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COMPACT CLOSED BICATEGORIES

MICHAEL STAY

Abstract. A compact closed bicategory is a symmetric monoidal bicategory where every ob-

ject is equipped with a weak dual. The unit and counit satisfy the usual “zig-zag” identities of

a compact closed category only up to natural isomorphism, and the isomorphism is subject to

a coherence law. We give several examples of compact closed bicategories, then review previ-

ous work. In particular, Day and Street defined compact closed bicategories indirectly via Gray

monoids and then appealed to a coherence theorem to extend the concept to bicategories; we

restate the definition directly.

We prove that given a 2-category T with finite products and weak pullbacks, the bicategory of

objects of C, spans, and isomorphism classes of maps of spans is compact closed. As corollar-

ies, the bicategory of spans of sets and certain bicategories of “resistor networks” are compact

closed.

1. Introduction

When moving from set theory to category theory and higher to n-category theory, we typically

weaken equations at one level to natural isomorphisms at the next. These isomorphisms are

then subject to new coherence equations. For example, multiplication in a monoid is associa-

tive, but the tensor product in a monoidal category is, in general, only associative up to a natural

isomorphism. This “associator” natural isomorphism has to satisfy some extra equations that

are trivial in the case of the monoid. In a similar way, when we move from compact closed cate-

gories to compact closed bicategories, the “zig-zag” equations governing the dual get weakened

to natural isomorphisms and we need to introduce some new coherence laws.

In Section 2, we will give several examples of important mathematical structures and how

they arise in relation to compact closed bicategories. Following the examples, in Section 3 we

give the history of compact closed bicategories and related work. Next, in Section 4 we give

the complete definition, which to our knowledge has not appeared elsewhere; we try to motivate

each piece of the definition so that the reader could afterwards reconstruct the definition without

the aid of this paper. In Section 5, we prove that a construction by Hoffnung is an instance of a

compact closed bicategory, and obtain few others as corollaries.
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2. Examples

In order to get across some of the flavor of these different compact closed bicategories, we

will describe the bicategories as well as some weak monoids and monads in them. That these

bicategories are compact closed is mostly folklore; we prove that a few of them are compact

closed as corollaries of the main theorem at the end of this paper. The weak monoids and

monads play no role in the rest of the paper, but we have found that comparing and contrasting

them helps when trying to develop intuition about the bicategories. The monoids are variations

on the notion of an associative algebra, while the monads are variations on the notion of a

category.

• A span from A to B in a category T is an object C in T together with an ordered pair of

morphisms ( f : C → A, g : C → B).

A B

C

f g

If T is a category with pullbacks, we can compose spans:

A B C

D

f g

E

h j

DghE

π1 π2

A map of spans between two spans A
f
← C

g
→ B and A

f ′

← C′
g′

→ B is a morphism

h : C → C′ making the following diagram commute:

A B

C

f g

C′

f ′ g′

h
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Since the pullback is associative only up to a natural isomorphism, the same is true of the

composite of two spans, so this construction does not give a 2-category; however, we do

get a bicategory Span(T ) of objects of T , spans in T , and maps of spans.

If T is a category with finite products as well as pullbacks, then the bicategory Span(T )

is a compact closed bicategory where the tensor product is given by the product in T.

A weak monoid object in Span(T ) is a categorification of the notion of an associative

algebra. For example, one weak monoid in Span(Set) is equivalent to the category of

polynomial functors from Set to itself; such functors can be “added” using disjoint union,

“multiplied” using the cartesian product, and “scaled” by sets [24]. A monad in Span(T )

is a category internal to T [11].

• Sets, relations, and implications form the compact closed bicategory Rel, where the tensor

product is given by the product in Set. A weak monoid object M in Rel is a quantale on

the powerset of M [52], while a monad in Rel is a preorder.

• A 2-rig is a cocomplete monoidal category where the tensor product distributes over the

colimits [5], though for the purpose of constructing a compact closed bicategory we only

need the tensor product to distribute over finite coproducts. Given a symmetric 2-rig R,

Mat(R) is the bicategory of finitely-generated free R-modules, where the tensor product is

the usual tensor product for matrices. We expect it to be compact closed. A weak monoid

object in Mat(R) is a categorified finite-dimensional associative algebra over R. A monad

in Mat(R) is a finite R-enriched category. A finite 2-rig S is only finitely cocomplete,

but we expect Mat(S ) is still compact closed. Kapranov and Voevodsky [35] described a

bicategory equivalent to Mat(FinVect) and called its objects “2-vector spaces”.

• For a category C, let Ĉ = SetC
op

be the category of presheaves on C. The 2-category

Cocont has

– small categories as objects;

– cocontinuous functors f : Ĉ → D̂ between the categories of presheaves on the

source and target as morphisms;

– natural transformations as 2-morphisms.

We can think of cocontinuous functors as being “Set-linear transformations”, since they

preserve sums. Day and Street [21] proved that Cocont is a compact closed 2-category,

i.e. a compact closed bicategory where the associator and unitors for composition are

equalities.

• Recall that a profunctor F : C 6→ R is a functor F : Cop × R → Set; we can think of

profunctors as being rather like matrices, where the set F(c, r) is the “matrix element” at

row r and column c. Composition of profunctors is given by taking the coend of the inner

coordinates, just as matrix multiplication done by summing over the inner index. Small

categories, profunctors, and natural transformations form the compact closed bicategory
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Prof, where the tensor product is the product in Cat. A weak monoid object in Prof is a

promonoidal category [20, 31]. A symmetric monoidal monad in Prof is a Freyd category,

also known as an “Arrow” in the functional programming community [1, 33].

Cattani and Winskel [17] showed that Cocont and Prof are equivalent as bicategories.

Though they do not explicitly state it, the equivalence they construct is symmetric monoidal;

since symmetric monoidal equivalences preserve the dual, Cocont and Prof are equivalent

as compact closed bicategories.

• So far the examples have been rather algebraic in flavor, but there are topological exam-

ples, too. The category nCob is the compact closed category whose

– objects are (n − 1)-dimensional manifolds and

– morphisms are diffeomorphism classes of collared n-dimensional cobordisms be-

tween them,

where the tensor product is disjoint union. Atiyah [2] introduced the category informally

in his paper defining topological quantum field theories.

