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A TWO-DIMENSIONAL BIRKHOFF’S THEOREM

MATĚJ DOSTÁL

Abstract. Birkhoff’s variety theorem from universal algebra characterises equational
subcategories of varieties. We give an analogue of Birkhoff’s theorem in the setting
of enrichment in categories. For a suitable notion of an equational subcategory we
characterise these subcategories by their closure properties in the ambient algebraic
category.

1. Introduction

In this paper we will state and give a proof of a 2-dimensional analogue of the Birkhoff
theorem from universal algebra. Recall that in the ordinary setting, Birkhoff’s theorem
characterises equational subcategories of algebraic categories. An algebraic category can
be viewed as a category Alg(T ) of algebras for a strongly finitary monad T on Set. (Note
that a monad is strongly finitary if its underlying functor is strongly finitary, i.e., if it
preserves sifted colimits [1].) A full subcategory A of Alg(T ) is said to be an equational
subcategory of Alg(T ) if it is (equivalent to) the category Alg(T ′) of algebras for a strongly
finitary monad T ′, where T ′ is constructed by “adding new equations” to the monad T .
More precisely, we ask T ′ to be a quotient of T , meaning that there is a monad morphism
e : T −→ T ′ that is moreover a regular epimorphism. The resulting algebraic functor

Alg(e) : Alg(T ′) −→ Alg(T )

then exhibits Alg(T ′) as an equational subcategory of Alg(T ). Every such subcategory
Alg(T ′) −→ Alg(T ) has nice closure properties with respect to the inclusion into Alg(T ).
The content of Birkhoff’s theorem is that equational subcategories can be characterised
by these closure properties. In essence, this theorem holds since algebraic categories are
well-behaved with respect to quotients (regular epis) – they are exact categories [1].

Taking inspiration from the ordinary case, we want to give a characterisation of equa-
tional subcategories of algebraic categories in the enriched setting. Namely, we shall
mainly work with categories enriched in the symmetric monoidal closed category V = Cat
and we will accordingly use the enriched notions of a functor, natural transformation, etc.

Analogously to the ordinary case, in defining the notion of an equational subcategory of
Alg(T ) the idea is again to consider “quotients” e : T −→ T ′ of strongly finitary 2-monads.
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Any subcategory Alg(e) : Alg(T ′) −→ Alg(T ) exhibited by a quotient e : T −→ T ′ is an
equational subcategory of Alg(T ).

Unlike to the V = Set case, it is not immediately clear that some well-behaved no-
tion of a quotient of strongly finitary 2-monads should exist. In V = Set, the quotients
come as the epi part of the (regular epi, mono) factorisation system, and they are com-
puted as certain colimits, the coequalisers. The solution in V = Cat is to mimic this
approach. Thus we should study factorisation systems on Cat (and the respective notions
of a quotient), and find out which factorisation systems “lift up” from the category Cat
to Cat-enriched algebraic categories. That is, we want to find factorisation systems that
render the algebraic categories over Cat exact in some suitably generalised sense. This
would allow us to talk about quotients of strongly finitary 2-monads while preserving the
good behaviour of quotients as in Cat.

Recent advances in the theory of 2-dimensional exactness (see [6]) show that there are
at least three notions of a quotient coming from three factorisation systems (E ,M) on
Cat, for which algebraic categories over Cat are exact:

1. (surjective on objects, injective on objects and fully faithful),

2. (bijective on objects, fully faithful),

3. (bijective on objects and full, faithful).

(For the E parts of the above systems, we will use the standard abbreviations, namely
s.o. for surjective on objects, b.o. for bijective on objects, and b.o. full for bijective on
objects and full.) We show that the 2-category Mndsf(Cat) of strongly finitary 2-monads
over Cat is exact in the sense of [6] with respect to all the three factorisation systems
above as well.

We focus on the factorisation system (b.o. full, faithful). Unlike the other two systems,
it corresponds to a meaningful notion of an equational subcategory, and it allows us to
prove the 2-dimensional Birkhoff theorem by arguments very similar to those used in the
proof of the ordinary Birkhoff theorem. For this factorisation system, the exactness of
Mndsf(Cat) implies that a monad morphism e : T −→ T ′ is a quotient if and only if
eC : TC −→ T ′C is a b.o. full functor in Cat for every category C. We shall often use this
“pointwise” nature of quotient monad morphisms.

The main result of the paper characterises equational subcategories of algebraic cate-
gories as those that are closed under products, quotients, subalgebras and sifted colimits.
This is a characterisation in the spirit of the ordinary Birkhoff theorem. In the univer-
sal algebraic formulations, only the first three closure properties are demanded, and are
dubbed “HSP” conditions. However, it was found out in [2] that even in the ordinary
case, the property of being closed under filtered colimits is necessary when dealing with
infinitely-sorted algebras. It is thus not surprising that the additional requirement of
closedness under sifted colimits might be needed in the 2-dimensional case: the finitary
and strongly finitary 2-monads no longer coincide in Cat (see Remark 3.4 for a distinguish-
ing example), and we are dealing with the strongly finitary ones. The choice of working



A TWO-DIMENSIONAL BIRKHOFF’S THEOREM 75

with strongly finitary 2-monads is fairly natural, since the 2-category Mndsf(Cat) is equiv-
alent to the 2-category Law of Cat-enriched one-sorted algebraic theories (also dubbed
Lawvere 2-theories) [14].

In the final section we conclude with a few remarks on possible future work and on
the other two factorisation systems on Cat. These systems are more poorly behaved, and
thus the corresponding Birkhoff-type theorem would be of a weaker nature.

Acknowledgements. I would like to thank John Bourke and Jiří Velebil for their help-
ful advice on the contents and structure of the paper. I greatly appreciate the invaluable
comments and suggestions made by the anonymous referee, as they helped me to sub-
stantially enhance the readability of the paper.

2. Kernels and quotients in 2-categories

We shall make heavy use of factorisation systems in discussing and proving the Birkhoff
theorem. The study of factorisation systems in general 2-categories is more involved than
in the ordinary case. Following the exposition in [6], we first recall the definitions of
enriched orthogonality and enriched factorisation systems in a general V -category for a
symmetric monoidal closed base category V . Then we introduce kernel-quotient systems
that generalise the correspondence between regular epimorphisms and kernels in exact
categories, and we use this notion to introduce the (b.o. full, faithful) factorisation system
on Cat. This factorisation system lifts up to a large class of algebraic categories, as is
shown in Theorem 2.8. As an important corollary we show in Proposition 2.10 that the
2-category of strongly finitary monads on Cat inherits the (b.o. full, faithful) factorisation
system, allowing us to study quotients of monads.

2.1. Definition. A morphism f : A −→ B in a V -category C is V -orthogonal to
g : C −→ D (denoted by f ⊥ g) if the diagram

C (B,C) C (B,D)

C (A,C) C (A,D)

C (B, g)

C (f, C) C (f,D)

C (A, g)

is a pullback in V . Given a class G of morphisms of C , we define two classes of morphisms
V -orthogonal to those in G:

• G↓ := {m | ∀g ∈ G : g ⊥ m},

• G↑ := {e | ∀g ∈ G : e ⊥ g}.

