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THE FERMAT FUNCTORS

ENXIN WU

Abstract. In this paper, we use some basic quasi-topos theory to study two func-
tors: one adding infinitesimals of Fermat reals to diffeological spaces (which generalize
smooth manifolds including singular spaces and infinite-dimensional spaces), and the
other deleting infinitesimals on Fermat spaces. We study the properties of these functors,
and calculate some examples. These serve as fundamentals for developing differential
geometry on diffeological spaces using infinitesimals in a future paper.

1. Introduction

Using infinitesimals to study geometry goes back to I. Newton or even earlier, as one of
the motivations for developing calculus, and hence the start of the modern mathematics.
Although infinitesimal theory was not rigorous at the beginning, the intuitive idea behind
it was so enlightening that a great amount of work at that time by mathematicians like
L. Euler, J.-L. Lagrange, etc, were influenced by that. It was A.-L. Cauchy who made
the definition of limit rigorous using the epsilon-delta language. Since then infinitesimal
theory gradually left the main stream of mathematics.

On the other hand, many concepts in geometry came from intuitive infinitesimal con-
siderations, for example, tangent vectors, vector fields, Lie groups, Lie algebras, connec-
tions, curvature, etc. Many modern formulations of these concepts leave very little trace
of their original ideas, but they are very convenient for doing computations. In other
words, there is a step from translating geometric ideas using infinitesimals to the modern
formulations, and most of time, this step is left as a gap in most literature, especially for
students start to learn this field. It is always a great hope that infinitesimal theory could
be made rigorous and enter differential geometry for the real content.

Going back to the rigor of infinitesimal theory, nowadays, there are a few such theo-
ries available on the market. Two of the most developed ones are Non-Standard Analysis
(NSA; see for example [15]) and Synthetic Differential Geometry (SDG; see for exam-
ple [12, 13]). The infinitesimals in SDG are nilpotent1, while those in NSA are not. In the
smooth manifold2 case, a tangent space at a point is the first-order approximation of the
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1More precisely, the square of any infinitesimal number in SDG is 0.
2By a smooth manifold in this paper, we always mean it to be finite-dimensional, second countable,
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808 ENXIN WU

manifold. That is, if we embed the smooth manifold in some Euclidean space, and assume
that the local defining function of the manifold around that point is f , then the Taylor
expansion of f up to order 1 is the tangent space there. This example implies that we can
use nilpotent infinitesimals to do differential geometry, i.e., if the infinitesimal increment
of the variables of f already has the property that the multiplication of any two of them
is 0, then the tangent space is exactly the Taylor expansion at that point. One can also
imagine that the higher order geometric structures such as jets can be characterized using
higher order infinitesimals. In order to axiomatize first-order approximation, SDG has a
very strong axiom called the Kock-Lawvere axiom. This axiom requires the (commuta-
tive unital) ring with infinitesimals to satisfy an affine condition for every function from
infinitesimals to the ring, and in the framework of classical logic, the only such ring is the
trivial ring. In other words, the whole theory of SDG is built upon a new world called
intuitionistic logic.

The theory of Fermat reals introduced by P. Giordano in [6] is another infinitesimal
theory, where every infinitesimal is nilpotent, and the theory is compatible with classical
logic; see Section 2 for a brief summary of the basics of this theory. It is not hard
to redo many classical constructions of differential geometry on smooth manifolds using
Fermat reals; some of them have already been explored in [5], and more will be presented
systematically in a following paper.

Note that many spaces other than smooth manifolds arise naturally and frequently in
geometry, for example, smooth manifolds with boundary or corners, singular orbit spaces
of Lie groups acting on smooth manifolds (in particular, orbifolds), function spaces be-
tween smooth manifolds, diffeomorphism groups of smooth manifolds, etc. These spaces
are usually studied separately in the literature. There are generalizations of smooth man-
ifolds which contain (some of) them. Diffeology is one of such generalizations, introduced
by J.-M. Souriau in [16, 17]. A standard textbook is [10]. Briefly, a diffeological space is
a set together with specified functions from open subsets of Rn for all n to this set, satis-
fying three simple axioms. These axioms declare when a function from an open subset of
a Euclidean space to this set is “smooth”. A typical non-trivial and important example is
an irrational torus, which cannot be characterized by (continuous) maps from this space
to Euclidean spaces. Moreover, there is a quasi-topos approach to diffeology ([1]), and
this idea has been extended to Fermat reals ([7]), called Fermat spaces.

An approach of adding infinitesimals on diffeological spaces has been tried in [5], which
uses maps from diffeological spaces to Euclidean spaces to identify little-oh polynomials
(a pre-model for infinitesimals) on this diffeological space; see [5, Chapter 8]. The theory
goes well with smooth manifolds, but not with general diffeological spaces3. This leads
the author to think of a very different approach of adding infinitesimals. More precisely,
since diffeological spaces are concrete sheaves over the Souriau site, and Fermat spaces are
concrete sheaves over the Fermat site (Example 3.2), to find natural relationship between

Hausdorff, and without boundary.
3For example, it is easy to check by definition that it turns an irrational torus to a trivial Fermat

space.
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them, it is enough to find natural functors between the two sites. In this way, we not only
get a definition of the adding infinitesimal functor (Proposition 4.2) which is different
from the one presented in [5] (Proposition 4.3), but also obtain its left inverse, called
the deleting infinitesimal functor (Propositions 4.16 and 4.17). Almost every property of
the adding infinitesimal functor in [5] holds in this new definition, with most restrictive
conditions removed (see Subsection 4.1). In Subsection 4.20, we discuss the comparison
of another natural adding infinitesimal functor4 with the current one, and explain why
the current one is better. Finally in Subsection 4.27, we do a few calculations, and show
that in general the calculation is not easy5. All of these will serve as fundamentals for
developing differential geometry on diffeological spaces in a future paper.

I would like to thank P. Giordano for suggesting this project.

2. Basic of Fermat reals

Fermat reals were introduced by P. Giordano in [5, 6, 7, 8]. Let us review the basic theory
here; see these references for detailed proof of these results.

Let U be an open subset of Rn. We define U0[t], the little-oh polynomials on U , to be
the set of functions x : [0, ε)→ U for some (not fixed) ε ∈ R>0 with the property that

‖x(t)− r −
k∑
i=1

αit
ai‖ = o(t) i.e., lim

t→0

‖x(t)− r −
∑k

i=1 αit
ai‖

t
= 0

for some r ∈ U , k ∈ N, αi ∈ Rn and ai > 0. Two little-oh polynomials x and y are
called equivalent if x(0) = y(0) and x(t)− y(t) = o(t). This is an equivalence relation on
U0[t], and the quotient set is denoted by •U . As a consequence, every element in •U has
a unique representing little-oh polynomial of the form

y(t) = ◦y +
l∑

i=1

βit
bi (1)

for some ◦y(:= y(0)) ∈ U , l ∈ N, βi ∈ (Rn \ {0}) and 0 < b1 < b2 < · · · < bl ≤ 1,
defined on [0, δ) for some maximum δ ∈ R>0 ∪ {∞}.6 We call this the decomposition of

4It uses another canonical concrete site; see Remark 3.3. Indeed, we used this concrete site in the
definition of the deleting infinitesimal functor (Proposition 4.16).