Morton [46] defined the bicategory nCob2 whose

– objects are (n − 2)-dimensional manifolds,

– morphisms are collared (n− 1)-dimensional cobordisms, or “manifolds with bound-

ary”, and

– 2-morphisms are diffeomorphism classes of collared n-dimensional maps of cobor-

disms, or “manifolds with corners”.

The collars are necessary to preserve the smoothness when composing 1- and 2-morphisms.

Schommer-Pries proved a purely algebraic characterization of 2Cob2, essentially proving

the “Baez-Dolan cobordism hypothesis” for the n = 2 case [3]. We expect that nCob2 is

compact closed.

• In a letter to the author, John Baez defined two interesting compact closed bicategories.

A directed multigraph is a finite set E of edges and a finite set V of vertices equipped

with functions s, t : E → V mapping each edge to its source and target. A resistor net-

work is a directed multigraph equipped with a function r assigning a resistance in (0,∞)

to each edge:

(0,∞) E
r

V
s

t

There are various choices one could make for a morphism of such networks; Baez de-

fined a morphism of resistor networks to be a pair of functions ǫ, υ making the following

diagrams commute:
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(0,∞)

E′r′

Er

ǫ

E′

E

ǫ

V ′
s

V
s

υ

E′

E

ǫ

V ′
t

V
t

υ

Resistor networks and morphisms between them form a category ResNet; this category

has finite limits and colimits.

There is a compact closed bicategory Cospan(ResNet) with an important compact closed

subbicategory Circ consisting of cospans whose feet are resistor networks with no edges.

A morphism in Circ is a circuit, a resistor network with chosen sets of input and output

vertices across which one can measure a voltage drop.

3. Previous work

Compact closed categories were first defined by Kelly [40], and later studied in depth by Kelly

and Laplaza [41].

Bénabou [11] defined bicategories and showed that small categories, distributors, and nat-

ural transformations form a bicategory Dist. Distributors later became more widely known as

“profunctors”, so we will call that bicategory “Prof” instead. Later, Bénabou defined closed

bicategories and showed that Prof is closed [12]. He defined V-enriched profunctors when V is

a cocomplete monoidal or symmetric monoidal closed category, defined V-Prof and proved that

any V-enriched functor, regarded as a V-profunctor, has a right adjoint. More applications and

details are in his lecture notes [10].

Kapranov and Voevodsky [35] defined braided semistrict monoidal 2-categories, but their

definition left out some necessary axioms. Baez and Neuchl [4] gave an improved definition, but

it was still missing a clause; Crans [19] gave the complete definition. See Baez and Langford

[6] and Shulman [51] for details.

Gordon, Power, and Street [26] defined fully weak tricategories; a monoidal bicategory is a

one-object tricategory.

Another name for semistrict monoidal 2-categories is “Gray monoids”, i.e. monoid objects

in the 2-category Gray [25]. Day and Street [21] defined compact closed Gray monoids, and

appealed to the coherence theorem of Gordon, Power, and Street to extend compact closedness

to arbitrary bicategories. The semistrict approach is somewhat artificial when dealing with

most “naturally occurring” bicategories, since the associator for composition of 1-morphisms is

rarely the identity. Cocont is a notable exception.

Katis, Sabadini and Walters [36] gave a precise account of the double-entry bookkeeping

method partita doppia in terms of the compact closed bicategory Span(RGraph); in a later paper

[37], they cite a handwritten note by McCrudden for the “swallowtail” coherence law we use in

this paper.
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Preller and Lambek [49] generalized compact monoidal categories in a different direction.

They considered a compact monoidal category to be a one-object bicategory satisfying some

criteria, and then extend that definition to multiple objects. The resulting concept of “compact

bicategory” is not what is being studied in this paper.

McCrudden [45] gave the first fully general definitions of braided, sylleptic, and symmetric

monoidal bicategories. Schommer-Pries [50] gave the correct notion of a monoidal transforma-

tion between monoidal functors between monoidal bicategories.

Carboni and Walters [16] proved that V-Prof is a cartesian bicategory. Later, they showed

[17] that Prof is equivalent to Cocont as a bicategory. Together with Kelly and Wood [15], they

proved that any cartesian bicategory is symmetric monoidal in the sense of McCrudden.

Gurski and Osorno [29] proved that every symmetric monoidal bicategory is equivalent to a

semistrict one. Schommer-Pries [50] strengthened their result by proving that every symmetric

monoidal bicategory is equivalent to a “quasistrict symmetric” monoidal bicategory. Bartlett

[8] went a step further and showed every symmetric monoidal bicategory is equivalent to a

“stringent” one. He also used Schommer-Pries’ results to develop a graphical calculus for

symmetric monoidal bicategories.

4. Compact closed bicategories

In this section, we lay out the definition of a compact closed bicategory. First we give the

definition of a bicategory, then start adding structure to it: we introduce the tensor product

and monoidal unit; then we look at the different ways to move objects around each other, giv-

ing braided, sylleptic and symmetric monoidal bicategories. Next, we define closed monoidal

bicategories by introducing a right pseudoadjoint to tensoring with an object; and finally we

introduce duals for objects in a bicategory.

4.1. Definition. A bicategory K consists of

1. a collection of objects

2. for each pair of objects A, B in K , a category K(A, B); the objects of K(A, B) are called

1-morphisms, while the morphisms of K(A, B) are called 2-morphisms.

3. for each triple of objects A, B,C in K , a composition functor

◦A,B,C : K(B,C) × K(A, B)→ K(A,C).

We will leave off the indices and write it as an infix operator.

4. for each object A in K , an object 1A in K(A, A) called the identity 1-morphism on A.

We will often write this simply as A.

