h(1,2) · (x1 · n)[0])⊗X3y3h2x
3h′2

)
(2.1),(4.7)

= X1Z1y1
1(z1 ·m)[−1]z

2Y 1h(1,1)(x
1 · n)[−1]x

2h′1
⊗
(
(X2

1Z
2y1

2 · (z1 ·m)[0] ⊗X2
2Z

3y2z3
1Y

2h(1,2) · (x1 · n)[0])⊗X3y3z3
2Y

3h2x
3h′2

)
(2.3)
= X1(z1 ·m)[−1]z

2Y 1h(1,1)(x
1 · n)[−1]x

2h′1
⊗
(
(y1X2 · (z1 ·m)[0] ⊗ y2X3

1z
3
1Y

2h(1,2) · (x1 · n)[0])⊗ y3X3
2z

3
2Y

3h2x
3h′2

)
,

for all m ∈ M, n ∈ N and h, h′ ∈ H. On the other hand we compute, again for all
m ∈M, n ∈ N and h, h′ ∈ H, that

ϕ2,M,Nλ(M⊗H)⊗H(N⊗H)((m⊗ h)⊗H (n⊗ h′))
= (m⊗ h){−1}(n⊗ h){−1} ⊗ ϕ2,M,N((m⊗ h){0} ⊗H (n⊗ h){0})

(4.9)
= X1(x1 ·m)[−1]x

2h1Y
1(y1 · n)[−1]y

2h′1
⊗ϕ2,M,N((X2 · (x1 ·m)[0] ⊗X3x3h2)⊗H (Y 2 · (y1 · n)[0] ⊗ Y 3y3h′2))

(2.36),(2.1)
= X1 · (x1 ·m)[−1]x

2Y 1h(1,1)(y
1 · n)[−1]y

2h′1 ⊗
⊗
(
(z1X2 · (x1 ·m)[0] ⊗ z2X3

1x
3
1Y

2h(1,2) · (y1 · n)[0])⊗ z3X3
2x

3
2Y

3h2x
3h′2

)
.

This shows that ϕ2,M,N is left H-colinear as well, completing the proof.

4.7. A structure theorem for bicomodule algebras. We will continue the ideas
in Subsection 3.3 in order to give a structure theorem for algebras within the strict
monoidal category (HHMH

H ,⊗H , H).

4.8. Definition. Let H be a quasi-bialgebra and A an associative unital algebra. By
an H-bicomodule algebra structure on A we mean a quintuple (λ, ρ,Φλ,Φρ,Φλ,ρ), where
λ and ρ are left and right H-coactions on A, respectively, and where Φλ ∈ H ⊗ H ⊗ A,
Φρ ∈ A⊗H ⊗H and Φλ,ρ ∈ H ⊗A⊗H are invertible elements, such that:

(i) (A, λ,Φλ) is a left H-comodule algebra;

(ii) (A, ρ,Φρ) is a right H-comodule algebra;
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(iii) the following compatibility relations hold:

Φλ,ρ(λ⊗ IdH)(ρ(u)) = (IdH ⊗ ρ)(λ(u))Φλ,ρ, ∀ u ∈ A, (4.16)

(1H ⊗ Φλ,ρ)(IdH ⊗ λ⊗ IdH)(Φλ,ρ)(Φλ ⊗ 1H)

= (IdH ⊗ IdH ⊗ ρ)(Φλ)(∆⊗ IdA ⊗ IdH)(Φλ,ρ), (4.17)

(1H ⊗ Φρ)(IdH ⊗ ρ⊗ IdH)(Φλ,ρ)(Φλ,ρ ⊗ 1H)

= (IdH ⊗ IdA ⊗∆)(Φλ,ρ)(λ⊗ IdH ⊗ IdH)(Φρ). (4.18)

As we will see, the structure theorem for algebras within H
HMH

H is nothing but the
structure theorem for quasi-Hopf bicomodule algebras given in [Dello, Panaite, Van Oys-
taeyen, Zhang, 2016]. To this end, we start by describing an algebra in H

HMH
H .