5More precisely, we show in Example 4.33 that the adding infinitesimal functor does not commute
with arbitrary colimits.

6Careful reader will notice that there are two main differences between the presentation here and the
one in the existing references. One is, we use germs at 0 for little-oh polynomials, since sometimes, such
functions are not necessarily globally defined, and another one is the expression of the unique representing
little-oh polynomials without using the notation changes: tb ↔ dt1/b, since from my opinion, the use of

tb is closer to the traditional way of viewing such functions as a kind of “polynomials”, and much easier
for doing computations, etc.
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the element [y], ◦y the standard part, and we define ω([y]) := 1
b1

the order of [y]. For
convenience, we sometimes use a similar form of y(t) as (1) but allowing βi = 0, and we
call such a form a quasi-decomposition of [y]. From now on, we write elements in •U by
y instead of [y] whenever there is no confusion.

Given a finite set of open subsets {Ui}i∈I of Euclidean spaces, •(
∏

i∈I Ui) naturally
bijects

∏
i∈I
•Ui. Therefore, we do not distinguish •(Rn) and (•R)n, and write it as •Rn.

We can also identify •U as a subset of •Rn by •U = {x ∈ •Rn | ◦x ∈ U} when U is an
open subset of Rn.

There are canonical functions iU : U → •U and ev0 : •U → U defined by iU(u)(t) = u
and ev0(x) = ◦x, and we have ev0 ◦ iU = 1U . Therefore, •U is an extension of U , and for
x ∈ •U , we call δx := x−◦x the infinitesimal part of x. The meaning is clear when U = R:
we can give a well ordering on •R 7 by x ≤ y if x = ◦x+

∑n
i=1 αit

ai and y = ◦y+
∑n

i=1 βit
ai ,

both in the quasi-standard form, with (◦x, α1, . . . , αn) ≤ (◦y, β1, . . . , βn) in the dictionary
order, and then D∞ := {x ∈ •R | ◦x = 0} = {x ∈ •R | −r < x < r for all r ∈ R>0}.
Moreover, every infinitesimal part δx of x ∈ •U is nilpotent, i.e., there exists some m =
m(x) ∈ N such that (δx)m = 0.

D∞ is the unique maximal (prime) ideal of •R. The subsets {0}, Da = {x ∈ D∞ |
ω(x) < a + 1} for all a ∈ R>0 ∪ {∞} and Ib = {x ∈ D∞ | ω(x) ≤ b} for all b ∈ R≥1 are
all the ideals of •R. We simply write D for D1, called the set of first-order infinitesimals.

On •Rn, define τ := {•U | U is an open subset of Rn}. Then τ is a topology on •Rn,
called the Fermat topology, since •(U ∩ V ) = •U ∩ •V and •(∪iUi) = ∪i•Ui. Without
specification, for every subset A of •Rn, we always equip it with the sub-topology of the
Fermat topology of •Rn.

Let f : U → V be a smooth map between open subsets of Euclidean spaces. Then
•f : •U → •V by •f(x) = f ◦ x is a well-defined map extending f (called the Fermat
extension of f), i.e., we have the following commutative diagram in Set:

U

f
��

iU // •U

•f
��

ev0 // U

f
��

V
iV
// •V ev0

// V,

The calculation of •f(x) = •f(◦x+δx) can be done by Taylor’s expansion of f at the point
◦x, using the nilpotency of δx. More precisely, if the (m+ 1)th power of each component
of δx is 0 for some m ∈ N, then we have

•f(x) = •f(◦x+ δx) =
∑

i∈Nm,|i|≤m

1

i!

∂|i|f

∂xi
(◦x) · (δx)i.

Therefore, for any open subset W of V , we have •(f−1(W )) = (•f)−1(•W ), i.e., •f is
continuous with respect to the Fermat topology.

7It is a commutative unital ring under pointwise addition and pointwise multiplication, called the ring
of Fermat reals.
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Note that when U 6= ∅ and dim(V ) > 0, not every constant map •U → •V is of the
form •f for some smooth map f : U → V , since otherwise •f(u) ∈ V ⊂ •V for every
u ∈ U ⊆ •U . In order to get a concrete site (see next section), we introduce the following
definition:

2.1. Definition. Let A ⊆ •Rn and B ⊆ •Rm be arbitrary subsets. A function f : A→ B
is called quasi-standard smooth if for every a ∈ A, there exist an open neighborhood U of
◦a in Rn, an open subset P of some Euclidean space, a smooth map α : P ×U → Rm and
some fixed point p ∈ •P , such that for every x ∈ A ∩ •U , we have

f(x) = •α(p, x).

In particular, every constant map A → B and iU : U → •U are quasi-standard
smooth. Moreover, every quasi-standard smooth map is continuous with respect to the
Fermat topology.

3. Concrete sites and concrete sheaves

The notion of concrete sites and concrete sheaves goes back to [4]. A review of the
categories of concrete sheaves, with special attention to smooth spaces is in [1]. We
collect some essential results here and review two examples related to this paper, in order
to unify notations for the following sections. For explicit definitions and detailed proof
of the properties, see [4], [1], [11] and [18, Subsections 1.2 and 2.1], but we will not need
any of them in this paper.

To be brief, a concrete site is a site with a terminal object, such that there is a faithful
functor from the site to the category Set of sets and functions (defined using the terminal
object), every cover is jointly surjective on the underlying sets, and every representable
presheaf is actually a sheaf. A concrete sheaf over a concrete site is a sheaf over this site
with an underlying set (as sections over the terminal object), such that every section is a
function between the underlying sets. Given a concrete site A, the category CSh(A) of
all concrete sheaves over this site forms a quasi-topos:

3.1. Definition. [1, Definition 3.1] A quasi-topos is a locally Cartesian closed category
with finite colimits and a weak subobject classifier.

In other words, it is like a topos, but with a weak subobject classifier (that is, it only
classifies strong subobjects instead of all subobjects). See [11] for more discussions on
quasi-topos.

Here are some basic properties of CSh(A):

• It is complete and cocomplete.

• It is (locally) Cartesian closed.

• It is locally presentable.
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We will make use of the following corollaries a lot in the following sections:

1. The concrete site is canonically a full subcategory of the category of concrete sheaves
over it. By abuse of notation, we use the same notations to denote objects and
morphisms in these categories.

2. Every subset (or quotient set) of a concrete sheaf is canonically a concrete sheaf.

3. The faithful underlying set functor | − | : CSh(A) → Set has both left and right
adjoints. Therefore, (co)limits in CSh(A) are the (co)lifting of the corresponding
(co)limits for the underlying sets.

4. Let A be a concrete site. For any concrete sheaf X over A, write A/X (called the
plot category of X) for the overcategory with objects all sections p : A → X and
morphisms commutative triangles

A
f //

p   

A′

p′~~
X

where both p and p′ are sections and f is a morphism in A. There is a canonical
functor A/X → CSh(A) sending the above triangle to f : A → A′, and the
colimit of this functor is X. In other words, every concrete sheaf is a colimit of
the representing (concrete) sheaves indexed by the plot category over it, written as
X = colimA∈A/XA.