5. for each quadruple of objects A, B,C,D, a natural isomorphism called the associator for

composition; if ( f , g, h) is an object of K(C,D) × K(B,C) × K(A, B), then

❛

a f ,g,h : ( f ◦ g) ◦ h→ f ◦ (g ◦ h).
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6. for each pair of objects A, B in K , natural isomorphisms called left and right unitors

for composition. If f is an object of K(A, B), then

❛

l f : B ◦ f
∼
→ f

❛

r f : f ◦ A
∼
→ f

such that
❛

a,
❛

l, and
❛

r satisfy the following coherence laws:

1. for all ( f , g, h, j) inK(D, E)×K(C,D)×K(B,C)×K(A, B), the following diagram, called

the pentagon equation, commutes:

(( f ◦ g) ◦ h) ◦ j

( f ◦ (g ◦ h)) ◦ j

( f ◦ g) ◦ (h ◦ j)

f ◦ ((g ◦ h) ◦ j)

f ◦ (g ◦ (h ◦ j))

❅
❅
❅
❅
❅
❅
❅
❅❘

❵

a f◦g,h, j

✟✟✟✟✟✟✙

❵

a f ,g,h◦ j

❄

❵

a f ,g◦h, j

�
�

�
�

�
�

�
�✠

❵

a f ,g,h◦ j❍❍❍❍❍❍❥f◦
❵

ag,h, j

2. for all ( f , g) in K(B,C) × K(A, B) the following diagram, called the triangle equation,

commutes:

( f ◦ B) ◦ g f ◦ (B ◦ g)

f ◦ g

✲
❵

a

◗
◗
◗◗s

❵

r f ◦g

✑
✑

✑✑✰ f◦
❵

lg

The associator
❛

a and unitors
❛

r,
❛

l for composition of 1-morphisms are necessary, but when

we are drawing commutative diagrams of 1-morphisms they are very hard to show; fortunately,

by the coherence theorem for bicategories [44], any consistent choice is equivalent to any other,

so we leave them out.

We refer the reader to Tom Leinster’s excellent “Basic bicategories” [44] for definitions of

• morphisms of bicategories, which we call functors,

• transformations between functors, which we call pseudonatural transformations, and

• modifications between transformations.
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4.2. Definition. An equivalence of objects A, B in a bicategory is a pair of morphisms f : A→ B,

g : B→ A together with invertible 2-morphisms e : g ◦ f
∼
⇒ 1A and i : f ◦ g

∼
⇒ 1B.

4.3. Definition. An adjoint equivalence is one in which the 2-morphisms e and i−1 exhibit that

g is left adjoint to f .

For a given morphism f , any two choices of data (g, e, i) making f an adjoint equivalence

are canonically isomorphic, so any choice is as good as any other. When f , g form an adjoint

equivalence, we write g = f •. Any equivalence can be improved to an adjoint equivalence.

We can often take a 2-morphism and “reverse” one of its edges. Given objects A, B,C,D,

morphisms f : A → C, g : C → D, h : D → B, j : A → B such that h is an adjoint equivalence,

and a 2-morphism

A ⇓ α

C
f

D
g

B

j

h

we can get a new 2-morphism

(
❛

r(g) ◦ f )(eh ◦ g ◦ f )(h• ◦ α) : h• ◦ j⇒ g ◦ f ,

A ⇓ α

C
f

D
g

B

j

h

D

h•

1D

g

⇓ eh

⇓
❛

r(g)

= A ⇓ α1

C
f

D
g

B

j

h•

where eh : h• ◦ h ⇒ 1 is the 2-morphism from the equivalence. We denote such variations of a

2-morphism α by adding numeric subscripts as in α1; the number simply records the order in

which we introduce them, not any information about the particular variation.

In the following definitions, I have given some plausible combinatorial reasoning justifying

many of the parts of the definition, but except where noted, this is not part of the definition; its

intent is merely to help organize the rather long and dry content. I am not aware of any work

on the combinatorics of cells in higher categories beyond that mentioned below by Stasheff,

Kapranov and Voevodsky.

Also, some of the illustrations of 2-morphisms and coherence laws below are quite large. In

order to preserve legibility, I use expressions like (AB)C as a shorthand for functors like

⊗ ◦ (⊗ × 1) : K3 → K ,

since parentheses suffice to show where the tensor product should be.
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4.4. Definition. A monoidal bicategoryK is a bicategory in which we can “multiply” objects.

Monoidal bicategories were originally defined as one-object “tricategories” [26]; unpacking

that definition, a monoidal bicategory consists of the following:

• A bicategoryK .

• A tensor product functor ⊗ : K ×K → K . This functor involves an invertible “tensora-

tor” 2-morphism ( f ⊗ g) ◦ ( f ′ ⊗ g′) ⇒ ( f ◦ f ′) ⊗ (g ◦ g′) which we elide in most of the

coherence equations below. The coherence theorem for monoidal bicategories implies

that any 2-morphism involving the tensorator is the same no matter how it is inserted [28,

Remark 3.1.6], so like the associator for composition of 1-morphisms, we leave it out.

The Stasheff polytopes [53] are a series of geometric figures whose vertices enumerate

the ways to parenthesize the tensor product of n objects, so the number of vertices is given

by the Catalan numbers; for each polytope, we have a corresponding (n − 2)-morphism

of the same shape with directed edges and faces:

1. The tensor product of one object A is the one object A itself.

2. The tensor product of two objects A and B is the one object (AB).

3. There are two ways to parenthesize the product of three objects, so we have an

associator adjoint equivalence pseudonatural in A, B,C

a : (AB)C → A(BC)

for moving parentheses from the left pair to the right pair. The fact that a is pseudo-

natural in A, B,C means that given f : A→ D, g : B→ E, and g : C → F, there is an

invertible modification from f (gh)◦aABC to aDEF ◦( f g)h; this invertible modification

appears three times in the “associahedron” below on the green faces.

4. There are five ways to parenthesize the product of four objects, so we have a pen-

tagonator invertible modification π relating the two different ways of moving paren-

theses from being clustered at the left to being clustered at the right. (Mnemonic:

Pink Pentagonator.)

((AB)C)D

(AB)(CD)
a

A(B(CD))

a

A((BC)D)

Aa
(A(BC))D

a

aD ⇒ π
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5. There are fourteen ways to parenthesize the product of five objects, so we have an

associahedron equation of modifications with fourteen vertices relating the various

ways of getting from the parentheses clustered at the left to clustered at the right.

The associahedron is a cube with three of its edges bevelled. It holds in the bicat-

egory K , where the unmarked 2-morphisms are instances of the pseudonaturality

invertible modification for the associator. (Mnemonic for the rectangular invertible

modifications: GReen conGRuences.)