4.9. Lemma. Let H be a quasi-bialgebra. An algebra in H
HMH

H is a quadruple (A, λ, ρ, i)
consisting of a k-algebra A, a k-algebra morphism i : H → A, and k-linear maps λ : A →
H ⊗A and ρ : A → A⊗H such that the following conditions hold:
• λ(i(h)) = h1 ⊗ i(h2) and ρ(i(h)) = i(h1)⊗ h2, for all h ∈ H;
• (A, λ, ρ,Φλ := X1 ⊗X2 ⊗ i(X3),Φρ := i(X1)⊗X2 ⊗X3,Φλ,ρ := X1 ⊗ i(X2)⊗X3)

is an H-bicomodule algebra, where Φ = X1 ⊗X2 ⊗X3 is the reassociator of H.

Proof. Let A be an algebra in H
HMH

H . Since the forgetful functors H
HMH

H → HMH
H

and H
HMH

H → H
HMH are strong monoidals, we get that A, with the same H-bimodule

structure, is both an algebra in HMH
H and H

HMH . Hence, by Lemma 3.5 and its left
version, we deduce that A is a k-algebra and there exist i : H → A an algebra morphism,
and λ : A → H ⊗A and ρ : A → A⊗H algebra maps such that
• λ(i(h)) = h1 ⊗ i(h2) and ρ(i(h)) = i(h1)⊗ h2, for all h ∈ H;
• (A, λ,Φλ := X1⊗X2⊗ i(X3)) is a left H-comodule algebra and (A, ρ,Φρ := i(X1)⊗

X2 ⊗X3) is a right H-comodule algebra.
There is only one property of A that we did not explored yet. Namely, the compati-

bility between the left and right H-coactions on A. More precisely, by (4.2) we have, for
all u ∈ A, that

X1u(0){−1}
⊗ i(X2)u(0){0}

⊗X3u(1) = u{−1}X
1 ⊗ u{0}(0)i(X

2)⊗ u{0}(1)X
3,

and this means that (A, λ, ρ,Φλ := X1 ⊗ X2 ⊗ i(X3),Φρ := i(X1) ⊗ X2 ⊗ X3,Φλ,ρ :=
X1 ⊗ i(X2)⊗X3) is an H-bicomodule algebra.

The converse follows from Lemma 3.5 and its left version.

As it was pointed out in [Dello, Panaite, Van Oystaeyen, Zhang, 2016, Proposition 1.3],
examples of algebras in H

HMH
H are given by particular cases of smash product algebras. At

this point we can get a more conceptual proof for [Dello, Panaite, Van Oystaeyen, Zhang,
2016, Proposition 1.3] as follows.
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4.10. Proposition. Let H be a quasi-bialgebra and A an algebra in H
HYD, with coaction

denoted by A → H ⊗ A, a 7→ a[−1] ⊗ a[0]. Then (A#H,λ, ρ, i) is an algebra in H
HMH

H ,
where i : H → A#H is the canonical inclusion map and

λ : A#H → H ⊗ (A#H), λ(a#h) = X1(x1 · a)[−1]x
2h1 ⊗ (X2 · (x1 · a)[0]#X

3x3h2),

ρ : A#H → (A#H)⊗H, ρ(a#h) = (x1 · a#x2h1)⊗ x3h2,

for all a ∈ A and h ∈ H.

Proof. By Corollary 3.6 we know that (A, ρ, i) is a right H-comodule algebra. Also,
since A is an algebra in H

HYD and the functor F from the proof of Theorem 4.6 is strong
monoidal we obtain that F(A) = A ⊗ H is an algebra in H

HMH
H . Firstly, by (4.8), (4.9)

and (4.10) we deduce that A⊗H is an object in H
HMH

H via the structure given by

h′ · (a⊗ h) · h′′ = h1 · a⊗ h′2hh′′,
λ(a⊗ h) = X1(x1 · a)[−1]x

2h1 ⊗ (X2 · (x1 · a)[0] ⊗X3x3h2),

ρ(a⊗ h) = (x1 · a⊗ x2h1)⊗ x3h2,

for all a ∈ A and h, h′, h′′ ∈ H. Secondly, as we have seen the multiplication on F(A) is
given by

(a⊗ h)(a′ ⊗ h′) = ϕ2,A,A((a⊗ h)⊗H (a′ ⊗ h′))(2.36)
= (x1 · a)(x2h1 · a′)⊗ x3h2h

′,

for all a, a′ ∈ A and h, h′ ∈ H, and the unit is (IdH⊗1A)ϕ0(1H) = 1H⊗1A. In other words,
F(A) = A#H with the algebra structure in H

HMH
H provided by i : H 3 h 7→ 1A#h ∈ A#H

and λ, ρ as in the statement, and we are done.