We will mainly focus on the following two examples in this paper:

3.2. Example.

1. [1, Lemma 4.14 and Proposition 4.15] Let S be the site (called the Souriau site)
with objects all open subsets of Rn for all n ∈ N, morphisms smooth maps between
them, and covers the usual open coverings. Then S is a concrete site with terminal
object R0. The category CSh(S) of concrete sheaves over S is equivalent to the
category Diff of diffeological spaces and smooth maps. Isomorphisms in Diff are
called diffeomorphisms. For more discussions of diffeological spaces, see the standard
textbook [10]; for a three-page concise introduction together with basic notation and
terminology, see [3, Section 2].

2. [5, Section 8.3] Let F be the site (called the Fermat site) with objects all subsets
of •Rn for all n ∈ N, morphisms quasi-standard smooth maps between them, and
covers the Fermat open coverings. Then F is a concrete site with terminal object
•R0 = R0.8 The category of concrete sheaves over F is denoted by •C∞, called the
category of Fermat spaces and Fermat maps.

8The reference didn’t prove this fact using the language of quasi-topos, and instead introduced a new
terminology called “a category of figures”. This fact is indeed an easy consequence of the results proved
there.
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3.3. Remark. We will relate the category Diff of diffeological spaces and the category
•C∞ of Fermat spaces in next section. If we define F ′ to be the full subcategory of F
consisting of objects of the form •U with U an open subset of a Euclidean space, then by
Example 3.2(2), F ′ is also a concrete site. It seems more natural to relate the category
CSh(F ′) to the category Diff . We will show in Subsection 4.20 in what sense the category
•C∞ is better than the category CSh(F ′).

In the above two examples, note that every object in the concrete site S or F is not
just a set, but a topological space, and every morphism is continuous. More generally,
assume that a concrete site A is a subcategory of the category Top of topological spaces
and continuous maps, with covers the open coverings. Then every concrete sheaf X over
A has a canonical topology, which is the final topology with respect to all sections A→ X,
i.e., the largest topology on the set |X| making all sections continuous. This defines a
functor CSh(A) → Top. This functor sends every object in A to the same topological
space. When A = S, this topology is called the D-topology9 on diffeological spaces (see [3]
for detailed discussion), and when A = F , this topology is called the Fermat topology on
Fermat spaces. Moreover, this functor CSh(A)→ Top has a right adjoint, sending every
topological space Y to a concrete sheaf over A with sections over an object A in A the
set of all continuous maps A→ Y .

4. Extending diffeological spaces with infinitesimals

We use the following notations as in Examples 3.2(1) and 3.2(2) throughout this section:
S is the Souriau site, F is the Fermat site, Diff is the category of diffeological spaces and
smooth maps, and •C∞ is the category of Fermat spaces and Fermat maps.

From Examples 3.2(1) and 3.2(2), we know that both categories Diff and •C∞ are
concrete sheaves over concrete sites S and F , respectively. In order to find relationship
between categories of concrete sheaves, we only need to find “good” functors between the
two sites. There are already some candidates for such functors introduced in Section 2,
and we will use them to build the adding and the deleting infinitesimal functors.

4.1. The adding infinitesimal functor •(−). In [5, Chapters 7-10], an attempt of
adding infinitesimals on smooth spaces has been made, by using smooth functions from
diffeological spaces to R. The theory goes well for smooth manifolds, or more generally
for separated diffeological spaces, i.e., diffeological spaces whose smooth functions to R
separate points. But if we take the diffeological space to be a 1-dimensional irrational
torus, then after that procedure of adding infinitesimals, we get a trivial Fermat space (i.e.,
a single point), since the D-topology on any irrational torus is indiscrete – the only open
subsets are the empty set and the whole space. In other words, that procedure of adding
infinitesimals turns an important and highly non-trivial diffeological space into a trivial
Fermat space. In this subsection, we introduce a new approach to extend diffeological

9The letter “D” in “D-topology” refers to “diffeology”, not the first-order infinitesimals D introduced in
the previous section. We use the same convention for the terminology “D-open” in the following sections.
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spaces with infinitesimals to overcome this problem, and still keep all the nice properties
as stated in [5, Chapters 7-10] for general diffeological spaces, instead of separated ones.

We introduce the following functor from diffeological spaces to Fermat spaces, using
Fermat extension of smooth functions:

4.2. Proposition. The assignment S → F by

f : U → V 7→ •f : •U → •V

is a functor between the two sites, and hence induces a functor •(−) : Diff → •C∞ by

X = colimU∈S/XU ∈ Diff 7→ •X = colimU∈S/X
•U ∈ •C∞.

Note that although the above two colimits have the same indexing category, the col-
imits are taken in different categories. We call the functor •(−) : Diff → •C∞ the adding
infinitesimal functor. Since •C∞ is a category of concrete sheaves, every point in the
Fermat space •X can be thought of as a point in •U for some plot p : U → X. Two such
points in •X are equal if and only if they are connected by the Fermat extension of a
zig-zag diagram of plots of X, instead of using smooth functions X → R. We will see in
next proposition that the adding infinitesimal functor •(−) is different in general from the
one introduced in [5, Chapter 9], although we use the same notation. In particular, this
functor sends U ∈ S to •U , which coincides with the notation introduced in Section 2,
since the indexing category S/U has a terminal object 1U : U → U .

Proof. This is straightforward. Indeed, this is the left Kan extension (see [14, X.3]) of
the composite of functors S → F ↪→ •C∞ along the inclusion functor S ↪→ Diff .

Here is the relationship between the underlying sets of X and •X:

4.3. Proposition. The adding infinitesimal functor •(−) : Diff → •C∞ makes every
diffeological space a subset of the corresponding Fermat space.

In particular, if X is a 1-dimensional irrational torus, then |X| is a subset of |•X|,
which implies that •X is not a trivial Fermat space; see Example 4.32 for the final answer
of •X. Therefore, the adding infinitesimal functor •(−) is different from the one introduced
in [5, Chapter 9].

Proof. Since the functor | − | : CSh(A)→ Set has a right adjoint for any concrete site
A, it preserves colimits, i.e., for any diffeological space X, we have

|X| = |colimU∈S/XU | = colimU∈S/X |U | and

|•X| = |colimU∈S/X
•U | = colimU∈S/X |•U | in Set.
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Recall that for any smooth map f : U → V between open subsets of Euclidean spaces,
we have the following commutative diagram in Set:

|U |
|f |
��

iU // |•U |
|•f |
��

ev0 // |U |
|f |
��

|V |
iV
// |•V | ev0

// |V |,

and the composites of the two horizontal maps are identities. Therefore, we have maps
iX : |X| → |•X| and ev0 : |•X| → |X| such that ev0 ◦ iX = 1|X|. This implies that iX is
injective, and hence |X| is a subset of |•X|.

Moreover, for any smooth map f : X → Y between diffeological spaces, we have the
following commutative diagram in Set:

|X|
|f |
��

iX // |•X|
|•f |
��

ev0 // |X|
|f |
��

|Y |
iY
// |•Y | ev0

// |Y |.

(Actually this holds in Top, where X and Y are equipped with the D-topology, and •X
and •Y are equipped with the Fermat topology. But we will not need this fact in this
paper.) In other words, |•f | is always a retract of |f |. Therefore, if |•f | is injective (resp.
surjective or bijective), then so is |f |.10 When X and Y are open subsets of Euclidean
spaces, •f coincides with the notation introduced in Section 2.