(A(B(CD)))E

(A((BC)D))E

(Aa)E

((A(BC))D)E

aE

(((AB)C)D)E

(aD)E

((AB)C)(DE)

a

(AB)(C(DE))

a

A(B(C(DE)))

a

A(B((CD)E))

A(Ba)

A((B(CD))E) Aa

a

A(((BC)D)E)

A(aE)

a

(A(BC))(DE)

a(DE)

a

A((BC)(DE))

a

Aa

Aa

⇒ π

⇒
Aπ

⇒ π

�

�

=
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(A(B(CD)))E

(A((BC)D))E

(Aa)E

((A(BC))D)E

aE

(((AB)C)D)E

(aD)E

((AB)C)(DE)

a

(AB)(C(DE))

a

A(B(C(DE)))

a

A(B((CD)E))

A(Ba)

A((B(CD))E) Aa

a

((AB)(CD))E

aE

aE

(AB)((CD)E)

a

a

(AB)a

⇒ πE

⇒

π

⇒ π

�

• Just as in any monoid there is an identity element 1, in every monoidal bicategory there

is a monoidal unit object I. Associated to the monoidal unit are a series of morphisms

that express how to “cancel” the unit in a product. Each morphism of dimension n > 0

has two Stasheff polytopes of dimension n− 1 as “subcells”, one for parenthesizing n+ 1

objects and the other for parenthesizing the n objects left over after cancellation. There

are n + 1 ways to insert I into n objects, so there are n + 1 morphisms of dimension n.

1. There is one monoidal unit object I.

2. There are two unitor adjoint equivalences l and r that are pseudonatural in A. The

Stasheff polytopes for two objects and for one object are both points, so the unitors

are line segments joining them.

l : IA → A, r : AI → A.

3. There are three 2-unitor invertible modifications λ, µ, and ρ. The Stasheff polytope

for three objects is a line segment and the Stasheff polytope for two objects is a

point, so these modifications are triangles. (Mnemonic: Umber Unitor.)

(IA)B

I(AB)

a

AB
l

lB ⇒ λ

AB

A(IB)

Al

(AI)B
a

rB ⇒ µ

(AB)I

A(BI)

a

AB
Ar

r ⇒ ρ
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4. There are four equations of modifications. The Stasheff polytope for four objects is

a pentagon and the Stasheff polytope for three objects is a line segment, so these

equations are irregular prisms with seven vertices.

(I(BC))D

((IB)C)D

aD

(IB)(CD)
a

I(B(CD))

a

I((BC)D)
Ia

a

B(CD)

l(CD)

l

⇑ π ⇑ λ−1 = (I(BC))D

((IB)C)D

aD

(IB)(CD)
a

I(B(CD))I((BC)D)
Ia

a

B(CD)

(lC)D

l

(BC)D
lD

(lC)D

l

a
⇑ λ−1D

⇑ λ−1

�

�

((AI)C)D (AI)(CD)
a

A(I(CD))

a

A((IC)D)

Aa

(A(IC))D
a

aD A(CD)

r(CD)

Al

A(lD)

⇑ π

⇒µ
−1

⇒Aλ

=

((AI)C)D (AI)(CD)
a

A((IC)D)(A(IC))D
a

aD A(CD)

r(CD)

A(lD)

(AC)D

(rC)D

(Al)D

a
⇑ µ−1D

�

�

((AB)I)D

(AB)(ID)

a

A(B(ID))
a

A((BI)D)

Aa

(A(BI))D
a

aD

A(BD)

A(Bl)

A(rD)

⇑ π ⇑ Aµ = ((AB)I)D

(AB)(ID)

a

A(B(ID))
a

A((BI)D)(A(BI))D
a

aD

A(BD)

A(Bl)

A(rD)

(AB)D
rD

(AB)l

(Ar)D

a
⇑ µ

⇑ ρ−1D

�

�

(AB)(CI) A(B(CI))
a

A((BC)I)

Aa

(A(BC))I

a

((AB)C)I
aI

a A(BC)

A(Br)

Ar

r

⇑ π

⇑ Aρ

⇒ρ

=

(AB)(CI) A(B(CI))
a

(A(BC))I((AB)C)I
aI

a A(BC)

A(Br)

r

(AB)C

(AB)r

r

a
⇑ ρ

�

�

4.5. Definition. A braided monoidal bicategory K is a monoidal bicategory in which objects

can be moved past each other. A braided monoidal bicategory consists of the following:

• A monoidal bicategoryK;

• A series of morphisms for “shuffling”.
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4.6. Definition. A shuffle of a list A = (A1, . . . , An) into a list B = (B1, . . . , Bk) inserts

each element ofA into B such that if 0 < i < j < n + 1 then Ai appears to the left of A j.

An “(n, k)-shuffle polytope” is an n-dimensional polytope whose vertices are all the dif-

ferent shuffles of an n-element list into a k-element list; there are
(

n+k

k

)
ways to do this.

General shuffle polytopes were defined by Kapronov and Voevodsky [35]. As with the

Stasheff polytopes, we have morphisms of the same shape as (n, k)-shuffle polytopes with

directed edges and faces.

– (n = 1, k = 1):
(

1+1

1

)
= 2, so this polytope has two vertices, (A, B) and (B, A). It has

a single edge, which we call a “braiding”, which encodes how A moves past B. It is

an adjoint equivalence pseudonatural in A, B.

b : AB→ BA

– (n = 1, k = 2) and (n = 2, k = 1):
(

1+2

1

)
=
(

2+1

1

)
= 3, so whenever the associator

is the identity—e.g. in a braided strictly monoidal bicategory—these polytopes are

triangles, invertible modifications whose edges are the directed (1,1) polytope, the

braiding. There are two triangles because the braiding in a braided monoidal bi-

category is not necessarily symmetric; when it happens to be symmetric, one can be

derived from the other.

BCAABC
b

BAC

bC Bb

⇓ R

CABABC
b

ACB

Ab bB

⇓ S

When the associator is not the identity, the triangles’ vertices get replaced with as-

sociators, effectively truncating them, and we are left with hexagon invertible modi-

fications. (Mnemonic: Blue Braiding.)

B(CA)

(BC)A

a

A(BC)
b

(AB)C

a

(BA)C

bC

B(AC)
a

Bb

⇒

R (CA)B

C(AB)

a•

(AB)C
b

A(BC)

a•

A(CB)

Ab

(AC)B
a•

bB

⇓ S
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– (n = 3, k = 1) and (n = 1, k = 3):
(

3+1

1

)
=
(

1+3

1

)
= 4, so in a braided strictly monoidal

bicategory, these polytopes are tetrahedra whose faces are the (2, 1) polytope. As

with R and S above, there are two polytopes because the braiding is not necessarily

symmetric.

Again, when the associator is not the identity, the vertices get truncated, this time

being replaced by pentagonators; as a side-effect, four of the six edges are also

beveled.