The next result can be viewed as a two-sided two-cosided version of Theorem 3.7. It is
also an equivalent version of [Dello, Panaite, Van Oystaeyen, Zhang, 2016, Theorem 1.7].

4.11. Theorem. Let H be a quasi-Hopf algebra and (A, ρ, λ, i) an algebra in H
HMH

H .
Then there exists an algebra A in H

HYD such that A is isomorphic to A#H, as algebras
in H

HMH
H .

Proof. (A, ρ, i) is an algebra in HMH
H . If A := Aco(H), then by Theorem 3.7 we know

that A is a left H-module algebra and A ∼= A#H, as algebras in HMH
H . Furthermore,

since A is actually an algebra in H
HMH

H and G from the proof of Theorem 4.6 is a strong
monoidal functor, we get that A is an algebra in H

HYD. Consequently, A#H is an algebra
in H

HMH
H via the structure described in Proposition 4.10.

Thus it only remains to check that the isomorphism χ in the proof of Theorem 3.7
intertwines the left H-coactions of A and A#H. But this follows from Proposition 4.4,
since any M ∈ H

HMH
H decomposes as M coH ⊗ H in H

HMH
M via an isomorphism, say χM ,

and χ = χA.
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5. The structure of a coalgebra in H
HMH

H

We move now to the coalgebra case. The quasi-Hopf algebra notion is not selfdual.
Indeed, the dual space H∗ of a finite dimensional quasi-Hopf algebra H is a coassociative
coalgebra and a non-associative algebra, and it is an example of what is called a dual
quasi-Hopf algebra. Dual quasi-Hopf algebras have their own theory. Thus the results
of this section cannot be viewed as the formal dual of the ones proved for quasi-Hopf
(bi)comodule algebras. But we should stress the fact that in both situations the key role
is played by the monoidal equivalence between HMH

H and HM, and H
HMH

H and H
HYD,

respectively.
Recall that, for any k-algebra A, the category of A-bimodules AMA is strict monoidal

under the structure given by ⊗A; the unit object is A itself. A (co)algebra in AMA is
called an A-(co)ring. It is well known that giving an A-ring R is equivalent to giving an
algebra morphism i : A→ R.

The next result describes the structure of a coalgebra within HMH
H . For the notion

of cowreath and its connection to the structure of certain corings we refer to [Bulacu,
Caenepeel, 2014].

By an H-coring defined by a left H-module coalgebra we mean a coring of the form
C ⊗ H with the coalgebra structure in (HMH ,⊗H , H) given by the cowreath (H,C) in

kM, as it is defined by the “op”-version of [Bulacu, Caenepeel, 2014, Corollary 6.4],
specialized for the H-comodule algebra equals to H.

5.1. Proposition. Let H be a quasi-Hopf algebra. Then there exists a one to one cor-
respondence between

i) coalgebra structures in HMH
H ;

ii) coalgebra structures in HM;

iii) H-coring structures defined by left H-module coalgebras.

Proof. The one to one correspondence between i) and ii) is established by the monoidal
category equivalence between HMH

H and HM. Up to an isomorphism, any coalgebra C
in HMH

H is of the form C⊗H for a suitable coalgebra C in HM. Once more, remark that
C ⊗H is an object in HMH

H via the structure determined by

h · (c⊗ h′) · h′′ = h1 · c⊗ h2h
′h′′,

ρC⊗H(c⊗ h) = (x1 · c⊗ x2h1)⊗ x3h2,

for all c ∈ H and h, h′, h′′ ∈ H. Furthermore, by the strong monoidal structure of the
functor F , we deduce that C⊗H is a coalgebra in HMH

H with comultiplication and counit
given by

∆ : C ⊗H = F(C)
F(∆C)−→ F(C ⊗ C)

ϕ−1
2,C,C−→ F(C)⊗H F(C) = (C ⊗H)⊗H (C ⊗H)
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and ε : C ⊗H = F(C)
F(εC)−→ F(k)

ϕ−1
0−→ H, where ∆C and εC are the comultiplication and

the counit of the coalgebra C in HM. According to Theorem 2.8, we have that

∆(c⊗ h) = (X1 · c1 ⊗ 1H)⊗H (X2 · c2 ⊗X3h) and ε(c⊗ h) = εC(c)h, (5.1)

for all c ∈ C and h ∈ H, where this time ∆C(c) := c1 ⊗ c2, for all c ∈ C, and · is the left
action of H on C.