The adding infinitesimal functor behaves nicely with respect to D-open subsets:

4.4. Proposition. Let A be a D-open subset of a diffeological space X, equipped with
the subset diffeology. Then •A is a Fermat open subset of •X.

Proof. Let i : A ↪→ X be the inclusion map, which induces a Fermat map •i : •A→ •X.
Since A is a D-open subset of X, for any plot p : U → X, p−1(A) ⊆ U is open and
p|p−1(A) : p−1(A) → A is a plot of A. So we get a functor S/X → S/A, such that the
composite S/A ↪→ S/X → S/A is identity. This does not mean that we always have a
Fermat map •X → •A, but from this it follows that •i is injective.

For any Fermat plot q : B → •X = colimU∈S/X
•U and any point b ∈ B, there exist

a Fermat open neighborhood C of b in B, some plot r : U → X, and a quasi-standard
smooth map f : C → •U such that the following square commutes in •C∞:

C

f
��

� � // B

q
��

•U •r
// •X.

10Note that, the converse is not necessarily true.
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Since every quasi-standard smooth map is continuous with respect to the Fermat topology,
it is enough to prove that (•r)−1(•A) = •(r−1(A)), which is the statement of the next
proposition.

4.5. Proposition. Let f : X → Y be a smooth map between diffeological spaces, and let
A be a D-open subset of Y , equipped with the subset diffeology of Y . Also equip f−1(A)
with the subset diffeology of X. Then

(•f)−1(•A) = •(f−1(A)).

Proof. Since f : X → Y is smooth and A is D-open in Y , f−1(A) is D-open in X.
From what we have proved in the previous proposition, we know that the inclusion
map f−1(A) ↪→ X induces an injective map •(f−1(A)) → •X. So both (•f)−1(•A) and
•(f−1(A)) are subsets of •X.

For any plot p : U → f−1(A), we have the following commutative diagram in Diff :

U
p // f−1(A) �

� //

f |f−1(A)

��

X

f

��
A �
� // Y,

which induces a commutative square in •C∞:

•U //

��

•X

•f
��

•A �
� // •Y.

Therefore, colimU∈S/f−1(A)
•U = •(f−1(A)) ⊆ (•f)−1(•A).

For the converse inclusion, assume that

•f(x) ∈ •A = colimV ∈S/A
•V

for some x ∈ •X = colimU∈S/X
•U . So there exist plots p : U → X and q : V → A, and

points u ∈ •U and v ∈ •V such that •p : •U → •X sends u to x and •q : •V → •A sends
v to •f(x). That is, •q(v) = •(f ◦ p)(u) ∈ •Y = colimW∈S/Y

•W .
Since | − | : •C∞ → Set is faithful and has a right adjoint, there exist finitely many

plots ri : Wi → Y , points wi ∈ •Wi and zig-zag morphisms in S/Y connecting f ◦ p
and j ◦ q via these ri’s, where j : A ↪→ Y , so that u and v are connected via these wi’s
when applying the adding infinitesimal functor on the zig-zag. Let us do the following to
“shorten” the length of the zig-zag:

(1) If we have the following commutative triangle in Diff :

W
g //

r   

V

q��
Y,
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then r can also be viewed as a plot of A, so we switch to consider the pair (r, w) with
w ∈ •W given (so •g(w) = v) instead of (q, v);

(2) If we have the following commutative triangle in Diff :

W

r   

V

q��

goo

Y,

then r−1(A) 6= ∅, and the given w ∈ •W is actually in r−1(A). So we switch to consider
the pair (r|r−1(A), w) instead of (q, v). In this case, we might need to shrink one Wi next
to W or U a bit to keep the zig-zag in S/Y , but without changing the given points wi.

After finitely many steps of switching pairs, we know that there exists an open neigh-
borhood U ′ of ◦u in U such that f(p(U ′)) ⊆ A. Therefore, (•f)−1(•A) ⊆ •(f−1(A)).

In the next two results, we are going to connect the D-topology on a diffeological space
X and the Fermat topology on •X.

4.6. Proposition. Let X be a diffeological space, and let A be a Fermat open subset of
•X. Then X ∩ A 11 is a D-open subset of X, and A = •(X ∩ A).

Proof. Let p : U → X be an arbitrary plot. Using the commutative square

|U | iU //

|p|
��

|•U |
|•p|
��

|X|
iX
// |•X|,

it is straightforward to check that p−1(X ∩ A) = U ∩ (•p)−1(A), and hence X ∩ A is a
D-open subset of X. So both A and •(X ∩A) (Proposition 4.4) are Fermat open subsets
of •X.

Note that every point in •(X ∩ A) can be represented by vq ∈ •V , where q : V → X
is a plot whose image is in X ∩ A. Since V ⊆ q−1(X ∩ A) = V ∩ (•q)−1(A), we have
•q(vq) ∈ A. Hence, •(X ∩ A) ⊆ A.

On the other hand, assume that wr ∈ •W with r : W → X a plot represents a point in
A, i.e., •r(wr) ∈ A. Since A is Fermat open in X, (•r)−1(A) is Fermat open in •W , which
implies that r(◦wr) ∈ X ∩ A, and hence •r(wr) ∈ •(X ∩ A). Therefore, A ⊆ •(X ∩ A).

As a result, we have A = •(X ∩ A).

In conclusion, we have:

4.7. Theorem. Let X be a diffeological space. Then there is a bijection between the
D-open subsets of X and the Fermat open subsets of •X.

11By Proposition 4.3, X is canonically a subset of •X.
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Proof. The maps between these sets are given by sending a D-open subset A of X to
•A, and by sending a Fermat open subset B of •X to X ∩B, respectively. To prove that
these maps are inverse to each other, by Propositions 4.4 and 4.6, we are left to show that
X ∩ •A = A. Assume that up ∈ U with plot p : U → X and vq ∈ •V with plot q : V → X
whose image is in A represent the same element in •X. By using ev0, it is clear that ◦vq
and up represent the same element in X, and the former actually represents an element
in A. Hence, X ∩ •A ⊆ A. The converse inclusion is clear.

The next two results are easy applications:

4.8. Corollary. Let X be a diffeological space, and let {Ai}i∈I be a set of D-open subsets
of X. Then we have

•(A1 ∩ A2) = •A1 ∩ •A2,

•(
⋃
i∈I

Ai) =
⋃
i∈I

•Ai,

and
•(int(X \ A1)) = int(•X \ •A1),

where int denotes the interior.

4.9. Proposition. Let f : X → Y be a smooth map between diffeological spaces, which
is an open map with respect to the D-topology. Let A be a D-open subset of X. Then
•(f(A)) = (•f)(•A), where f(A) and A are equipped with the subset diffeology of Y and
X, respectively.

As a consequence, the adding infinitesimal functor •(−) preserves open maps.

Proof. Since A is a D-open subset of X and f : X → Y is an open map, f(A) is a
D-open subset of Y . Then (•f)(•A) ⊆ •(f(A)) follows from applying the functor •(−) to
the commutative square

A �
� //

f |A
��

X

f
��

f(A) �
� // Y

together with Proposition 4.4. Since f(A) ⊆ (•f)(•A), we have •(f(A)) ⊆ (•f)(•A) by
Proposition 4.6. Therefore, •(f(A)) = (•f)(•A).