Given an object C of C , the morphism f : A −→ B is orthogonal to C if f is
orthogonal to idC, i.e., if the precomposition map

C (f, C) : C (B,C) −→ C (A,C)



76 MATĚJ DOSTÁL

is invertible (i.e., an isomorphism). We denote this fact by f ⊥ C.
Let E and M be two classes of morphisms of C . We say that (E ,M) is a V -

factorisation system if

1. M = E↓,

2. E =M↑, and

3. every morphism f in C can be factorised as the composition m · e of a morphism
m in M and a morphism e in E.

2.2. Example. We examine when two morphisms f : A −→ B and g : C −→ D are
orthogonal in C for the case of V = Cat. Firstly, the morphisms have to satisfy the usual
diagonal fill-in property

A B

C D

f

x y∃!d

g

for every pair x : A −→ C and y : B −→ D of morphisms in C . Let us denote by
d : A −→ D the diagonal fill-in for x and y, and denote by d′ : A −→ D the diagonal
fill-in for x′ and y′. The second requirement on f and g to be orthogonal is that they
satisfy the diagonal 2-cell property: for every pair α : x ⇒ x′ and β : y ⇒ y′ of 2-cells
such that

A

C D

⇒α x′x

g

=

B

D

A

⇒β y′y

f

there has to exist a unique 2-cell δ : d⇒ d′ such that the equalities

A

C

⇒α x′x =

B

C

A

⇒δ
d′

d

f B

D

⇒β y′y =

B

C D

⇒δ
d′

d

g

hold. Similarly, a morphism f : A −→ B in C is orthogonal to an object C of C if

1. for every g : A −→ C there exists a unique morphism h : B −→ C such that
h · f = g, and
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2. for every 2-cell α : g ⇒ g′ there exists a unique 2-cell β : h⇒ h′ such that β ∗ f = α
holds.

We now recall from [6] the notion of a kernel-quotient system. This notion generalises
the notions of a kernel and its induced quotient, and allows treating factorisation systems
in enriched categories parametric in the choice of the shape of “kernel data”. Importantly,
this approach covers the motivating ordinary (regular epi, mono) factorisation system on
Set as well as the three factorisation systems on Cat that are mentioned in the introduction.

In the following, we will restrict ourselves to V being a locally finitely presentable
category as a monoidal closed category in the sense of [9], as we will need to impose a
finiteness condition on the kernel-quotient system.

Let us denote by 2 the free V -category on a morphism 1 −→ 0. We let F be a finitely
presentable V -category containing 2 as a full subcategory. Then there is the obvious
inclusion J : 2 −→ F and the inclusion I : K −→ F of the full subcategory K of F
spanned by all objects of F except 0. We call the data (J, I) a kernel-quotient system,
and the role of K is, informally, to give the “shape” of the kernels. Given a complete and
cocomplete V -category C , there is a chain of adjunctions as in the following diagram:

[2,C ] [F ,C ] [K ,C ]

a a

RanJ [I,C ]

LanI[J,C ]

We denote the composite adjunction by

[2,C ] [K ,C ]

a

K

Q

and call it the kernel-quotient adjunction for F .
In [6] the authors give a weaker definition of kernel-quotient adjunction to capture the

cases where C is not complete and cocomplete. We do not need to introduce this weaker
notion, as the 2-categories C in our examples always satisfy the completeness conditions.

2.3. Definition. Given a complete and cocomplete V -category C together with the
kernel-quotient adjunction for F , we say that an object X in [K ,C ] is an F -kernel
if it is in the essential image of K. Any arrow f : A −→ B in C is called an F -
quotient map if it is in the essential image of Q, and it is called F -monic if the morphism
K(idA, f) : K(idA) −→ K(f) is an isomorphism.

2.4. Example. The motivating example of a kernel-quotient adjunction in the ordinary
setting (V = Set) is given by taking the category F to be of the shape

2 1 0
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with J and I being the obvious embeddings. Here the adjunction Q a K acts as follows.
The functor Q sends a parallel pair X = (f, g) to a coequaliser QX of the parallel pair
(f, g). A morphism f : A −→ B in C , thus an object in [2,C ], is sent by K to the kernel
Kf = (k1, k2) of f . The F -monic morphisms are precisely the monomorphisms in this
example.

The kernel-quotient system in the previous example allows factoring every morphism
in C as a regular epimorphism followed by a (not necessarily monomorphic) morphism.
Since both the functors I : K −→ F and J : 2 −→ F are injective on objects and fully
faithful, the functors RanJ and LanI can always be taken as strict sections of the functors
[J,C ] and [I,C ], respectively. Then the kernel-quotient adjunction Q a K may be taken
to commute with the evaluation functors [2,C ] −→ C and [K ,C ] −→ C that evaluate
at the object 1. This results in the counit ε of Q a K having the following form for all
objects f in [2,C ]:

A A

C B

idA

QKf f

εf

Thus we have a factorisation
f = εf ·QKf,

and QKf is a regular epi, being a coequaliser of the parallel pair Kf . If the morphism
εf is a mono for every f , we obtain a Set-factorisation system (regular epi, mono) on C .

The above construction of the morphism εf is analogous in the case of enrichment in
a general V . We say that F -kernel-quotient factorisations in C converge immediately
whenever εf is F -monic for each morphism f in C . Whenever F -kernel-quotient fac-
torisations converge immediately in C , we obtain a V -factorisation system (F -quotient,
F -monic) on C (by Proposition 4 of [6]).

2.5. Example. Given a 2-category Fbof generated by

2 1 0

⇒ ⇒

α β

s

t

w

subject to the identity w ∗α = w ∗β, we obtain the following kernel-quotient system. The
Fbof-kernel (or equikernel) of a morphism f : A −→ B is given by the following data:

E A B

⇒ ⇒

α β

s

t

f

In Cat, the category E has as objects the parallel morphisms p, q : a −→ b from A for which
the equality f(p) = f(q) holds in B. The morphisms between objects p1, q1 : a1 −→ b1 and
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p2, q2 : a2 −→ b2 in E are the pairs (m,n) of morphisms m : a1 −→ a2 and n : b1 −→ b2,
satisfying the equalities n · p1 = p2 ·m and n · q1 = q2 ·m. The functors s and t then act
as “source” and “target” functors. That is, given p, q : a −→ b as an object in E, we have
that s(p, q) = a and t(p, q) = b. The action of s and t on morphisms is as expected: using
the above notation, s(m,n) = m : a1 −→ a2 and t(m,n) = n : b1 −→ b2. The natural
transformations α and β then act as “morphism projections”, i.e., α(p, q) = p : a −→ b
and β(p, q) = q : a −→ b.