Since the forgetful functor from HMH
H to HMH is strong monoidal, it follows that a

coalgebra in HMH
H is nothing but an H-coring (C,∆C, εC) for which the comultiplication

∆C : C → C ⊗H C and the counit εC are right H-colinear maps. Since C ≡ C ⊗ H in

HMH
H , with C = Cco(H) a left H-module coalgebra, we deduce from [Bulacu, Caenepeel,

2014, Proposition 5.1] that C ≡ C ⊗H is the H-coring in kM completely determined by
the triple (ψ, δ, f) consisting of (c ∈ C, h ∈ H)
• ψ : H ⊗ C → C ⊗H, ψ(h⊗ c) = h1 · c⊗ h2;
• δ : C → C ⊗ C ⊗H, δ(c) = X1 · c⊗X2h1 ⊗X3h2;
• f : C → H, f(c) = εC(c)1H .
In other words, (H,C) is the “op”-version of the cowreath considered in [Bulacu,

Caenepeel, 2014, Corollary 6.4], specialized for the H-comodule algebra equals to H. As
C ≡ C⊗H = F(C) in H

HMH
H , we deduce that ∆C and εC are as in (5.1), and therefore right

H-colinear maps. Thus the one to one correspondence between i) and iii) is established,
too.

Proposition 5.1 does not say that, up to an isomorphism, a coalgebra in HMH
H is a

sort of smash product coalgebra, a construction due to Molnar [Molnar, 1977] in the Hopf
algebra case, and which does not exist in the quasi-Hopf algebra case. Otherwise stated,
even in the Hopf case the smash product construction does not characterize coalgebras
in HMH

H . To have such a dual result, we must work with coalgebras within the category
H
HMH , because H

HMH can be regarded as the formal dual version of the category HMH
H .

This has been already done in [Wang, Zhang, Niu, 2013], for the dual context provided
by the dual quasi-Hopf algebras. To make a long story short, the result in Proposition 5.1
cannot be seen as the formal dual result in Theorem 3.7.

We pass now to the study of a structure of a coalgebra in H
HMH

H . Due to the extra
corner that we have in this case, this time we can characterize coalgebras in H

HMH
H as

some sort of smash product coalgebras. To achieve this, we use as a source of inspiration
some results obtained in [Bespalov, Drabant, 1998] for the category of Hopf bimodules
(two sided two cosided Hopf modules in our terminology) in braided monoidal categories.
Note that, our results are not particular cases of some results shown in [Bespalov, Drabant,
1998], since a quasi-Hopf algebra cannot be viewed as a Hopf algebra in a suitable braided
monoidal category.

We start by proving the following key result. In order to avoid any confusion, we
denote by HMH the category of bimodules over a quasi-bialgebra H, endowed with the
monoidal structure defined by the structure of H as in Subsection 2.2.
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5.2. Lemma. Let H be a quasi-bialgebra. Then the forgetful functor

U : HHMH
H = (HHMH

H ,⊗H , H)→ HMH = (HMH ,⊗, k, a′, l′, r′)

is opmonoidal under the structure given, for all M,N ∈ H
HMH

H , by

ψ2,M,N : U(M ⊗H N) 3 m⊗H n 7→ m(0) · n{−1} ⊗m(1) · n(0) ∈ U(M)⊗ U(N)

and ψ0 = ε : U(H) = H → k.

Proof. ψ2,M,N is well defined since, for all m ∈M , h ∈ H and n ∈ N we have that

ψ2,M,N(m · h⊗H n) = (m · h)(0) · n{−1} ⊗ (m · h)(1) · n{0}
= m(0) · h1n{−1} ⊗m(1)h2 · n{0}
= m(0) · (h · n){−1} ⊗m(1) · (h · n){0}

= ψ2,M,N(m⊗H h · n).