For quotient spaces, we have:

4.10. Proposition. If Y is a quotient space of a diffeological space X, then •Y is a
quotient space of the Fermat space •X.

Proof. Since Y is a quotient space of X, every plot of Y locally factors through a plot
of X, which implies that the quotient map X → Y induces a surjective map |•X| → |•Y |,
and moreover, every Fermat plot of •Y also locally factors through a Fermat plot of •X.
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The adding infinitesimal functor preserves finite products:

4.11. Proposition. For any diffeological spaces X1 and X2, we have a natural isomor-
phism •(X1 ×X2) ∼= •X1 × •X2 in •C∞.

Proof. Note that
•(X1 ×X2) = colimU∈S/(X1×X2)

•U,

and
•X1 × •X2 = (colimV ∈S/X1

•V )× (colimW∈S/X2

•W )

= colimV ∈S/X1(
•V × colimW∈S/X2

•W )

= colim(V ∈S/X1)×(W∈S/X2)(
•V × •W )

= colim(V ∈S/X1)×(W∈S/X2)
•(V ×W )

where the second and the third equalities follow from Cartesian closedness of •C∞.
We can define a functor (S/X1) × (S/X2) → S/(X1 ×X2) sending (f, g) : (q : V →

X1, r : W → X2) → (q′ : V ′ → X1, r
′ : W ′ → X2) to (f × g) : (q × r : V × W →

X1×X2)→ (q′×r′ : V ′×W ′ → X1×X2). It is straightforward to check that this functor
is final ([14, Section IX.3]), and hence •X1 × •X2 → •(X1 × X2) is an isomorphism12 in
•C∞ ([14, Theorem IX.3.1]).

The naturality means that if f1 : X1 → X ′1 and f2 : X2 → X ′2 are smooth maps
between diffeological spaces, then we have a commutative square in •C∞:

•X1 × •X2

•f1×•f2 //

��

•X ′1 × •X ′2

��
•(X1 ×X2) •(f1×f2)

// •(X ′1 ×X ′2).

This follows easily from the canonical map •X1 × •X2 → •(X1 ×X2) described above.

4.12. Remark. More generally, we have the following result by a similar proof. Let A
and B be concrete sites with finite products, and let F : A → B be a natural finite-
product-preserving functor. Then the induced functor F : CSh(A) → CSh(B) defined
by X = colimA∈A/XA 7→ F (X) := colimA∈A/XF (A) naturally preserves finite products.
This result will be used in Proposition 4.19.

For infinite products, the situation is different:

4.13. Remark. Let I be an infinite index set. Then the natural map •(
∏

i∈I Xi) →∏
i∈I
•Xi is not necessarily surjective. For example, consider the natural map •(

∏
N R)→∏

N
•R. For any element in •(

∏
N R) represented by a plot p : U →

∏
N R and a fixed

u ∈ •U , its image (•pi(u))i∈N in
∏

N
•R has the property that the set {ω(•pi(u))}i∈N has

12The inverse of this isomorphism is induced by the projections πi : X1 ×X2 → Xi for i = 1, 2.
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a finite upper bound by Taylor’s expansion, while
∏

N
•R contains elements (xi)i∈N such

that the set {ω(xi)}i∈N has no finite upper bound (xi = t1/(i+1) for instance).

Now we discuss function spaces. Let X and Y be diffeological spaces. Since the
category Diff of diffeological spaces is Cartesian closed, Diff(X, Y ) 13 is also a diffeological
space, with the natural diffeology (called the functional diffeology) consisting of all maps
U → Diff(X, Y ) such that the corresponding adjoint maps U × X → Y are smooth.
So •(Diff(X, Y )) = colimU∈S/Diff(X,Y )

•U . On the other hand, we can apply the adding
infinitesimal functor to the adjoint maps U ×X → Y to get •U × •X ∼= •(U ×X)→ •Y .
Since the category •C∞ of Fermat spaces is Cartesian closed, we can take the adjoint back
and get Fermat maps •U → •C∞(•X, •Y ). It is easy to check that we get a Fermat map
i : •(Diff(X, Y ))→ •C∞(•X, •Y ). Moreover, the composite

|Diff(X, Y )|
iDiff(X,Y ) // |•(Diff(X, Y ))| |i| // |•C∞(•X, •Y )|

exactly sends a smooth map f to its Fermat extension •f .
In general, one cannot expect the Fermat map i : •(Diff(X, Y )) → •C∞(•X, •Y ) to

be an isomorphism in •C∞. For example, when X = Y = R, •(Diff(R,R)) consists of
•f(u,−) : •R→ •R, where f : U × R→ R is a smooth map with U some open subset of
a Euclidean space, and u ∈ •U is some fixed point; •C∞(•R, •R) is the set of all Fermat
maps •R → •R; the map i : •(Diff(R,R)) → •C∞(•R, •R) is the inclusion map, which is
hence not an isomorphism in •C∞.

On the other hand, we will show in next subsection that both •(Diff(X, Y )) and
•C∞(•X, •Y ) have the same “underlying diffeological space”.

4.14. The deleting infinitesimal functor •(−). In this subsection, we introduce a
functor •C∞ → Diff which deletes all infinitesimal points. This is the left inverse of the
adding infinitesimal functor •(−) introduced in the previous subsection.

Recall that we write F ′ for the full subsite of the Fermat site F , consisting of objects
of the form •U for U an open subset of Rn for all n ∈ N. We first observe that

4.15. Proposition. F ′ → S defined by

f : •U → •V 7→ •f : U → V,

with •f(u) = ev0 ◦ f ◦ iU(u) = ◦(f(u)) is a functor.

Proof. Note that f is quasi-standard smooth, i.e., for every a ∈ •U , there exist an
open neighborhood U ′ of ◦a in U , an open subset U ′′ of a Euclidean space, a fixed point
b ∈ •U ′′, and a smooth map g : U ′′ × U ′ → Rn with n = dim(V ), such that for any
x ∈ •U ′, f(x) = •g(b, x). Hence, for any u ∈ U ′, •f(u) = ◦(f(u)) = ◦(•g(b, u)) = g(◦b, u).
Therefore, •f is a smooth map.

Clearly •(1•U) = 1U .

13Here |Diff(X,Y )| denotes the set of all smooth maps X → Y .
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Let f : •U → •V and g : •V → •W be quasi-standard smooth maps. Then for any
u ∈ U

•g(•f(u)) = •g(◦(f(u)))

=
◦
(g(◦(f(u))))

= ◦(g(f(u)))

= •(g ◦ f)(u),

where the third equality follows from Taylor’s expansion of the local expression of g as a
Fermat extension of a smooth function. Therefore, •g ◦ •f = •(g ◦ f).

Hence, we get a functor from Fermat spaces to diffeological spaces:

4.16. Proposition. •(−) : •C∞ → Diff defined by

X 7→ •X = colim•U∈F ′/XU

is a functor.

We call this functor the deleting infinitesimal functor ; see next proposition for expla-
nation.

Proof. This is clear from Proposition 4.15. Indeed, this is the left Kan extension of the
composite of functors F ′ → S ↪→ Diff along the inclusion functor F ′ ↪→ •C∞.