Given kernel-data X in [K ,C ], its Fbof-quotient QX is its coequifier, i.e., a universal
morphism c : X1 −→ C satisfying c ∗ Xα = c ∗ Xβ (see [8] or Section 5.3 in [6]). A
morphism in C is Fbof-monic precisely when it is representably faithful (i.e., faithful when
C = Cat). As the coequifier morphisms are always bijective on objects and full in Cat, this
hints that the Fbof kernel-quotient system gives rise to the (b.o. full, faithful) factorisation
system on Cat. This is indeed the case. In detail, given a functor f : A −→ B, we can form
its equikernel E and factorise f into two functors e : A −→ A/E and m : A/E −→ B.
The category A/E is the congruence category of A having the same objects as A, with
the congruence on morphisms of A generated by the pairs p, q : a −→ b that are objects of
E. Defining e as the canonical functor that assigns to each morphism of A its equivalence
class in A/E, it is obviously bijective on objects and full. The functor m assigns to each
object a of A its image f(a), and to the equivalence class morphism [p : a −→ b] the
image f(p) : f(a) −→ f(b). It follows immediately from the definition of the equikernel
that m is well-defined and faithful.

To summarise, for C = Cat the kernel-quotient factorisations for Fbof converge imme-
diately, and they give rise to the (b.o. full, faithful) factorisation system.

The main focus of [6] is to study the generalised notions of regularity and exactness,
parametric in the choice of a kernel-quotient system F . This yields a theory of F -
regularity and F -exactness. We do not need to introduce the theory of F -exactness in
detail. In fact, we use the results of [6] only to “lift” the (b.o. full, faithful) factorisation
system of Example 2.5 on Cat to any algebraic category Alg(T ) for a strongly finitary
2-monad T on Cat.

2.6. Remark.We say that a diagram

E A

⇒ ⇒

α β

s

t

(1)

of kernel data is reflexive if there exists a morphism iA : A −→ E as in the diagram

E A

⇒ ⇒

α β

s

t

iA



80 MATĚJ DOSTÁL

that satisfies the reflexivity equalities

s · iA = t · iA = idA,

α ∗ iA = β ∗ iA = 1.

In Cat, the equikernel (1) of any functor f : A −→ B is indeed reflexive. Recalling the
description of E from Example 2.5, we see that the assignment

a 7→ ida, ida : a −→ a,

m : a −→ b 7→ (m,m)

defines a morphism iA : A −→ E that satisfies the reflexivity equalities.

It follows from the above remark that each b.o. full functor is the coequifier of a
reflexive diagram: its equikernel. This observation is important because coequifiers of
reflexive diagrams (reflexive coequifiers) are examples of sifted colimits. In the ordinary
setting, sifted colimits are those colimits that commute with finite products in the category
of sets, see [1]. In particular, Theorem 2.15 of [1] contains a useful characterisation of
diagrams for sifted colimits. A diagram D is sifted if and only if it is connected and the
diagonal ∆ : D −→ D × D is final. In the case of enrichment in Cat, sifted colimits are
again those colimits that commute with finite products, now in the category Cat. It is
possible to characterise sifted colimits in a manner similar to the ordinary characterisation.
A weight ϕ : Dop −→ Cat is sifted if and only if

1. ϕ is connected, meaning that the unique 2-functor
∫ d
ϕd −→ 1 is an isomorphism,

and

2. the diagonal 2-functor ∆ : D −→ D ×D is final, meaning that the 2-cell

Dop ∆op
//

ϕ ""

δ⇒
Dop ×Dop

(d1, d2) 7→ ϕd1 × ϕd2xx

Cat

is a left Kan extension, where δd : ϕd −→ ϕd× ϕd is the diagonal functor.

This characterisation is contained, e.g., in Remark 4.2 of [7].

2.7. Remark. Recall that a 2-functor T : C −→ C is called strongly finitary if it
preserves sifted colimits. Using Remark 2.6 we see that every strongly finitary endo-
2-functor T : Cat −→ Cat preserves b.o. full functors, as they are coequifiers for some
reflexive diagram in Cat. We will use this fact very often in the following sections.

Let us denote by Catsf the 2-category of natural numbers n = {0, 1, . . . , n − 1} and
functions between them. There is an inclusion ι : Catsf −→ Cat that represents n as
the discrete category with the object set n, and maps a function f : m −→ n to the
corresponding functor with object assignment f . Theorem 8.31 of [5] states that Cat is
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the free cocompletion of Catsf under sifted colimits. This observation is useful as it shows
that any category C is a sifted colimit of finite discrete categories. Indeed, every discrete
category is a filtered colimit of its finite discrete subcategories, and every category is a
sifted colimit (a special codescent object) of discrete categories (see, e.g., Chapter 1 of [5]).
Moreover, strongly finitary 2-functors T : Cat −→ Cat correspond (up to isomorphism)
to 2-functors T · ι : Catsf −→ Cat, as the following diagram

Catsf
ι //

T · ι ##

λ⇒
Cat

T||

Cat

is a left Kan extension. This correspondence is stated and proved in Corollary 8.45
of [5]. Via this correspondence we may identify the 2-category StrFin(Cat) of strongly
finitary endo-2-functors of Cat with the (2-functor) 2-category [Catsf ,Cat]. We will use
this identification in the proof of Proposition 2.10.

The factorisation system given by Fbof lifts from Cat to the categories of algebras for
a strongly finitary 2-monad T . We will introduce the notion of an algebraic category and
then state the “lifting theorem” for Fbof .

For a 2-monad T on a 2-category C , we denote the 2-category of T -algebras and their
strict homomorphisms by Alg(T ). Recall that a morphism a : TA −→ A is a T -algebra if
it satisfies the axioms

A TA

A

ηTA

idA
a

TTA TA

TA A,

Ta

µTA a

a

and a morphism h : A −→ B is a strict homomorphism between T -algebras (A, a) and
(B, b) if it makes the usual diagram

TA

a
��

Th // TB

b
��

A
h
// B

commute in C . Let us recall the 2-dimensional structure of Alg(T ). Given two T -algebras
a : TA −→ A and b : TB −→ B, and two homomorphisms h, h′ : A −→ B between (A, a)
and (B, b), the 2-cells α : h′ ⇒ h between the homomorphisms h′ and h are exactly those
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2-cells α : h′ ⇒ h in C that moreover satisfy the following equality:

TA TB

B

⇒

Tα

Th′

Th
b =

A B

TA

⇒

α

h′

h

a

For us, the algebraic 2-category Alg(T ) is therefore what other authors commonly denote
by Algs(T ), see [12]. As we do not deal with the weaker kinds of morphisms, we will talk
simply of homomorphisms instead of strict homomorphisms in what follows. We call the
2-categories equivalent to the 2-categories of the form Alg(T ) algebraic.

2.8. Theorem. Let T be a strongly finitary 2-monad on [X,Cat] (with X an arbitrary
set). Then the Fbof kernel-quotient factorisations converge immediately in the 2-category
Alg(T ) of T -algebras. These factorisations give rise to a factorisation system: the quotient
morphisms are precisely those morphisms whose underlying morphisms are pointwise bi-
jective on objects and full, and the monic morphisms are precisely those whose underlying
morphisms are pointwise faithful.

Proof. Observe that the forgetful 2-functor U : Alg(T ) −→ [X,Cat] creates limits and
sifted colimits. In particular, U creates equikernels and coequifiers of equikernels, since the
equikernel is a reflexive pair in the sense of Remark 2.6. The factorisation of any morphism
h : (A, a) −→ (B, b) in Alg(T ) is thus computed as in [X,Cat], and there the Fbof

factorisations converge immediately. The Fbof factorisations thus converge immediately
in Alg(T ). Moreover, any Fbof-quotient morphism in [X,Cat] is pointwise bijective on
objects and full, as it is a colimit and these are computed pointwise in [X,Cat].