Also, it can be easily checked that ψ2,M,N is an H-bilinear map.
We next show that ψ2 fulfills the relations in (2.23)-(2.25). Indeed, for any M,N,P ∈

H
HMH

H we have

a′U(M),U(N),U(P )(ψ2,M,N ⊗ IdU(P ))ψ2,M⊗HN,P (m⊗H n⊗h p)
= a′U(M),U(N),U(P )(ψ2,M,N((m⊗H n)(0) · p{−1})⊗ (m⊗H n)(1) · p{0})
= a′U(M),U(N),U(P )(ψ2,M,N(m(0) ⊗H n(0) · p{−1})⊗m(1)n(1) · p{0})
= X1 ·m(0,0) · n(0){−1}p{−1}1x

1 ⊗ (X2m(0,1) · n(0){0}p{−1}2x
2

⊗X3m(1)n(1) · p{0} · x3)
(2.27)
=

(4.2)
m(0) · n{−1}X

1p{−1}1x
1 ⊗ (m(1)1 · n{0}(0) ·X

2p{−1}2x
2

⊗m(1)2n{0}(1)X
3 · p{0} · x3)

(4.1)
= m(0) · n{−1}p{−1} ⊗ (m(1)1 · n{0}(0) · p{0,−1} ⊗m(1)2n{0}(1) · p{0,0})
= m(0) · n{−1}p{−1} ⊗ ((m(1) · n{0})(0) · p{0,−1} ⊗ (m(1) · n{0})(1) · p{0,0})
= m(0) · (n⊗H p){−1} ⊗ ψ2,N,P (m(1) · (n⊗H p){0})
= (IdU(M) ⊗ ψ2,N,P )ψ2,M,N⊗HP (m⊗H n⊗H p),

for all m ∈M , n ∈ N and p ∈ P , as required. We leave it to the reader to check that the
relations (2.24)-(2.25) are obeyed by our ψ, too.

At this point we can prove one of the main results of this paper.

5.3. Theorem. Let H be a quasi-bialgebra. Then giving a coalgebra in H
HMH

H is equiva-
lent to giving a pair (C, π) consisting of an H-bimodule coalgebra C and an H-bimodule
coalgebra morphism π : C → H.
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Proof. Let (C,∆, ε) be a coalgebra in H
HMH

H . Since the forgetful functor U in Lemma 5.2
is opmonoidal, it follows that C is an H-bimodule coalgebra via the original H-bimodule
structure, but with comultiplication ∆C and counit εC defined by

∆C : C = U(C)
U(∆)−→ U(C ⊗H C)

ψ2,C,C−→ U(C)⊗ U(C) = C ⊗ C

and εC : C = U(C)
U(ε)−→ U(H)

ψ0−→ k. Explicitly, for all c ∈ C we have

∆C(c) = c1(0)
· c2{−1} ⊗ c1(1)

· c2{0} and εC = εε : C → k, (5.2)

where we denoted ∆(c) := c1 ⊗ c2. If we take π = ε : C → H, then π is a morphism in
H
HMH

H , and so in particular H-bilinear. The left and right H-colinearity of π read as

∆(π(c)) = c{−1} ⊗ π(c{0}) = π(c(0))⊗ c(1),

for all c ∈ C. These equalities allow us to compute that

(π ⊗ π)∆C(c) = π(c1(0)
· c2{−1})⊗ π(c1(1)

· c2{0})

= π(c1(0)
)c2{−1} ⊗ c1(1)

π(c2{0})

= π(c1)1π(c2)1 ⊗ π(c1)2π(c2)2

= ∆(π(c1)π(c2))

= ∆(π(π(c1)c2)) = ∆(π(c)),

for all c ∈ C, where we freely used that π is an H-bimodule morphism and the counit
of ∆. Hence we have shown that C is a coalgebra in HMH , and that π : C → H is a
morphism of coalgebras within HMH .