It is easy to check that the composite S → F ′ → S is identity, where the first functor
is introduced in Proposition 4.2, and the second one is given by Proposition 4.15. This
property can be extended to the corresponding concrete sheaf categories:

4.17. Proposition. The composite

Diff
•(−) // •C∞

•(−) //Diff

is the identity functor.

In other words, the deleting infinitesimal functor is the left inverse of the adding
infinitesimal functor.

Proof. For any diffeological space X, we prove below that •(
•X) = X. From the proof,

it is clear that the composite of these two functors acts as identity on morphisms.
Recall that

X = colimU∈S/XU,
•X = colimU∈S/X

•U, and •(
•X) = colim•U∈F ′/•XU.

We define a functor S/X → F ′/•X by

U
f //

p   

V

q~~
X

7→ •U
•f //

•p ""

•V

•q||
•X.
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It is straightforward to check that •(
•f) = f : U → V , and hence we get a natural smooth

map X → •(
•X).

On the other hand, for any Fermat plot p : •U → •X, write p̄ : U → X for the
composite

U
iU // •U

p // •X
ev0 // X.

By a similar proof as Proposition 4.15, one can check that F ′/•X → S/X defined by

•U
f //

p !!

•V

q}}
•X

7→ U
•f //

p̄   

V

q̄~~
X

is a well-defined functor, and hence we get another natural smooth map •(
•X)→ X.

Although p and •p̄ can be different, it is straightforward to check that the two com-
posites

U
iU // •U

p //
•p̄
// •X

ev0 // X

are the same, and hence the two maps X → •(
•X) and •(

•X) → X are inverse to each
other.

By a similar method, one can show that if X and Y are diffeological spaces, and
f : •X → •Y is a Fermat map, then •f : •(

•X)→ •(
•Y ) after natural diffeomorphisms as

constructed in the proof of Proposition 4.17 corresponds to f̄ : X → Y , i.e., the composite

X
iX // •X

f // •Y
ev0 // Y.

In particular, from a commutative triangle in •C∞:

•X
f //

h !!

•Y

g}}
•Z,

we get a commutative triangle in Diff :

X
f̄ //

h̄   

Y

ḡ��
Z,

where X, Y, Z are diffeological spaces, and f, g, h are Fermat maps.
As an easy application, we have:
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4.18. Corollary. Let X and Y be diffeological spaces. Then the Fermat map i :
•(Diff(X, Y )) → •C∞(•X, •Y ) introduced at the end of last subsection induces a dif-
feomorphism Diff(X, Y ) ∼= •(

•C∞(•X, •Y )).

Proof. A morphism

•U
f //

p̃ &&

•V

q̃xx
•C∞(•X, •Y )

in F ′/•C∞(•X, •Y ) is equivalent to a commutative triangle

•U × •X f×1•X //

p
%%

•V × •X

q
yy•Y

in •C∞ by Cartesian closedness of •C∞. By the observation above this corollary, we get
a commutative triangle

U ×X f̄×1X //

p̄
##

V ×X

q̄
{{

Y

in Diff . By Cartesian closedness of Diff , we get a morphism

U
f̄=•f //

%%

V

yy
Diff(X, Y )

in S/Diff(X, Y ). Hence, we get a smooth map •(
•C∞(•X, •Y )) → Diff(X, Y ), and one

can check easily that this is the inverse of •i.

On the other hand, we will show in next subsection that •(•Y ) is not isomorphic to Y
in •C∞ for a general Fermat space Y .

Here is another way to think of the deleting infinitesimal functor. The inclusion of
the concrete sites F ′ ↪→ F gives rise to the restriction functor •C∞ → CSh(F ′), and
Proposition 4.15 induces a functor CSh(F ′) → Diff . One can check that the functor
F ′ → S naturally preserves finite products, and as a result of Remark 4.12 we have:

4.19. Proposition. For any Fermat spaces X and Y , •(X × Y ) is naturally diffeomor-
phic to •X × •Y .

For application of the adding and the deleting infinitesimal functors to integrals, see
the subsection “Standard and infinitesimal parts of an integral” in [9, Section7].
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4.20. Why we choose F to be the Fermat site. In Example 3.22, we defined
F with objects all subsets of •Rn for all n ∈ N, morphisms all quasi-standard smooth
maps between them, and covers the Fermat open coverings to be the Fermat site. We
have explained in Section 2 that instead of taking morphisms to consist of only Fermat
extension of smooth maps, we get a concrete site. In order to relate Fermat spaces
with diffeological spaces, there is another natural choice – we can take F ′ to be the full
subcategory of F consisting of objects of the form •U with U an open subset of a Euclidean
space. Then by Example 3.22, F ′ is also a concrete site. In this subsection, we explain in
what sense the category •C∞ is better than the category CSh(F ′).

One naive reason is, we want to develop geometry of Fermat spaces and diffeological
spaces using general spaces like D∞ = {x ∈ •R | ◦x = 0}, D = {x ∈ •R | x2 = 0} and
D≥0 = {x ∈ D | x ≥ 0}, but none of them are of the form •U for some open subset U
of a Euclidean space. On the other hand, these spaces are in the site F . However, since
CSh(F ′) is the category of concrete sheaves over the concrete site F ′, we can think of
D∞, D and D≥0 as subspaces of •R in CSh(F ′).

We can also define the adding infinitesimal functor Diff → CSh(F ′) as the one in
Subsection 4.1, denoted by X 7→ •X ′ 14. The actual reason is, the Fermat space •X ∈ •C∞
still keeps record of the diffeological information of X, but •X ′ ∈ CSh(F ′) does not, for
the following explanations:

4.21. Proposition. Let X be a diffeological space, and write (X ≤ •X) for the Fermat
subspace of •X via the inclusion map iX : X → •X (Proposition 4.3). Then for any open
subset U of a Euclidean space, |•C∞(U, (X ≤ •X))| = |Diff(U,X)|.

In other words, the Fermat space •X still remembers X as a diffeological space.

Proof. We only need to prove the two inclusions since both |•C∞(U, (X ≤ •X))| and
|Diff(U,X)| are subsets of Set(|U |, |X|).

For any plot p : U → X, we have a commutative square in Set:

|U |
|p|
��

iU // |•U |
|•p|
��

|(X ≤ •X)|
iX
// |•X|,

Since iU is quasi-standard smooth and •p is a Fermat map, p ∈ •C∞(U, (X ≤ •X)). So
we have |Diff(U,X)| ⊆ |•C∞(U, (X ≤ •X))|.

For any Fermat plot q : U → (X ≤ •X), since •X = colimV ∈S/X
•V , for every u ∈ U ,

there exist a Fermat open neighborhood U ′ of u in U , some plot r : V → X and a quasi-
standard smooth map f : U ′ → •V such that iX ◦ q|U ′ = •r ◦ f . Hence, we have the

14This meaning of the notation •X ′ is valid only in this subsection.
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following commutative diagram in Set:

|U ′| |f | //

|q|U′ |
��

|•V | ev0 //

|•r|
��

|V |
|r|
��

|(X ≤ •X)|
iX
// |•X| ev0

// |(X ≤ •X)|.

Note that the composite of the bottom horizontal maps is 1|(X≤•X)|, and the composite
of the upper horizontal maps is smooth. So q ∈ Diff(U,X), i.e., |•C∞(U, (X ≤ •X))| ⊆
|Diff(U,X)|.