In the context of categories of algebras, the lifted factorisation system gives rise to the
notions of a quotient algebra and a subalgebra. Let T be a strongly finitary 2-monad T on
Cat, and take an algebra (A, a) from Alg(T ). We say that (B, b) is a subalgebra of (A, a)
if there is a homomorphism m : (B, b) � (A, a) with m faithful, as in the left-hand side
of the diagram (2). By a quotient algebra of (A, a) we mean a T -algebra (B, b) together
with a b.o. full morphism h : A� B in Cat that is a homomorphism, as in the right-hand
side of the diagram (2).

TB

b
��

Tm // TA

a
��

B // m
// A

TA

a
��

Th // // TB

b
��

A
h
// // B

(2)
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Let us remark that in the above diagram concerning quotient algebras, the morphism
Th : TA � TB is indeed b.o. full by Remark 2.7 since h is b.o. full and T is strongly
finitary.

2.9. Remark. Denote by N the discrete 2-category with natural numbers as objects.
We have an obvious inclusion J : N −→ Catsf that is an identity on objects (recall the
description of Catsf from Remark 2.7), and it induces a 2-functor

V = − · J : [Catsf ,Cat] −→ [N,Cat]

given by precomposition with J . Then let us denote by W the underlying 2-functor

W : Mndsf(Cat) −→ [Cat,Cat]
−·ι−→ [Catsf ,Cat]

mapping a strongly finitary 2-monad (T, µ, η) on Cat to its underlying endo-2-functor T
and restricting it to the 2-functor T · ι : Catsf −→ Cat. An argument from [13] shows that
there is a chain

Mndsf(Cat)

[Catsf ,Cat]

[N,Cat]

a

a

WH

VG

of adjunctions with the composite adjunction

Mndsf(Cat)

[N,Cat]

a UF

being monadic. Thus Mndsf(Cat) is equivalent to the 2-category [N,Cat]M of algebras
for the 2-monad M = UF . The 2-category [N,Cat]M is a locally finitely presentable
category (in the 2-dimensional sense of [9]), and so it is complete and cocomplete. We
will show that the right adjoint U preserves sifted colimits, and therefore M is strongly
finitary. Then, using Theorem 2.8, we will be able to conclude that Mndsf(Cat) admits
the (b.o. full, faithful) factorisation system of Example 2.5.

2.10. Proposition. The 2-monad M = UF given by the adjunction

Mndsf(Cat)

[N,Cat]

a UF

is strongly finitary.
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Proof. In the notation of the previous remark, U is the composite of right adjoints W
and V . The 2-functor V , being defined as a precomposition with J (recall Remark 2.9),
has itself a right adjoint and is therefore strongly finitary. To deduce that U preserves
sifted colimits, and that M is thus strongly finitary, it is enough to show that W preserves
sifted colimits. The argument can be taken almost verbatim from Section 4 of [10], where
the authors show a similar result for finitary monads. In the following we shall identify the
2-category [Catsf ,Cat] with the (2-equivalent) 2-category StrFin(Cat) of strongly finitary
endo-2-functors of Cat as in Remark 2.7. Take a weight ϕ : Dop −→ Cat for a sifted
colimit (i.e., a sifted weight), and a diagram D : D −→ Mndsf(Cat) sending d to a strongly
finitary 2-monad (Td, µ

Td , ηTd). Denote the weighted colimit object ϕ ∗WD in [Catsf ,Cat]
by T . For every strongly finitary S : Cat −→ Cat, both − ·S and S · − are again strongly
finitary, the first by having a right adjoint, and the second one since colimits in [Catsf ,Cat]
are computed pointwise. Therefore the weighted colimit (ϕ× ϕ) ∗D′ of the diagram
D′ : D×D −→ [Catsf ,Cat] sending (d, d′) to Td ·Td′ weighted by ϕ×ϕ : Dop×Dop −→ Cat
is the 2-functor TT . Since the diagonal 2-functor ∆ : D −→ D×D is final with respect to
the weight ϕ, it follows that the weighted colimit ϕ ∗D′∆ is also the 2-functor TT . This
in turn induces a multiplication µ : TT −→ T , and similarly we get the unit η : Id −→ T .
Thus T carries a monad structure, and it follows that W preserves sifted colimits.

Consider now a quotient e : T � T ′ of monads T and T ′ in Mndsf(Cat). From
Theorem 2.8 it follows that e is pointwise b.o. full. That is, the functor en : Tn � T ′n
is b.o. full for every finite discrete category n. Of course, for strongly finitary monads we
may state an even stronger pointwise property of quotient monad maps: given a quotient
e : T � T ′, its component eC : TC −→ T ′C is b.o. full for each category C. This is
true since each category is a sifted colimit of finite discrete categories, and since T and
T ′ preserve sifted colimits, see Remark 2.7.

Using the above observations, we shall see that quotients of monads correspond to
equational subcategories of algebraic categories.

2.11. Remark. Let us give an algebraic meaning to the fact that a quotient e : T � T ′

of strongly finitary 2-monads on Cat implies that every en : Tn � T ′n is b.o. full in
Cat. Viewing the objects of Tn as n-ary terms, bijectivity on objects of en means that
the quotient e does not postulate any new equations between terms. On the other hand,
fullness of en means that T ′n is obtained from Tn by identifying morphisms in Tn. On the
level of algebras, this imposes equations between morphisms of the underlying category
of an algebra. We will make the notion of an equation precise in Section 3.

2.12. Example. Let A be the 2-category of categories C equipped with the following
algebraic structure, subject to no axioms:

1. one nullary operation I and one binary operation ⊗,

2. natural transformations: the associator α with components αa,b,c : (a⊗b)⊗c −→ a⊗
(b⊗c) and the “back-associator” α′ with components α′a,b,c : a⊗(b⊗c) −→ (a⊗b)⊗c,
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3. natural transformations: the left and right unitors λ and ρ with the components
λa : I ⊗ a −→ a and ρa : a ⊗ I −→ a, together with “back-unitors” λ′ and ρ′ with
the components λ′a : a −→ I ⊗ a and ρ′a : a −→ a⊗ I.

In particular, the “back-associators” and “back-unitors” are not forced to be the in-
verses of associators and unitors. The morphisms in A are those functors that preserve
the algebraic structure “on the nose”, and the 2-cells are monoidal natural transforma-
tions between those functors. We can obtain from A a full subcategory B spanned by
“monoidal categories without coherence”: that is, consider only those categories C from
A whose associator and unitors are in fact natural isomorphisms, with their correspond-
ing inverse transformations being the “back-transformations”. In an informal sense, B is
an equational subcategory of A defined by the equations

α · α′ = α′ · α = 1, λ · λ′ = 1, λ′ · λ = 1, ρ · ρ′ = 1, ρ′ · ρ = 1.

Let MonCat be the 2-category of monoidal categories, strict monoidal functors and monoidal
natural transformations between those functors. Informally again, MonCat can be ob-
tained as an equational subcategory of B by considering those categories from B that
satisfy the usual triangle and pentagon identities.