This equation governs shuffling one object A into three objects B,C,D:

(A(BC))D

a

A((BC)D)

b

((BC)D)A

a

(BC)(DA)

a

B(C(DA))

Ba

B((CD)A)

Bb

B(A(CD))

Ba

B((AC)D)

a

(B(AC))D

aD

((BA)C)D

(bC)D

aD

((AB)C)D

a
(AB)(CD)

a

Aa
A(B(CD))

b

a

aA

(B(CD))A

b(CD)

a

a

(BA)(CD)

⇒

π

� �

⇐ π−1 ⇐ π−1

⇒
R

=
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(A(BC))D

a

A((BC)D)

b

((BC)D)A

a

(BC)(DA)

a

B(C(DA))

Ba

B((CD)A)

Bb

B(A(CD))

Ba

B((AC)D)

a

(B(AC))D

aD

((BA)C)D

(bC)D

aD

((AB)C)D

(B
b)D

(B(CA))D

aD

bD

((BC)A)D

a

(BC)b
(BC)(AD)

a

B(Cb)

B(C(AD))

Ba

a

B(bD)
B((CA)D)

⇒
π−1

⇐ R
⇒
RD

��

⇒

BR−1

This equation governs shuffling one object D into three objects A, B,C:

A((BC)D)

a•

(A(BC))D

b

D(A(BC))

a•

(DA)(BC)

a•

((DA)B)C

a•C

(D(AB))C

bC

((AB)D)C

a•C

(A(BD))C

a•

A((BD)C)

Aa•

A(B(DC))

a(Bb)

Aa•

A(B(CD))

a•
(AB)(CD)

a•

a
• D

((AB)C)D

b

a•

Da
•

D((AB)C)

(AB)b

a•

a•

(AB)(DC)

⇒

π•

� �

⇐ π•−1 ⇐ π•−1

⇒
S
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=

A((BC)D)

a•

(A(BC))D

b

D(A(BC))

a•

(DA)(BC)

a•

((DA)B)C

a•C

(D(AB))C

bC

((AB)D)C

a•C

(A(BD))C

a•

A((BD)C)

Aa•

A(B(DC))

A(Bb)

Aa•

A(B(CD))

A(bC) A((DB)C)

Aa•

Ab

A(D(BC))

a•

b(BC)
(AD)(BC)

a•

(bB)C

((AD)B)C

a•C

a•

(A
b)C

(A(DB))C

⇒
π•−1

⇐ S
⇒
AS

��

⇒

S −1C

– (n = 2, k = 2):
(

2+2

2

)
= 6; in a braided strictly monoidal bicategory, this polytope is

composed mostly of (2,1) triangles, but there is a pair of braidings that commute, so

one face is a square.

When the associator is not the identity, the six vertices get truncated and six of the

edges get beveled.

This equation governs shuffling two objects A, B into two objects C,D:
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(A(BC))D

a

A((BC)D)

Aa

A(B(CD))

Ab

A((CD)B) a• (A(CD))B

bB

((CD)A)B

aB

(C(DA))B

a

C((DA)B)

Ca•

C(D(AB))

Cb

C((AB)D)a(C(AB))D

bD

a•D

((AB)C)D

(AB)(CD)

a

a•

(CD)(AB)
b

a

a•

⇑ π1

⇑ S

⇑ R−1

⇑ π2

=

(A(BC))D

a

A((BC)D)

Aa

A(B(CD))

Ab

A((CD)B) a• (A(CD))B

bB

((CD)A)B

aB

(C(DA))B

a

C((DA)B)

Ca•

C(D(AB))

Cb

C((AB)D)a(C(AB))D

bD

a•D

((AB)C)D

(Ab)D

(A(CB))D

a

A(bD)

A((BC)D)

Aa A(C(BD))

(AC)(BD)

a•

a

a •D ((AC)B)D

(bB)D

a•D
((CA)B)D

(CA)(BD)

a

b(B
D

)

a

Ca•
C(A(BD))

C
(A

b)

C(A(DB))
Ca
• C(bB)

C((AD)B)

a

(Cb)B

(C(AD))B

aB((CA)D)B

(CA)(DB)

a•

a
(C

A)b

(AC)(DB)

b(D
B)(A

C
)b

a•

A
(C

b)

Aa
A(C(DB))

a•

(bD
)B

aB
((AC)D)B

� ⇒ π1

⇒ S D

⇒ AR−1

⇒ π4

�

�

�

�

�

⇒ π3

⇒ R−1B

⇒ CS

⇒ π2 �

• The Breen polytope. In a braided monoidal category, the Yang-Baxter equations hold;

there are two fundamentally distinct proofs of this fact.
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ACB

ABC

Ab

CAB

bB

BAC

bC

CBA

b
Cb

BCA
Bb

b

bA

ACB

ABC

Ab

CAB
b

bB

BAC

bC

CBA
b

Cb

BCA
Bb bA

In a braided strictly monoidal bicategory, the two proofs become the front and back face of

another coherence law governing the interaction of the (2,1)-shuffle polytopes; when the

associator is nontrivial, the vertices get truncated. That the coherence law is necessary

was something of a surprise: Kapranov and Voevodsky did not include it in their definition

of braided semistrict monoidal 2-categories; Breen [14] corrected the definition. We

therefore call the following coherence law the “Breen polytope”. In retrospect, we can see

that this is the start of a more subtle collection of polytopes relevant to braided monoidal

n-categories, which can be systematically obtained using Batanin’s approach to weak

n-categories [9].

A(BC)

a•

(AB)C

bC

(BA)C

a

B(AC)

Bb

B(CA) a•

b

(BC)A

bA

(CB)A

a•

C(BA)

Cb

C(AB)

a

(CA)B

bB

(AC)Ba•

b

Ab

A(CB)

⇒ R−1
1

�

⇒ R1

=
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A(BC)

a•

(AB)C

bC

(BA)C

a

B(AC)

Bb

B(CA) a• (BC)A

bA

(CB)A

a•

b
C(BA)

Cb

b
C(AB)

a

(CA)B

bB

(AC)Ba•

Ab

A(CB)

⇓ S −1
1

�

⇓ S 1

4.7. Definition. A sylleptic monoidal bicategoryK is a braided monoidal bicategory equipped

with

• an invertible modification called the syllepsis, (Mnemonic: Salmon Syllepsis)

AB BA

b

b•

⇓ v

subject to the following axioms.