As a corollary, we have:

4.22. Theorem. The assignment Diff → •C∞ defined by

f : X → Y 7→ f : (X ≤ •X)→ (Y ≤ •Y )

is a functor, which makes Diff a full subcategory of •C∞.

Therefore, every diffeological space is canonically a Fermat space with the same un-
derlying set, and every smooth map between diffeological spaces is canonically a Fermat
map between the corresponding Fermat spaces.

Proposition 4.21 also implies the following:

4.23. Example. Let U and V be open subsets of Euclidean spaces. Then |F(U, V )| =
|S(U, V )|, i.e., a map U → V is quasi-standard smooth if and only if it is smooth.

4.24. Remark. In fact, every Fermat space is automatically a diffeological space in the
following way. Let Y be a Fermat space. For any open subset U of a Euclidean space, we
define U → Y to be a plot if it is in •C∞(U, Y ). In this way, Y is a diffeological space.
Indeed, this defines a forgetful functor •C∞ → Diff , which has a right inverse given by
the functor defined in Theorem 4.22.

By Proposition 4.21, if U is an open subset of some Euclidean space with dim(U) > 0,
then the Fermat space (U ≤ •U) is not discrete in •C∞.

Now we show that the object (U ≤ •U ′) in CSh(F ′) is discrete. Let p : •V → U be a
section, i.e., the composite

•V
p // U

iU // •U ′

is a quasi-standard smooth map. So for every v ∈ •V , there exist an open connected
neighborhood Ṽ of ◦v in V , an open subset W of some Euclidean space, a fixed point w ∈
•W and a smooth map f : W × Ṽ → Rn with n = dim(U), such that iU(p(x)) = •f(w, x)
for every x ∈ •Ṽ . So

p(x) = ev0(iU(p(x)))

= ev0(•f(w, x))

= f(◦w, ◦x) ∈ U
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for every x ∈ •Ṽ . In other words, •f(w, x) = f(◦w, ◦x) ∈ U for the fixed w ∈ •W and
every x ∈ •Ṽ . Therefore, by Taylor’s expansion of f , ∂f

∂xi
(◦w, ◦x) = 0 for every variable

xi, which implies that f(◦w, ◦x) is a constant independent of ◦x ∈ Ṽ since Ṽ is connected.
That is, every section of (U ≤ •U ′) is locally constant, so (U ≤ •U ′) is discrete in CSh(F ′).

We summarize the above discussion as the following proposition:

4.25. Proposition. Let U and V be open subsets of Euclidean spaces. Then the set
|•C∞(•V, (U ≤ •U))| consists of only locally constant maps.

Here are some easy corollaries. Note that if U is an open subset of a Euclidean space of
positive dimension, then as a representing concrete sheaf in •C∞, it is exactly (U ≤ •U).
(Indeed, by definition, for any object A ⊆ •Rn in F , as a representing concrete sheaf in
•C∞, it is exactly (A ≤ •Rn).) Therefore, by Proposition 4.25, the map ev0 : •U → U is
not quasi-standard smooth. We also have:

4.26. Corollary. Let U be an open subset of some Euclidean space. Then •(U ≤ •U)
is the set U with the discrete diffeology.

Therefore, •(•Y ) is not necessarily isomorphic to Y in •C∞ for a general Fermat space
Y .

4.27. Calculations. In this subsection, we will do a few calculations for •X and •Y
for diffeological space X and Fermat space Y .

Here is the general situation we will meet frequently, in both Diff and •C∞:

4.28. Theorem. Let A be a concrete site, let I be a small category, let J be a subcategory
of I with the inclusion ` : J ↪→ I, and let F : I → CSh(A) be a functor. Then the
natural map colimJ (F ◦ `) → colimIF is an isomorphism in CSh(A) if the following
conditions hold:

(1) for any object i in I and for any section c : A → F (i), there exists a cover
{cλ : Aλ → A}λ∈Λ of A such that for each λ, there exist an object j in J and a section
dλ : Aλ → F (j) making the following diagram commutative:

Aλ
c◦cλ //

dλ
��

F (i) // colimIF

F (j) // colimJ (F ◦ `);

OO

(2) it induces an injective set map |colimJ (F ◦ `)| → |colimIF |.

Proof. Recall that a colimit in a category of concrete sheaves is the colifting of the
corresponding colimit in Set. Condition (1) means that the map |colimJ (F ◦ `)| →
|colimIF | is surjective, so together with Condition (2), this map is a bijection. Then use
Condition (1) again, it is easy to see that the inverse map colimIF → colimJ (F ◦ `) is
also a morphism in CSh(A).
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The hard part of applying this theorem is to check Condition (2). We will make it
more explicit in the following cases:

4.28.1. Calculations of •X. In Subsection 4.1, we defined •X = colimU∈S/X
•U for

every diffeological space X. One can use this definition to show that if X is a discrete
diffeological space, then •X is a discrete Fermat space with |•X| = |X|. But in general,
the plot category S/X is huge. We need to find a more efficient way to calculate •X.

In many examples, the diffeological space is given as a colimit of Euclidean spaces over
a small subcategory of its plot category. The following proposition tells us when we can
use this colimit to calculate the corresponding Fermat space:

4.29. Proposition. Let X be a diffeological space, and let B be a subcategory of the plot
category S/X. Assume X = colimU∈BU . Then the natural Fermat map colimU∈B

•U →
•X is surjective. If it is also injective, then it is an isomorphism in •C∞.

Proof. This is an easy corollary of Theorem 4.28.

To apply this proposition to calculate •X, the key part is to check the injectivity of the
natural map colimU∈B

•U → •X. Injectivity is equivalent to the condition that for any
plots p : U → X and q : U ′ → X in B, and any points u ∈ •U and u′ ∈ •U ′, if there exist
plots V1 → X, · · · , Vn → X, points v1 ∈ •V1, . . . , vn ∈ •Vn, and zig-zag morphisms among
these plots together with p and q in S/X such that the Fermat extension of the zig-zag
connects u and u′ via these vi’s, (by applying ev0, this implies that ◦u and ◦(u′) represent
the same point in X), then there exist plots U1 → X, · · · , Um → X for some m ∈ N,
points u1 ∈ •U1, . . . , um ∈ •Um, and zig-zag morphisms among these plots together with p
and q in B such that the Fermat extension of this zig-zag connects u and u′ via these uj’s.
We will use this description to calculate the following examples, and from these examples,
we abstract some general results.

4.30. Example.

1. Let M be a smooth manifold, and let {(Ui, φi)}i∈I be a smooth atlas. Then we can
construct a category I with objects finite subsets of I and morphisms inclusion maps.
There is a canonical functor Iop → Diff sending a finite subset {i1, . . . , in} ⊆ I to
Ui1 ∩ · · · ∩ Uin , and sending the inclusion map to the corresponding inclusion map.
It is easy to see that M is the colimit of this functor, so we write M = colimi∈IopUi.
One can also check that the injectivity of Proposition 4.29 holds by the definition
of a smooth atlas on a smooth manifold, and hence •M = colimi∈Iop

•Ui.