The 2-category A can be easily seen to be the 2-category Alg(R) of algebras for a
strongly finitary 2-monad R on Cat. The results of Section 3 will show that there is a
chain

R � S � T

of quotients of strongly finitary 2-monads R, S and T for which we have the correspon-
dences

A ' Alg(R), B ' Alg(S), MonCat ' Alg(T ).

Moreover, the monad morphism quotients induce the inclusions

Alg(T ) −→ Alg(S) −→ Alg(R)

that correspond to the inclusions of equational subcategories MonCat ⊆ B ⊆ A . The
theory developed in Section 3 will make these correspondences precise.

We will end the present section with a remark stating that b.o. full morphisms are
epimorphisms with respect to morphisms and 2-cells. These properties will allow us to
prove a Cat-enriched Birkhoff theorem in the following section, with the proof being very
much in the spirit of the proof for ordinary Birkhoff theorem. Specifically, these properties
will be crucial in proving that quotients of monads induce 2-dimensionally fully faithful
algebraic functors (as defined in Definition 3.1).

2.13. Remark. Given a b.o. full h : C −→ A in Cat, the functor

Cat(h,B) : Cat(A,B) −→ Cat(C,B)



86 MATĚJ DOSTÁL

is injective on objects and fully faithful for every B. The injectivity on objects of Cat(h,B)
corresponds to h being an epimorphism in Cat, faithfulness of Cat(h,B) states that h
is an epimorphism with respect to 2-cells, and fullness of Cat(h,B) corresponds to a
factorisation property of h w.r.t. 2-cells.

Consider the following diagram

A

C B

A

f

β

h

h g

in Cat with h being b.o. full. Denote by

K C A
⇒ ⇒

γ δ

s

t

h

the kernel-quotient pair of h. The morphism h is a coequifier of the kernel diagram since
Cat is Fbof-exact. Both the composites f · h and g · h also coequify the kernel diagram.
By the 2-dimensional universal property of coequifiers the equality

C

B

⇒β ghfh =

A

B

C

⇒α gf

h

holds for a unique 2-cell α. This observation equivalently says that Cat(h,B) is fully
faithful.

3. Birkhoff theorem for the kernel-quotient system Fbof

In this section we first recall basic definitions concerning subcategories and equivalence of
categories in the Cat-enriched setting. After a short review of the properties of algebraic
categories and algebraic functors we state and prove the Birkhoff theorem for the Fbof

kernel-quotient system.

3.1. Definition. A 2-functor T : C −→ D between 2-categories C and D is called fully
faithful if for any pair A,B of objects of C the action TA,B : C (A,B) −→ D(TA, TB)
is an isomorphism of categories. We say that T exhibits C as a full subcategory of D .
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When C is moreover closed in D under isomorphisms, we call C a replete full subcategory
of D . The 2-category C is closed in D under isomorphisms if for any object A in C and
any isomorphism i : TA −→ D in D there exists an isomorphism j : A −→ B in C such
that Tj = i.

The 2-categories C and D are equivalent if there is a fully faithful 2-functor T : C −→
D that is essentially surjective, that is, for any object D of D there exists an object A of
C with TA being isomorphic to D, denoted by TA ∼= D.

3.2. Remark. Recall that an algebraic 2-category is a 2-category that is equivalent to a
2-category Alg(T ) for some 2-monad T on C . We will look at some important properties
of algebraic categories and algebraic functors (functors arising from a monad morphism):

1. Consider two 2-monads T and T ′ on C , and a monad morphism e : T −→ T ′. This
monad morphism gives rise to an algebraic 2-functor Alg(e) : Alg(T ′) −→ Alg(T )
between the 2-categories Alg(T ′) and Alg(T ) of algebras for T ′ and T . On objects,
Alg(e) acts as follows:

T ′A

A

TA

T ′A

A

7→a′
eA

a′

On morphisms and 2-cells Alg(e) acts as an identity. A homomorphism h : (A, a′) −→
(B, b′) between two T ′-algebras a′ : T ′A −→ A and b′ : T ′B −→ B gets mapped
to a homomorphism h : (A, a′ · eA) −→ (B, b′ · eB) of the corresponding T -algebras.
Indeed, the outer rectangle in the diagram

TA

eA
��

Th // TB

eB
��

T ′A

a′
��

T ′h // T ′B

b′
��

A
h

// B

clearly commutes. The same reasoning applies for the 2-cells α : h ⇒ h′ between
two homomorphisms h : (A, a′) −→ (B, b′) and h′ : (A, a′) −→ (B, b′).

The action of Alg(e) on morphisms and 2-cells is thus faithful for any e : T −→ T ′.

2. The algebraic 2-category Alg(T ) for a strongly finitary monad T on Cat is cowellpow-
ered with respect to quotient algebras. Indeed, for every small category A there is,
up to isomorphism, only a set of b.o. full functors of the form h : A −→ B in Cat.
Thus for a T -algebra (A, a) there is, up to isomorphism, only a set of quotients
h : (A, a) −→ (B, b) in Alg(T ).
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3. Given an algebraic 2-category Alg(T ) for a strongly finitary 2-monad T on Cat, it
is a standard observation that the underlying 2-functor U : Alg(T ) −→ Cat creates
2-limits. See Theorem 6.8 of [3] for a proof that U preserves these limits and observe
that it can be easily modified to show that U in fact creates these limits. Since T
is strongly finitary, the 2-functor U also creates sifted colimits. In particular, U
creates reflexive coequifiers. That is, given a reflexive diagram

(K, k) (A, a)

⇒ ⇒

f

g

h

in Alg(T ), and the coequifier of the U -image of the above diagram

K A C
⇒ ⇒

Uf

Ug

c

Uh

there exists a unique algebra (C, c) such that c is a homomorphism between (A, a)
and (C, c).

We now turn to the proof of the Birkhoff theorem.

3.3. Theorem. Let T be a strongly finitary 2-monad on Cat and let A be a full sub-
category Alg(T ) of the category of algebras for the 2-monad T . Then the following are
equivalent:

1. There is a strongly finitary 2-monad T ′ and a b.o. full monad morphism e : T � T ′

such that the comparison 2-functor A −→ Alg(T ′) is an equivalence.

2. The category A is closed in Alg(T ) under sifted colimits, 2-products, quotient alge-
bras, and subalgebras.

Proof.We first prove the implication (1) ⇒ (2) in the following manner:

(a) Given the monad morphism e : T � T ′, we get a 2-functor Alg(e) : Alg(T ′) −→ Alg(T )
that we show to be fully faithful.

(b) We show that Alg(e) preserves sifted colimits and 2-limits.

(c) Finally we show that Alg(T ′) is closed in Alg(T ) under subalgebras and quotient
algebras.
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Ad (a): The action of Alg(e) on morphisms and 2-cells is faithful by point (1) of
Remark 3.2. We prove that Alg(e) is indeed fully faithful by showing that its action on
morphisms and 2-cells is full. The fullness on morphisms comes from observing that given
any diagram of the form

TA

eA
����

Th // TB

eB
����

T ′A

a′
��

T ′h // T ′B

b′
��

A
h

// B

such that the outer rectangle commutes, the lower square commutes since eA : TA� T ′A
is b.o. full, and thus epi. Similarly, given a 2-cell α : h⇒ h′ in Alg(T ), it is also a 2-cell in
Alg(T ′) by 2-naturality of e (saying that eB ∗Tα = α∗eA), and since eA is an epimorphism
on 2-cells by Remark 2.13. The algebraic 2-functor Alg(e) is therefore indeed fully faithful.