• This equation governs the interaction of the syllepsis with the (n = 1, k = 2) braiding:

B(CA)

a

(BC)A

b

A(BC)

a

(AB)C

bC

(BA)C a

Bb

B(AC)

⇓ R = B(CA)

a

(BC)A

b

b•

A(BC)

a

(AB)C

bC

b•C

(BA)C a

Bb

Bb•

B(AC)

⇓ S •

⇓ v

⇓ v−1C ⇓ Bv−1
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• This equation governs the interaction of the syllepsis with the (n = 2, k = 1) braiding:

(CA)B

a•

C(AB)

b

(AB)C

a•

A(BC)

Ab

A(CB) a•

bB

(AC)B

⇓ S = (CA)B

a•

C(AB)

b

b•

(AB)C

a•

A(BC)

Ab

Ab•

A(CB) a•

Bb

b•B

(AC)B

⇓ R•

⇓ v

⇓ Av−1 ⇓ v−1B

4.8. Definition. A symmetric monoidal bicategory is a sylleptic monoidal bicategory subject

to the following axiom, where the unlabeled green cells are identities:

• for all objects A and B of K , the following equation holds:

AB BA
b

BA

b

AB

b
1

b

⇓ v1

⇓

=

AB BA
b

BA

1
b

AB

b

b

⇓ v1

⇓

4.9. Definition. Given two bicategories J ,K , two functors L : J → K and R : K → J are

pseudoadjoint if for all A ∈ J , B ∈ K the categories HomK (LA, B) and HomJ(A,RB) are

adjoint equivalent pseudonaturally in A and B.

Symmetric monoidal closed bicategories satisfy the obvious weakening of the definition of

symmetric monoidal closed categories:

4.10. Definition. A symmetric monoidal closed bicategory is one in which for every object A,

the functor − ⊗ A has a right pseudoadjoint A⊸ −.

Similarly, compact closed bicategories weaken the notion of duality from compact closed

categories. In the following definition, we abstract the notion of pseudoadjointness from func-

tors between bicategories to arbitrary objects of a bicategory.
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4.11. Definition. A compact closed bicategory is a symmetric monoidal bicategory in which

every object has a pseudoadjoint.

This means that every object A is equipped with a (weak) dual, an object A∗ equipped with

two 1-morphisms

iA : I → AA∗ eA : A∗A→ I

A A

i A A

e

and two “zig-zag” 2-isomorphisms (Mnemonic: Yellow Yanking or Xanthic Zig-zag)

ζA : A⇒ (AeA) ◦ (iAA)

A

AA∗A

Ae

A

A

iA

ζ
⇒ A ⇒

ζ

i

A

A

e

θA : A∗ ⇒ (eAA∗) ◦ (A∗iA)

A∗

A∗AA∗

eA∗

A∗

A

A∗i

θ
⇒ A ⇒

θ
A

i

e

A

such that the following “swallowtail equation” holds:
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AA∗

AA∗AA∗

AeA∗

AA∗

AA∗

iAA∗

ζA∗

⇒

AA∗

AA∗

AA∗i

Aθ−1

⇒

I

i i

�

=

AA∗

I

i

A

i

A

A

i

e

i

A A

i

e

i

A

A

i

A

(ζA∗) ◦ i
⇒ �

(Aθ−1) ◦ i
⇒

We have drawn the diagrams in a strictly monoidal compact closed bicategory for clarity; when

the associator is not the identity, we truncate some corners:

(AA∗)A

IA
iA

A

l•

A

A

AI
r

A(A∗A)

Ae

a
ζ

⇒

A∗(AA∗)

A∗I
A∗i

A∗

r•

A∗

A∗

IA∗
l

(A∗A)A∗

eA∗

a•
θ

⇒
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AA∗

(AI)A∗

rA∗

A(IA∗)
a

Al

µ
⇒

(A(A∗A))A∗

(Ae)A∗

A((A∗A)A∗)
a

A(eA∗)�

((AA∗)A)A∗

aA∗

A(A∗(AA∗))

Aa•

(IA)A∗

(iA)A∗

(AA∗)(AA∗)

a• a

π−1
2
⇒

A(A∗I)

A(A∗i)

I(AA∗)

a• i(AA∗)

�

(AA∗)I

(AA∗)i a

�

AA∗

l•A∗

l•

AA∗

λ•
⇒

AA∗

r•

Ar•

AA∗

ρ1
⇒

IIIi iI

�

Ii i

l• r•

� �

ζA∗

⇒
Aθ−1

⇒

=

AA∗

I

i

5. Bicategories of spans

At the start of this paper, we stated that spans of sets form a compact closed bicategory. Street

[54] suggested weakening the notion of a map of spans to hold only up to 2-isomorphism,

allowing to define spans in bicategories rather than mere categories; Hoffnung [30] worked out

the details.

A span from A to B in a bicategory T is a pair of morphisms with the same source:

A
f
← C

g
→ B.

A map of spans h between two spans A
f
← C

g
→ B and A

f ′

← C′
g′

→ B is a triple (h : C → C′,

α : f ⇒ f ′h, β : g⇒ g′h) such that α and β are invertible.
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C

A

f

X

g

C′

f ′ g′

hα ⇓ β ⇓

A map of maps of spans is a 2-morphism γ : h⇒ h′ such that α′ = ( f ′γ) · α and β′ = (g′γ) · β.

Maps and maps of maps compose in the obvious ways.

Hoffnung showed that any 2-category T with finite products and strict iso-comma objects

(hereafter called “weak pullbacks”) gives rise to a monoidal tricategory we will call Span3(T )

whose

• objects are objects of T ,

• morphisms are spans in T ,

• 2-morphisms are maps of spans, and

• 3-morphisms are maps of maps of spans;

The tensor product of two spans A
f
← C

g
→ B and A′

f ′

← C′
g′

→ B′ is the span

A × A′
f× f ′

← C × C′
g×g′

→ B × B′.

In this section, we will use A to mean the object A, the identity 1-morphism on A, or the

identity 2-morphism on the identity 1-morphism on A, depending on the context. Similarly,

we will use f to mean either the 1-morphism f or the identity 2-morphism on f , depending

on the context. We will use juxtaposition to mean horizontal composition, i.e. composition of

1-morphisms: given f : A→ B and g : B→ C, we get g f : A→ C.We also use juxtaposition to

denote “whiskering”: given a 2-morphism K, we denote by f K the horizontal composite of K

and the identity 2-morphism on f .We denote vertical composition of 2-morphisms K : f ⇒ g

and L : g ⇒ h by L · K : f ⇒ h.We use πn to mean a projection out of a weak pullback, not a

variant of the pentagonator 2-morphism.