2. Let X be the pushout of

R R00oo 0 // R
in Diff , i.e., X is two real lines glued at the origin. One can show that the injectivity
of Proposition 4.29 holds, and hence •X is the pushout of

•R •R00oo 0 // •R

in •C∞, i.e., •X is two Fermat reals glued at the origin.
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3. Let V be a fine diffeological vector space (see [10, Chapter 3]), and let I be the poset
with objects finite-dimensional linear subspaces of V and morphisms inclusions.
Then by [10, 3.8], it is easy to see that V = colimW∈IW and that the injectivity of
Proposition 4.29 holds, which implies that •V = colimW∈I

•W .

Here is a general result from these three examples:

4.31. Proposition. Let B be a subcategory of the plot category S/X over a diffeological
space X. Assume that every object U → X in B is an injective map such that the pullback
diffeology on U coincides with the standard diffeology, and for any objects p : U → X
and q : V → X with p(U) ∩ q(V ) 6= ∅, there exist an object r : W → X with r(W ) =
p(U) ∩ q(V ) and morphisms r → p and r → q in B. Moreover, if X = colimU∈BU , then
•X = colimU∈B

•U .

Proof. By Proposition 4.29, we are left to check the injectivity of the natural map
colimU∈B

•U → •X. We split zig-zag diagrams into two kinds of pieces, and study them
separately:

(1) Assume that we have a commutative triangle in Diff :

U
f //

p   

V

q~~
X

with p an object in B, q a plot and f a smooth map, and u ∈ •U and v ∈ •V are fixed
points such that •f(u) = v. Since X = colimU∈BU , there exist an open neighborhood
V ′ of ◦v in V , an object r : U ′ → X in B and a smooth map g : V ′ → U ′ such that
r ◦ g = q|V ′ . Therefore, p(U) ∩ r(U ′) 6= ∅. By the assumption of the proposition, there
exist an object s : W → X with s(W ) = p(U) ∩ r(U ′) and morphisms s → p and s → r
in B. So eventually we have the following commutative diagram in Diff :

W

**zz
U

f
++

f−1(V ′)? _oo
f |f−1(V ′) //

OO

V ′ g
//� _

��

U ′

V.

(2) Assume that we have a commutative diagram in Diff :

V1

q1   

V2
foo g //

q2
��

V3

q3~~
X
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with q1, q2, q3 plots and f, g smooth maps, and v1 ∈ •V1, v2 ∈ •V2, v3 ∈ •V3 are fixed
points such that •f(v2) = v1 and •g(v2) = v3. Since X = colimU∈BU , there exist open
neighborhoods V ′1 and V ′3 of ◦v1 and ◦v3 in V1 and V3, respectively, objects p1 : U1 → X
and p3 : U3 → X in B and smooth maps h1 : V ′1 → U1 and h3 : V ′3 → U3 such that
p1 ◦ h1 = q1|V ′1 and p3 ◦ h3 = q3|V ′3 . Write V ′2 := f−1(V ′1) ∩ g−1(V ′3). It is clear that
p1(U1)∩ p3(U3) 6= ∅. By the assumption of the proposition, there exist an object r : W →
X with r(W ) = p1(U1) ∩ p3(U3) and morphisms r → p1 and r → p3 in B. So eventually
we have the following commutative diagram in Diff :

U1 Woo // U3

V ′1

h1

OO

� _

��

V ′2

OO

oo //
� _

��

V ′3� _

��

h3

OO

V1 V2f
oo

g
// V3.

From these diagrams, we know that the natural map colimU∈B
•U → •X is injective.

4.32. Example. Let X be the 1-dimensional irrational torus of slope θ, i.e., X is the
quotient group R/(Z + θZ) with the quotient diffeology, where θ is a fixed irrational
number. Let J be the category associated to the additive group Z + θZ, i.e., J has
one object, the morphisms in J are indexed by the set Z + θZ, and the composition
corresponds to the addition in the additive group Z + θZ. There is a functor J → Diff
sending a + θb : · → · to R → R with x 7→ x + (a + θb). It is straightforward to check
that the colimit of this functor is X. Since the projection π : R → X is a diffeological
covering (see [10, Chapter 8]), one can show that the injectivity of Proposition 4.29 holds,
and hence •X = colimJ

•R, or more precisely, •X is the quotient group •R/(Z + θZ).

However, the adding infinitesimal functor does not always preserve colimits. That
is why the calculation of •X is not easy. In particular, this implies that the adding
infinitesimal functor does not have a right adjoint.

4.33. Example. Let R be the category associated to the additive group R, and let
F : R → Diff be the functor sending the object in R to R and sending the morphism
r ∈ R to the translation R → R by x 7→ x + r. Then colimF = R0. One can easily
check that |colim(•(−) ◦ F )| = |D∞|, since there are only translations by reals, but
|•(colimF )| = |•R0| = |R0|. Therefore, colim(•(−) ◦ F ) 6= •(colimF ).

4.33.1. Calculations of •Y . In previous subsections, we have already calculated some
examples of •Y , where Y is a Fermat space: in Subsection 4.14, we showed that •(

•X) = X
and •(

•C∞(•X, •Z)) = Diff(X,Z) for any diffeological spaces X and Z, and in Subsec-
tion 4.20, we showed that •(U ≤ •U) is a discrete Fermat space for any open subset U of
a Euclidean space. We will calculate one more example below, which will be useful for
defining tangent spaces and tangent bundles for Fermat spaces and diffeological spaces
(which is different from the approaches presented in [2]) in a future paper.
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4.34. Example. Let A be an ideal of •R. Then A ⊆ D∞. (See Section 2 for all possible
expressions of A, which are not needed in this example.) Let Y be the quotient ring •R/A,
equipped with the quotient Fermat space structure from •R. Then •Y is diffeomorphic
to R. Here is the proof. Note that the quotient map π : •R → Y induces a smooth map

•π : R → •Y . By Theorem 4.28, we are left to show that •π is injective. Assume that
x, y ∈ R are mapped to the same point in •Y . So there is a zig-zag diagram in F ′/Y
connecting two copies of π : •R → Y , such that after applying the deleting infinitesimal
functor on the zig-zag, there is a fixed point on U for each •U → Y in the original zig-zag
so that x and y gets connected by the new zig-zag via these points. We break the original
zig-zag into small pieces as follows and study them to get information of the new zig-zag
on the corresponding small pieces:

(1) Assume that we have a commutative triangle

•R f //

π
  

•U

p
~~

Y

in F ′/Y , and points x ∈ R and u ∈ U such that •f(x) = u. Since Y is a quotient Fermat
space of •R, there is a Fermat open neighborhood •V of f(x) in •U and a quasi-standard
smooth map g : •V → •R so that p|•V = π ◦ g. So we get a commutative square

•W

|| ""
•R

π
!!

•R

π
}}

Y,

where •W is a Fermat open neighborhood of x in f−1(•V ). We will deal with this situation
in (2).

(2) Assume that we have a commutative square

•U
f

}}

g

!!
•R

π
!!

•V

p
}}

Y

in F ′/Y , and points x ∈ R, u ∈ U and v ∈ V such that •f(u) = x and •g(u) = v. By a
similar argument as (1), we may assume that •V = •R and p = π. By the commutativity
of the square, we have f(u)− g(u) ∈ A, which implies that x = •f(u) = •g(u) = v.

Together with these, we can conclude that x = y ∈ R, i.e., the map •π : R → •Y is
injective, and hence a diffeomorphism.
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