Ad (b): Let us denote by UT : Alg(T ) −→ Cat and by UT ′
: Alg(T ′) −→ Cat the

underlying 2-functors of Alg(T ) and Alg(T ′). Then UT ′
= UT · Alg(e). The 2-functor

UT ′
preserves 2-limits and sifted colimits and U creates them. Therefore Alg(e) preserves

2-limits and sifted colimits.
Ad (c): Now we show that the 2-category Alg(T ′) is closed in Alg(T ) under subalgebras

and quotient algebras. To this end, consider a T ′-algebra (A, a′) and its image (A, a) =
(A, a′ · eA) under Alg(e). Given any subalgebra (B, b) of (A, a) as in the diagram

TB

b

��

Tm // TA

eA
��

T ′A

a
��

B // m
// A,

we can use the naturality of e

TB

eB ## ##

b

��

Tm // TA

eA
����

T ′B

b′{{

T ′m
// T ′A

a′
��

B // m
// A

and define b′ as the unique diagonal fill-in with respect to eB and m in the above diagram.
(Recall that (b.o. full, faithful) is a factorisation system on Cat.) This b′ : T ′B −→ B is
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a T ′-algebra. We inspect the following diagrams to see that (B, b′) satisfies both algebra
axioms.

TB

eB
����

b

oo

B

ηTB
==

ηT
′

B //

idB !!

T ′B

b′
��

B

TTB
µTB //

TeB ����

TB

eB
��

b

oo

TT ′B
eT ′B// //

Tb′
��

T ′T ′B

T ′b′
��

µT
′

B // T ′B

b′
��

TB eB
// // T ′B

b′
// B

Consider the left-hand diagram. The upper triangle commutes by the unit axiom of the
monad morphism e, and the outer triangle commutes since (B, b) is a T -algebra. Thus the
lower triangle commutes by virtue of eB being an epimorphism. In the right-hand diagram,
the outer square commutes since (B, b) is a T -algebra. The upper rectangle is an instance
of a monad morphism axiom, and the lower left square commutes by naturality of e. The
morphism TeB is b.o. full, as eB is and T preserves b.o. full morphisms by Remark 2.7.
Thus the composite morphism eT ′B ·TeB is b.o. full as well. By the cancellation property
of b.o. full morphisms we obtain the commutativity of the square

T ′T ′B

T ′b′
��

µT
′

B // T ′B

b′
��

T ′B
b′

// B,

and this proves that (B, b′) is a T ′-algebra. In conclusion, Alg(T ′) is indeed closed in
Alg(T ) under subalgebras.

The closedness of Alg(T ′) under quotient algebras in Alg(T ) follows from closedness
under limits and sifted colimits. Whenever we are given a T ′-algebra (A, a′) and a quotient
homomorphism h : (A, a) = (A, a′ · eA) � (B, b) of T -algebras as in

TA

eA
����

Th // // TB

b

��

T ′A

a′
��

A
h
// // B,

the kernel (K, k) of h lies in Alg(T ′). This is true since (K, k) is easily seen to be a
subalgebra of the cotensor algebra (A, a)•⇒• (where •⇒ • denotes the obvious category),
and (A, a)•⇒• is in turn a subalgebra of the product algebra (A, a)2. Since the kernel
(K, k) is reflexive and as Alg(T ′) is closed in Alg(T ) under sifted colimits, it follows that
(B, b) lies in Alg(T ′).
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The second part of the proof is the implication (2) ⇒ (1). Given a strongly finitary
2-monad T and a full subcategory

J : A −→ Alg(T )

of Alg(T ) that is closed under sifted colimits, 2-products, quotient algebras and subalge-
bras, we need to find a strongly finitary 2-monad T ′ such that there is a monad morphism
T � T ′ and the comparison A −→ Alg(T ′) is an equivalence. Observe that A is a replete
subcategory of Alg(T ) as this follows from closedness under unary products.

We will proceed as follows:

(a) We will form an ordinary left adjoint to J by using Freyd’s Adjoint Functor Theo-
rem [15].

(b) We will show that J preserves cotensors with 2 and that the ordinary adjunction is
thus enriched in Cat, using Proposition 3.1 of [4].

(c) We will construct a monad morphism T � T ′ from the above adjunction and show
the equivalence A ' Alg(T ′).

Ad (a): We will show that A has and J preserves ordinary limits. Since J is fully
faithful, it suffices to prove that A is closed in Alg(T ) under ordinary limits. By as-
sumption, A is closed in Alg(T ) under 2-products. It is therefore closed under ordinary
products as well, since 2-products and ordinary products coincide in Cat. We need to
show that it is closed also under equalisers. To this end, consider an equaliser diagram

(A, a) // // JX
Js
++

Jt
33 JY

in Alg(T ). Equalisers in Alg(T ) are computed on the level of underlying categories, which
implies that A� UJX is faithful. Thus (A, a) is a subalgebra of JX. Since the 2-category
A is closed under subalgebras in Alg(T ), we proved that it is closed under equalisers as
well.

To establish the existence of a left adjoint for J , we now only need to find an ordinary
solution set for every object (A, a) of Alg(T ). We claim that the solution set is the set
{hi : (A, a) � JXi | i ∈ I} of all the (representatives of the) quotients of (A, a) that lie in
A . This is indeed a set due to the nature of b.o. fullness, recall point (2) of Remark 3.2.
Given any morphism f : (A, a) −→ JY , we can factorise it to obtain a triangle

(A, a) JY

(B, b)

f

h
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and moreover, since (B, b) is a subalgebra of JY , we have that (B, b) ∼= JX holds for
some X from A , and the solution set condition is satisfied. The unit of the adjunction is
constructed as follows: we take the product

∏
i∈I JXi of all the codomains of the quotients

in the solution set, and factorise the mediating morphism (hi) : (A, a) −→
∏

i∈I JXi as
in the following diagram.

(A, a)
∏

i∈I JXi

JL(A, a)

(hi)

η(A,a)

Note that η(A,a) is b.o. full for every algebra (A, a).
Ad (b): Take a T -algebra (A, a) that belongs to A and form its cotensor (A, a)2. By

means of the inclusion functor 2 −→ 2, we have a canonical homomorphism (A, a)2 −→
(A, a)2 whose underlying functor is faithful, and thus renders (A, a)2 as a subalgebra of
a product of algebras contained in A . By the closure properties imposed on A , we have
that A is closed in Alg(T ) under forming cotensors with 2 as well.

Ad (c): We can now define the 2-monad T ′ and the monad morphism ϕ : T −→ T ′

for which we will show the equivalence A ' Alg(T ′). Let us first settle the notation and
write (L a J, η, ε) for the adjunction L a J : A −→ Alg(T ), denote by (F T , UT , ηT , εT )
the adjunction F T a UT : Alg(T ) −→ Cat, and let µT : TT −→ T be the multiplication
of the 2-monad T .