We define composition of spans using the weak pullback in T . The weak pullback of a

cospan A
f
→ C

g
← B consists of an object A f ,gB, 1-morphisms π1 : A f ,gB→ A and π2 : A f ,gB→ B,

and an invertible 2-morphism K : fπ1 ⇒ gπ2.

The weak pullback satisfies two universal properties. First, given any competitor

(X, π′1 : X → A,π′2 : X → B,K′ : fπ′1 ⇒ gπ′2)

where K′ is invertible, there exists a unique 1-morphism 〈π′
1
, π′

2
〉 : X ⇒ A f ,gB such that

π1〈π
′
1, π

′
2〉 = π

′
1,π2〈π

′
1, π

′
2〉 = π

′
2, and K〈π′1, π

′
2〉 = K′.
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C

A

f

B

g

A f ,gB

π1 π2

⇒ K

X

〈π′
1
, π′

2
〉

π′
1

π′
2

= =

=

C

A

f

B

g

X

π′
1

π′
2

⇒ K′

Second, given any object Y , 1-morphisms j, k : Y → A f ,gB, and invertible 2-morphismsω : π1 j⇒ π1k

and ρ : π2 j⇒ π2k such that

C

A

f

B

g

A f ,gB

π1 π2

A f ,gB

π1

Y

j k

⇒ K

⇒ ω

=

C

A

f

B

g

A f ,gB

π1 π2

A f ,gB

π2

Y

j k

⇒ K

⇒ ρ

there is a unique 2-morphism γ : j⇒ k such that ω = π1γ and ρ = π2γ.

Here we show that the bicategory Span2(T ) whose

• objects are objects of T ,

• morphisms are spans in T , and

• 2-morphisms are 3-isomorphism classes of maps of spans.

forms a compact closed bicategory whenever T is a 2-category with finite products and weak

pullbacks.

Weak pullbacks are unique up to isomorphism [48]. The construction of Span2(T ) requires

choosing specific weak pullbacks for each cospan [30, 3.2.1]; in our proof below, we choose

especially nice pullbacks for the kinds of cospan that appear in the definition of a compact

closed bicategory.
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This raises the question of whether some choices of weak pullback are fundamentally dif-

ferent than others. As far as we know, nobody has proved that different choices give equivalent

bicategories Span2(T ). We conjecture that this is true, but for now we simply go ahead and take

a particularly convenient choice.

Every weak pullback of a cospan comes equipped with two projections out of it. Now sup-

pose that we compose four identity spans on A, starting at the left; the resulting weak pullback

is ((AA,AA)π2 ,AA)π′
2
,AA :

A A A A A

A
A A

A
A A

A
A A

A
A A

AA,AA

π1 π2

(AA,AA)π2 ,AA
π′

1

π′
2

((AA,AA)π2,AA)π′
2
,AA

π′′
1

π′′
2

K
⇒

K′

⇒

K′′

⇒

. (1)

This notation clearly becomes very cumbersome very quickly—particularly when dealing with

the composite of many spans, as we will below.

We introduce a new notation A◦n to mean the weak pullback in the composite of n identity

spans on A, beginning at the left; that is, A◦1 = A, A◦2 = AA,AA, and A◦n = A
◦(n−1)

π2 ,A
A, where

π2 : A◦(n−1) → A is the second projection that A◦(n−1) is equipped with.

The construction (−)◦n is an endofunctor on T ; it takes an object A to the object A◦n, a

morphism f : A → B to the morphism f ◦n : A◦n → B◦n, and a 2-morphism α : f ⇒ g to the

2-morphism α◦n : f ◦n ⇒ g◦n. For example, in the case T = Cat, the category A◦n consists of

length-n chains of objects of A equipped with isomorphisms between them:

a1

K1

→ a2

K2

→ · · ·
Kn−1

→ an.

Given a functor f : A → B, the functor f ◦n : A◦n → B◦n applies f pointwise to each object and

isomorphism in the chain:

f (a1)
f (K1)
→ f (a2)

f (K2)
→ · · ·

f (Kn−1)
→ f (an).

Given a natural transformation α : f ⇒ g, the natural transformation α◦n : f ◦n ⇒ g◦n assigns to

each chain a1

K1

→ a2

K2

→ · · ·
Kn−1

→ an the list (αa1
, . . . , αan

):

f (a1)
f (K1)
→ f (a2)

f (K2)
→ · · ·

f (Kn−1)
→ f (an)

αa1
↓ αa2

↓ · · · ↓ αan
↓

g(a1)
g(K1)
→ g(a2)

g(K2)
→ · · ·

g(Kn−1)
→ g(an)

.
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Note that in diagram 1, if we want to project from the apex onto the leftmost A, we have to

write π1π
′
1
π′′

1
; we are effectively forced to index the weak pullback using unary. Going forward,

we will write π1 through πn for the n projections out of A◦n that result in an object of A. In the

case of T = Cat, for example,

πi(a1

K1

→ a2

K2

→ · · ·
Kn−1

→ an) = ai.

There is a dinatural transformation that assigns to each object A of T the morphism π1 : A◦n → A,

and similarly for the other projections πi; therefore we will use πi in a “polymorphic” way: we

write both π1 : A◦n → A and π1 : B◦m → B, and will expect the reader to look at the source and

target of such projections to determine exactly which morphism is being referred to.

5.1. Lemma. Given isomorphisms f : A → C and g : B → C, the weak pullback of the cospan

A◦n
fπn

→ C
gπ1

← B◦m is isomorphic to the weak pullback of the cospan A◦n
πn

→ A
π1

← A◦m.

Proof. The weak pullbacks of the two cospans are

C

A◦n

fπn

B◦m

gπ1

A◦n
fπn,gπ1

B◦m

π1 π2

⇒ K

A

A◦n

πn

A◦m

π1

A◦nπn,π1
A◦m

π1 π2

⇒ L

.

By the first universal property of weak pullbacks, there exist unique morphisms from A◦nπn,π1
A◦m

to A◦n
fπn,gπ1

B◦m and back making the following diagrams commute. The unique morphisms are

evidently inverses.