Conversely, let (C, π) be a pair consisting of an H-bimodule coalgebra C and an H-
bimodule coalgebra morphism π : C → H. As above, denote by (∆C , εC) the coalgebra
structure of C in HMH . We claim that C becomes a coalgebra in H

HMH
H via the original

H-bimodule structure of C, H-coactions given by

λC(c) = c{−1}⊗c{0} := π(c1)⊗c2 ∈ H⊗C , ρC(c) = c(0)⊗c(1) := c1⊗π(c2) ∈ C⊗H, (5.3)

for all c ∈ C, and coalgebra structure determined by

∆(c) = E(c1)⊗H c2 and ε = π, (5.4)

for all c ∈ C, where E is the projection in (2.28) specialized for the object C, considered
in HMH

H with the structure above.
Indeed, the fact that C is an object in H

HMH
H modulo its regular H-actions and (5.3)

follows easily from the defining properties of the pair (C, π), as well as the fact that
π : C → H becomes a morphism in H

HMH
H . The comultiplication ∆ in (5.4) is an H-

bimodule morphisms since

∆(h · c) = E(h1 · c1)⊗H h2 · c2 = E(h1 · c1) · h2 ⊗H c2
(2.30)
= h · E(c1)⊗H c2 = h ·∆(c)
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and ∆(c⊗h) = E(c1 ·h1)⊗H c2 ·h2
(2.31)
= E(c1)⊗H c2 ·h = ∆(c) ·h, for all c ∈ C and h ∈ H.

The computation

ρC⊗HC∆(c) = E(c1)(0) ⊗H c(2,1) ⊗ E(c1)(1)π(c(2,2))
(2.29)
= E(x1 · E(c1))⊗H c(2,1) ⊗ x3π(c(2,2))

(2.31)
= E(x1 · c1)⊗H x2 · c(2,1) ⊗ π(x3 · c(2,2))

= E(c(1,1) · x1)⊗H c(1,2) · x2 ⊗ π(c2 · x3)
(2.31)
= E(c(1,1))⊗H c(1,2) ⊗ π(c2)

= (∆⊗ IdH)ρC(c),

valid for all c ∈ C, shows that ∆ in (5.4) is right H-colinear. It is also left H-colinear.
To see this, observe that, for all c ∈ C, we have

E(X1 · c1)1 ·X2π(c2)⊗ E(X1 · c1)2 ·X3 = q1
1 · c(1,1) · p1 ⊗ q1

2 · c(1,2) · p2S(q2π(c2)). (5.5)

Indeed, since

q1 · c(1,1) ⊗ S(q2π(c(1,2)))π(c2) = c1 ·X1 ⊗ S(π(c(2,1))X
2)απ(c(2,2))X

3 = c · q1 ⊗ S(q2),

for all c ∈ C we compute that

E(X1 · c1)1 ·X2π(c2)⊗ E(X1 · c1)2 ·X3

= (q1X1
1 · c(1,1) · βS(q2X1

2π(c(1,2))))1 ·X2π(c2)

⊗(q1X1
1 · c(1,1) · βS(q2X1

2π(c(1,2))))2 ·X3

(2.7)
=

(2.12)
(q1X1

1 · c(1,1))1 · δ1S(q2
2X

1
(2,2)π(c(1,2)2))f

1X2π(c2)

⊗(q1X1
1 · c(1,1))2 · δ2S(q2

1X
1
(2,1)π(c(1,2)1))f

2X3

(2.19)
= (q1 · (Q1 · c(1,1))1)1 · x1

1δ
1S(Q2π(c(1,2))x

3)π(c2)

⊗(q1 · (Q1 · c(1,1))1)2 · x1
2δ

2S(q2π((Q1 · c(1,1))2)x2)
(2.9)
= (q1 · c1)1 ·Q1

(1,1)p
1βS(Q2)⊗ (q1 · c1)2 ·Q1

(1,2)p
2S(q2π(c2)Q1

2)
(2.17),(2.6)

= q1
1 · c(1,1) · p1 ⊗ q1

2 · c(1,2) · p2S(q2π(c2)),

as desired. With the help of this relation we have that

λC⊗HC∆(c) = λC⊗HC(E(c1)⊗H c2)

= π(E(c1)1)π(c(2,1))⊗ E(c1)2 ⊗H c(2,2)

= π(E(X1 · c(1,1) · x1)1 · π(X2 · c(1,2) · x2))