This allows us to define the 2-functor T ′ := UTJLF T which is the underlying endo-
functor of a 2-monad (T ′, ηT

′
, µT

′
) with the unit ηT

′
and the composition µT

′
defined by

the assignments

ηT
′
:= UTηF T · ηT , µT

′
:= UTJεLF T · UTJLεTJLF T .

Then there is a corresponding monad morphism ϕ = UTηF T : T � T ′. The proof that
ϕ is indeed a monad morphism is standard and proceeds exactly as in the non-enriched
case. Moreover, ϕ is a quotient, since

1. η(A,a) is a quotient for each algebra (A, a), and

2. UT preserves quotients since T does.

Let us denote by

A Alg(T ′)

Cat

K

UTJ UT
′

the ordinary comparison functor. We will apply the ordinary Beck’s theorem to infer that
K is an ordinary equivalence. Since A has and UTJ preserves sifted colimits, A has and
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UTJ preserves coequalisers of reflexive pairs. Moreover, since UT reflects isomorphisms
and J is fully faithful, the composite functor UTJ also reflects isomorphisms. Therefore
K : A −→ Alg(T ′) is indeed an equivalence in the ordinary sense.

We will now show that on objects, the inclusion J : A −→ Alg(T ) factorises, up to
isomorphism, as in the following triangle:

Alg(T ′)

Alg(ϕ)

��

A

K
;;

J ##

Alg(T ).

Indeed, for any object A of A the equality

KA = (UTJA,UTJεA · UTJLεTJA)

holds. The algebra KA gets mapped by the functor Alg(ϕ) to an algebra with a structure
map

UTJεA · UTJLεTJA · ϕUT JA = UTJεA · UTJLεTJA · UTηFTUT JA

= UTJεA · UTηJA · UT εTJA

= UT εTJA,

where the first equality holds by the definition of ϕ, the second one follows from naturality
of η, and the third one comes from the triangle identity of L a J . But (UTJA,UT εTJA)
is isomorphic to JA, as (UTJA,UT εTJA) is the image of JA under the trivial comparison
functor

I : Alg(T ) −→ Alg(T ).

Both J and Alg(ϕ) are fully faithful in Cat-enriched sense: the 2-functor J is such by
assumption and Alg(ϕ) was proved to be fully faithful for a quotient monad morphism ϕ
in the first part of the proof. We can conclude that the ordinary equivalence K : A −→
Alg(T ′) is enriched in Cat, thus finishing the proof.

3.4. Remark.A point that needs to be discussed is that we demand A to be closed under
sifted colimits in Alg(T ) in the characterisation of equational subcategories of Alg(T ). It is
true that in the original Birkhoff theorem there is no need to demand closedness under any
class of colimits whatsoever. However, even in the ordinary case of V = Set, closedness
under filtered colimits (or directed unions) is essential in the case of many-sorted universal
algebra, see [2]. In the case of V = Cat, at least the requirement for closedness under
filtered colimits is arguably expectable. The reason why our version of the Birkhoff
theorem asks for an even stronger closure property, i.e., closedness under sifted colimits,
is the following. While finitary and strongly finitary monads on Set coincide (every finitary
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monad is strongly finitary), this is not the case for 2-monads on Cat: a finitary 2-monad
need not be strongly finitary. For example, the 2-monad T that gives rise to the 2-category
Alg(T ) of categories C equipped with one “arrow-ary” operation C 2 −→ C is finitary, but
T fails to preserve sifted colimits in general. Since we are dealing with strongly finitary
2-monads on Cat, being closed under sifted colimits is the corresponding closure property.

3.5. Remark. In our setting, the property of being closed under sifted colimits is equiv-
alent to being closed under conical filtered colimits and under codescent objects of strict
reflexive coherence data by Remark 8.44 of [5]. For our purposes, the only two important
points concerning codescent objects are that

1. they are the colimit objects for a certain sifted diagram, and

2. in the categories Alg(T ) for a strongly finitary 2-monad T on Cat, the universal
cocone over such a diagram consists of a single bijective on objects homomorphism.

This allows us to state the conditions of our Birkhoff theorem in an alternative way. In
Alg(T ), define an algebra (B, b) to be a (b.o.)-quotient of (A, a) if there is a homomorphism
h : (A, a) −→ (B, b) that is bijective on objects. Since every b.o. full functor is b.o., we
may strengthen the property of being closed under quotient algebras to the property of
being closed under (b.o.)-quotient algebras, and replace the requirement for closedness
under sifted colimits by closedness under filtered colimits.

It remains to argue that a full subcategory A of Alg(T ) closed under 2-limits and sifted
colimits is closed under (b.o.)-quotients. Given a (b.o.)-quotient h : (A, a) −→ (B, b) with
(A, a) contained in A , it follows by the results of [6] (see Section 5.1 in particular) that
h is the quotient of the kernel

h|h|h h|h (A, a),

p

q

m

d

c

i

where the component h|h is a certain subalgebra of (A, a)2, and the component h|h|h is
a pullback of c and d. Without loss of generality, the above kernel can be considered
reflexive, and thus (B, b) belongs to A , being a sifted colimit of algebras contained in A .

The following alternative statement of Birkhoff theorem is a direct corollary of the
above remark, and it may be more useful in practice for detecting equational subcategories
of algebraic categories.

3.6. Corollary. The full subcategory A of Alg(T ) is an equational subcategory of
Alg(T ) if and only if it is closed in Alg(T ) under 2-products, (b.o.)-quotient algebras,
subalgebras and filtered colimits.

In the ordinary setting, full algebraic subcategories induced by a quotient monad
morphism can be characterised as a special kind of orthogonal subcategories. Without
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substantial changes to the reasoning, the same characterisation can be obtained for the
case of V = Cat, as is shown below.

Given a 2-category X and a set S = {fi : Xi −→ Yi | i ∈ I} of morphisms of X , we
will denote by S⊥ the full subcategory J : Y −→ X spanned by the objects Y that are
orthogonal to all morphisms in S.

3.7. Corollary. The equational subcategories

J : A −→ Alg(T )

of the 2-category Alg(T ) of algebras for a strongly finitary 2-monad T are precisely the
orthogonal subcategories of Alg(T ) of the form

A = {f : F Tn� (C, c) | f ∈ I}⊥ = I⊥

for some set I of quotient morphisms in Alg(T ). Moreover, each morphism in I has as
its domain a free algebra on a finite discrete category.

Proof. To see that one direction of this statement holds, observe that A is closed under
subobjects in Alg(T ): Given an algebra (B, b) in A and its subalgebra (A, a), we have for
any g : F Tn −→ (A, a) a situation

F Tn (C, c)

(A, a) (B, b)

f

g

g

where the unique morphism (C, c) −→ (B, b) exists since f ⊥ (B, b), and the unique diag-
onal exists by the diagonal property of the factorisation system. The universal property
of 2-products establishes that A is closed in Alg(T ) under 2-products. To see that A
is closed in Alg(T ) under sifted colimits we show that Alg(T )(F Tn,−) preserves sifted
colimits. This is the case, since Alg(T )(F Tn,−) ∼= Cat(n, UT−) and both Cat(n,−) and
UT preserve sifted colimits. To show that A is closed in Alg(T ) under quotients, observe
first that Alg(T )(F Tn,−) preserves quotient maps since both UT and Cat(n,−) are easily
seen to preserve quotient maps. This property implies that F Tn is projective with re-
spect to quotients, and that the factorisation granted by projectivity is unique. Consider
a quotient h : (A, a) � (B, b) with (A, a) in A . To prove that (B, b) is in A , observe
that for any morphism g : F Tn −→ (B, b) there is a unique morphism p : F Tn −→ (A, a):

F Tn

(A, a) (B, b)

p
g

h
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Since (A, a) is orthogonal to f , we obtain a triangle

F Tn (C, c)

(A, a)

f

p
o

The composite h · o then proves that f ⊥ (B, b). Indeed, given any other factorisation
g = i · f , the equality i = h · o holds since f is epi.

In the other direction, recall that reflective subcategories are always orthogonality
classes. In our case we have that

A = {η(A,a) : (A, a) � JL(A, a) | (A, a) ∈ Alg(T )}⊥.

We need to take a subset of the above class of morphisms such that the codomain of
each morphism is a free algebra on a finite discrete category. For this, we first use that
every algebra (A, a) is a sifted colimit of free algebras on finite discrete categories. Indeed,
consider the full subcategory G −→ Alg(T ) spanned by algebras of the form F Tn for a
natural number n. By Proposition 4.2 of [11], Alg(T ) is a free cocompletion of G under
sifted colimits; the only interesting property to check being that the closure of G in Alg(T )
under sifted colimits is the whole of Alg(T ). Observe that a free algebra F TX on a discrete
category X is a filtered colimit of free algebras on finite discrete categories, a free algebra
F TC on a category C is a sifted colimit (codescent object) of free algebras on discrete
categories, and any algebra (A, a) is a reflexive coequaliser of free algebras F TA on A.
The result follows from this reasoning.

Secondly, if an object is orthogonal to a given set of arrows, it is orthogonal to their
colimit in the category of arrows as well. Since JL preserves sifted colimits, we get that

{η(A,a) : (A, a) � JL(A, a) | (A, a) ∈ Alg(T )}⊥

is equal to the subcategory

{ηFTn : F Tn� JLF Tn | n ∈ Cat, n finite discrete}⊥,

as we needed.

The above result may be reformulated to resemble the original universal algebraic
formulation of Birkhoff’s theorem even more. Taking again

A = {f : F Tn� (C, c) | f ∈ I}⊥,

we know that any morphism f : F Tn� (C, c) as above is the coequifier of its kernel:

(K, k) F Tn (C, c)

⇒ ⇒

γ δ

s

t

f



A TWO-DIMENSIONAL BIRKHOFF’S THEOREM 97

Given an algebra (A, a), it is orthogonal to f precisely when each morphism g : F Tn −→
(A, a) coequifies the 2-cells γ and δ. Now consider the underlying set K0 of the category
K by means of the b.o. inclusion functor i : K0 −→ UT (K, k). Transposing this functor,
we get a homomorphism i] : F TK0 −→ (K, k) defined as the composite

F TK0 (K, k)

F TUT (K, k)

i]

F T i εT(K,k)

of two homomorphisms that are surjective on objects. The morphism εT(K,k) is surjective
on objects since its underlying functor is a split epi k, and F T i is in fact b.o., because
T = UTF T as a strongly finitary monad preserves b.o. functors. A given morphism
g : F Tn −→ (A, a) therefore coequifies γ and δ if and only if it coequifies the whiskered
2-cells γ ∗ i] and δ ∗ i]:

F TK0 (K, k) F Tn

⇒ ⇒

γ δ
i]

s

t

As a left adjoint, F T preserves coproducts, and thus

F TK0
∼= F T (

∐
obj(K0)

1) ∼=
∐

obj(K0)

F T
1

holds. This allows us to reduce the pair γ and δ of 2-cells into obj(K0)-many pairs γc and
δc of 2-cells

F T
1 F Tn

⇒ ⇒

γc δc

sc

tc

such that a morphism g : F Tn −→ (A, a) coequifies γ and δ precisely when it coequifies
all the pairs γc and δc. In fact, let us call each such a pair (γc, δc) an equation in T
and observe that it corresponds precisely to a pair of morphisms in UTF Tn. Let us now
say that an algebra (A, a) from Alg(T ) satisfies the equation γc = δc if every morphism
g : F Tn −→ (A, a) coequifies γc and δc. We have just proved the following “universal-
algebraic” version of Birkhoff’s theorem.

3.8. Corollary. A full subcategory A of Alg(T ) for a strongly finitary monad T on Cat
is closed under 2-products, subalgebras, quotient algebras and sifted colimits if and only
if there is a set E = {γi = δi | i ∈ I} of equations in T such that A consists of algebras
of Alg(T ) that satisfy E.

‘
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4. Concluding remarks

In this section we first discuss possible directions for future work. Then we conclude by
showing that the kernel-quotient systems Fbo and Fso are inadequate for obtaining any
kind of a well-behaved Birkhoff-type theorem.

Equational logic for the Fbof factorisation system. In classical universal alge-
bra, it is known that there is an equational logic that is sound and complete with respect
to the notion of equational consequence. See Section 3.2.4 of [16] for a nice treatment.
An obvious question is whether there is an “equational logic” sound and complete with
respect to the notion of equational consequence that comes from our definition of what an
equation is in the 2-dimensional context. Finding such a calculus is a problem for future
work.

Other factorisation systems.We will discuss some problems concerning the factori-
sation systems (bijective on objects, fully faithful) and (surjective on objects, injective on
objects and fully faithful) on Cat.

We can see immediately that the situation is very different in the case of the (b.o.,
f.f.) factorisation system when compared to the (b.o. full, faithful) case. Given a monad
morphism e : T −→ T ′ with eX : TX −→ T ′X being b.o. for all categories X, the
algebraic functor

Alg(e) : Alg(T ′) −→ Alg(T )

need not be fully faithful in the 2-dimensional sense. This calls for a different approach
to stating and proving a Birkhoff-style theorem. Indeed, trying to mimic the approach to
the case of the (b.o. full, faithful) factorisation system breaks down at the very beginning:
we will not be able to characterise equational subcategories by their closure properties,
as the subcategories need not be full. Even more goes wrong: not every b.o. functor is
epimorphic in Cat, and Cat is not cowellpowered with respect to b.o. quotients.

Recall from Remark 2.11 that a b.o. full quotient e : T � T ′ has the components
en : Tn � T ′n pointwise b.o. full in Cat. Algebraically, this specifies new equations that
have to hold between morphisms in a T ′-algebra. However, no such algebraic meaning
can be given in the case of a b.o. quotient e : T � T ′. This is because the components
en : Tn � T ′n are pointwise only b.o. in Cat. Thus T ′ as a monad may contain new
2-dimensional algebraic information, and in this context it does not make sense to talk
about Alg(T ′) as of an equational subcategory of Alg(T ).

The same remarks remain true when considering the (s.o., i.o.f.f.) factorisation system.
Thus both the (b.o. full, faithful) and (s.o., i.o.f.f.) factorisation systems would allow only
for a very weak and rather generic Birkhoff theorem.
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