⊗E(X1 · c(1,1) · x1)2 ⊗H X3 · c2 · x3

(2.31)
= π(E(X1 · c(1,1))1 ·X2π(c(1,2)))⊗ E(X1 · c(1,1))2 ·X3 ⊗H c2

= π(q1
1 · (c1)(1,1) · p1)⊗ q1

2 · (c1)(1,2) · p2S(q2π((c1)2))⊗H c2
(2.13)
= π(q1

1x
1 · (c1)1)⊗ q1

2x
2 · (c1)(2,1) · βS(q2x3π((c1)(2,2)))⊗H c2

(2.21)
= π(X1 · c(1,1))⊗ E(X2 · c(1,2))⊗H X3 · c2

(2.31)
= π(c1)⊗ E(c(2,1))⊗H c(2,2)

= (IdH ⊗∆)λC(c),
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for all c ∈ C, and therefore ∆ in (5.4) is left H-colinear, as stated. So it remains to show
that ∆ is coassociative in H

HMH
H , and that ε is a counit for it. To this end, let us note

that, for all c ∈ C,

E(E(c)1)⊗ E(c)2 = E(q1
1 · c(1,1) · (βS(q2π(c2)))1)⊗ q1

2 · c(1,2) · (βS(q2π(c2)))2
(2.31)
= E(q1

1 · c(1,1))⊗ q1
2 · c(1,2) · βS(q2π(c2)).

Therefore, we get that, for all c ∈ C,

(∆⊗ IdC)∆(c) = E(E(c1)1)⊗H E(c1)2 ⊗H c2

= E(q1
1 · (c1)(1,1))⊗H q1

2 · (c1)(1,2) · βS(q2π((c1)2))⊗H c2
(2.31)
= E(q1

1x
1 · (c1)1)⊗H q1

2x
2 · (c1)(2,1) · βS(q2x3 · π((c1)(2,2)))⊗H c2

(2.21)
= E(X1 · c(1,1))⊗H E(X2 · c(1,2))⊗H X3 · c2

(2.31)
= E(c1)⊗H E(c(2,1))⊗H c(2,2)

= (IdC ⊗∆)∆(c),

i.e. ∆ is coassociative in H
HMH

H , as desired. Finally, π is a counit for ∆ since E(c1)·π(c2) =
E(c(0)) · c(1)

(2.32)
= c and

π(E(c1)) · c2 = q1π(c(1,1))βS(q2π(c(1,2))) · c2

= X1βS(X2)αX3 · εC(c1)c2
(2.6)
= c,

for all c ∈ C. One can check that the two correspondences defined above are inverses of
each other, so we are done.

Denote by H − BimCoalg(π) the category whose objects are pairs (C, π) consisting
of an H-bimodule coalgebra C and an H-bimodule morphism π : C → H. A morphism
τ : (C, π)→ (C ′, π′) in H − BimCoalg(π) is a morphism of coalgebras τ : C → C ′ within

HMH such that π′τ = τ . Also, by Coalg(HHMH
H) we denote the category of coalgebras

and coalgebra morphisms within H
HMH

H .

5.4. Corollary. The categories H − BimCoalg(π) and Coalg(HHMH
H) are isomorphic.

Proof. By Theorem 5.3, the desired isomorphism is given by the functors T : H −
BimCoalg(π) → Coalg(HMH

H) and V : Coalg(HMH
H) → H − BimCoalg(π) defined as

follows. T sends (C, π) to C, viewed as coalgebra in H
HMH

H under the structure given by
(5.3) and (5.4). T sends a morphism to itself. If (C,∆, ε) is a coalgebra in H

HMH
H then

V(C) = C, considered as a coalgebra in HMH with the structure in (5.2). V acts as
identity on morphisms.

We leave the verification of all these details to the reader.
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5.5. Definition. For a coalgebra B in H
HYD denote by B .< H the k-vector space B⊗H

endowed with the comultiplication

∆(b .< h) = y1X1 · b1 .< y2Y 1(x1X2 · b2)[−1]x
2X3

1h1

⊗y3
1Y

2 · (x1X2 · b2)[0] .< y3
2Y

3x3X3
2h2, (5.6)

and counit ε(b .< h) = εB(b)ε(h), for all b ∈ B and h ∈ H. As before, b 7→ b[−1] ⊗ b[0] is
the left coaction of H on B, ∆B(b) = b1⊗ b2 is the comultiplication of B in H

HYD and εB
is its counit. We call B .< H the smash product coalgebra of B and H.

We have now all the necessary ingredients for the proof of the main result of this
paper. In particular, it says that a smash product coalgebra is indeed a coalgebra, but
within HMH . In the Hopf case it is just the smash product coalgebra defined by Molnar
in [Molnar, 1977]. Note that in this case we don’t need the H-module structure on B,
and that B .< H is an ordinary k-coalgebra, too.

5.6. Theorem. Let H be a quasi-Hopf algebra, C an H-bimodule coalgebra and π : C →
H an H-bimodule morphism. Then there exists a coalgebra B in H

HYD such that C is
isomorphic to B .< H, as an H-bimodule coalgebra.

Proof. Consider C = T ((C, π)) as a coalgebra in H
HMH

H with the structure given by

(5.3) and (5.4). Then B = Cco(H) is a coalgebra in H
HYD and C is isomorphic to B ⊗H

as coalgebras in H
HMH

H . The fact that C and B ⊗ H are isomorphic objects in H
HMH

H

follows from the structure theorem for two-sided two-cosided Hopf modules over H. That
they are, moreover, isomorphic as coalgebras in H

HMH
H is a consequence of a more general

result, somehow dual to the one uncovered at the end of the proof of Theorem 3.7. Namely,
if the functors S : C → D and R : D → C define a monoidal category equivalence then
RS(C) ∼= C is a coalgebra isomorphism in C, for any coalgebra C within C, where RS(C)
has the coalgebra structure provided by the monoidal structure of RS and the coalgebra
structure of C, respectively.

The structure that makes B ⊗H an object in H
HMH

H is the one in (4.8)-(4.10), while
the coalgebra structure of B ⊗H in H

HMH
H is obtained from (5.1). With these structures,

T ((C, π)) and B⊗H are isomorphic as coalgebras in H
HMH

H . By Corollary 5.4 we deduce
that (C, π) = VT (C) is isomorphic to V(B ⊗ H) as objects in H − BimCoalg(π), and
consequently as H-bimodule coalgebras. To end the proof it suffices to show that V(B ⊗
H) = (B .< H, εB ⊗ IdH). As a byproduct, we get that B .< H is indeed a coalgebra in

HMH , as claimed.
The latest assertion follows from the following computation:

∆(b⊗ h)
(5.2)
= (b⊗ h)1(0)

· (b⊗ h)2{−1}
⊗ (b⊗ h)1(1)

· (b⊗ h)2{−1}
(5.1)
= (X1 · b1 ⊗ 1H)(0) · (X2 · b2 ⊗X3h){−1}

⊗(X1b1 ⊗ 1H)(1) · (X3 · b2 ⊗X3h){0}
(4.9)
=

(4.10)
(y1X1 · b1 ⊗ y2) · Y 1(x1X2 · b2)[−1]x

2X3
1h1

⊗y3 · (Y 2 · (x1X2 · b2)[0] ⊗ Y 3x3X3
2h2)
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(4.8)
= (y1X1 · b1 ⊗ y2Y 1(x1X2 · b2)[−1]x

2X3
1h1)

⊗(y3
1Y

2 · (x1X2 · b2)[0] ⊗ y3
2Y

3x3X3
2h2),

valid for any b ∈ B and h ∈ H, and the fact that ε(b⊗ h) = εε(b⊗ h) = εB(b)ε(h). This
finishes the proof of the theorem.

5.7. Remark. The comultiplication on B ⊗ H defined in (5.6) and its counit appear
for the first time in [Bulacu, Nauwelaerts, 2002] as the coalgebra part of the Radford’s
biproduct construction for quasi-Hopf algebras. At that time we had no clue how to
introduce a smash product coalgebra, and by hard computations we proved that it is
coassociative up to conjugation by an invertible element. At this point it is clear that this
coassociativity is nothing but a reformulation of the fact that B .< H is a coalgebra in

HMH , provided that B is a coalgebra in H
HYD. So we don’t need B to be a bialgebra in

H
HYD, as it was assumed in [Bulacu, Nauwelaerts, 2002].
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