C

A◦n

fπn

B◦m

gπ1

A◦n
fπn ,gπ1

B◦m

π1 π2

⇒ K

A◦nπn ,π1
A◦m

〈π1, (g
−1 f )◦mπ2〉π1 (g−1 f )◦mπ2

= =

=

C

A◦n

fπn

B◦m

gπ1

⇒ f L

A◦nπn,π1
A◦m

π1 (g−1 f )◦mπ2
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A

A◦n

πn

A◦m

π1

A◦nπn,π1
A◦m

π1 π2

⇒ L

A◦n
fπn,gπ1

B◦m

〈π1, ( f −1g)◦mπ2〉π1 ( f −1g)◦mπ2

= =

=

A

A◦n

πn

A◦m

π1

⇒ f −1K

A◦n
fπn,gπ1

B◦m

π1 ( f −1g)◦mπ2

Note that by the dinaturality of π1, π1(g−1 f )◦m = g−1 fπ1, so the rightmost morphism on both

sides of the top equation is gg−1 fπ1π2 = fπ1π2. Similarly, the rightmost morphism on both sides

of the bottom equation is π1( f −1g)◦mπ2 = f −1gπ1π2.

By the coherence theorem for bicategories, there is a unique isomorphism

a◦∗ : A◦nπn,π1
A◦m → A◦(n+m)

built from associators for composition. Since we must choose weak pullbacks for each cospan,

given a cospan A◦n
fπn

→ C
gπ1

← B◦m where f and g are invertible, we choose the weak pullback to

be equal to A◦(n+m).When A is terminal, for instance, A may not equal 1 but only be isomorphic.

In that case, the weak pullback of A
!
→ 1

!
← 1 is

1

A

!

1

!

A!,!A
π1 π2

=

whereas when A is not terminal, the weak pullback is

1

A

!

1

!

A!,!1
π1 π2

=

.

With that choice, we also have the following useful corollary.
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5.2. Corollary. Given an isomorphism f : A → B in T, the composite of the identity span on

B and the span B
f
← A

A
→ A is equal to the composite of the identity span on B and the span

B
B
← B

f −1

→ A; both result in the span B
π1

← B◦2
f −1π2

→ A.

Because we mod out by isomorphisms of maps of spans, some spans that at first sight appear

different are actually the same.

5.3. Lemma. The braiding b : A◦2 → A◦2 in T is 2-isomorphic to the identity.

Proof. The weak pullback of the identity cospan on A is A◦2 equipped with projections π1, π2

and a 2-morphism L. We have π1b = π2, π2b = π1, and Lb = L−1. The following 2-morphisms

are equal:

A

A

A

A

A

A◦2

π1 π2

A◦2

π1

A◦2

b A◦2

⇒ L

⇒ L−1

=

A

A

A

A

A

A◦2

π1 π2

A◦2

π2

A◦2

b A◦2

⇒ L

⇒ L

(note that on the right hand side, the lower use of L is whiskered by b, becoming L−1), so

by the second universal property of the weak pullback, there exists a unique 2-isomorphism

γ : b⇒ A◦2 such that L−1 = π1γ and L = π2γ.

5.4. Corollary. The weak pullback of the identity cospan on A is A◦2 equipped with the projec-

tions π1 : A◦2 → A, π2 : A◦2 → A, and a 2-morphism L : π1 ⇒ π2. The map of spans

A◦2

A

π1

A

π2

A◦2

π1 π2

b⇓ L ⇓ L−1

is in the same equivalence class as the identity map of spans.
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5.5. Corollary. For any permutation σ of n elements, the morphism

〈πσ(1), πσ(2), . . . , πσ(n)〉 : A◦n → A◦n

is 2-isomorphic to the identity.

5.6. Corollary. The composite of n identity spans on A has as its apex the weak pullback con-

sisting of the object A◦n equipped with projections π1, . . . , πn : A◦n → A and for each 1 ≤ i < n

an invertible 2-morphism Li : πi ⇒ πi+1. Let L′ be the invertible 2-morphism from π1 to πσ(1)

and L′′ be the invertible 2-morphism from πn to πσ(n) derived from composing the Li. The map

of spans

A◦n

A

π1

A

πn

A◦n

π1 πn

p
⇓ L′ ⇓ L′′

where p = 〈πσ(1), πσ(2), . . . , πσ(n)〉 is in the same equivalence class as the identity map of spans.

We are now ready to prove the main theorem.

5.7. Theorem. If T is a 2-category with finite products and weak pullbacks, then Span2(T ) is a

compact closed bicategory.

Proof. As noted, Hoffnung [30] showed that Span3(T ) is a monoidal tricategory. We refer the

reader to Hoffnung’s paper for the complete definition of a monoidal tricategory, but suffice it

to say that it replaces the commuting polyhedra in the above definition of a monoidal bicate-

gory with polyhedra that commute up to a specified 3-morphism, and then adds coherence law

polytopes to govern them. When we mod out by 3-isomorphism classes of maps of spans, these

3-morphisms become trivial, so Span2(T ) is a monoidal bicategory.

The monoidal associator is the span

(A × B) × C
(A×B)×C
← (A × B) × C

a
→ A × (B ×C).

The left and right monoidal unitors are the spans

1 × A
1×A
← 1 × A

l
→ A

and

A × 1
A×1
← A × 1

r
→ A,
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respectively. The monoidal braiding is

A × B
A×B
← A × B

b
→ B × A.

The “bulleted” morphisms like a• are the reverse spans.

To define the pentagonator, we start with a “six-edged” identity map of spans: each edge is

a span whose left leg is the identity and whose right leg is an isomorphism in T ; the source and

target composite spans are both the composite of three such edges, so by our choice of weak

pullbacks, their apexes are equal.

A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ B) ⊗ (C ⊗ D)

a

((A ⊗ B) ⊗ C) ⊗ D
a

((A ⊗ B) ⊗ C) ⊗ D

((A ⊗ B) ⊗C) ⊗ D

(A ⊗ (B ⊗C)) ⊗ D

a ⊗ D

A ⊗ ((B ⊗C) ⊗ D)
a

A ⊗ a

=

(((A × B) × C) × D)◦3

((A × B) ×C) × D

π1

A × (B × (C × D))

(A × a)a(a × D)π3

(((A × B) × C) × D)◦3

π1 aaπ3

(((A × B) × C) × D)◦3

= =

The right-hand 2-morphism in the map of spans is an identity because the pentagon equation

holds in the underlying category of T. We define the pentagonator to be the composite of this

identity map of spans with the unitor for composition:

((A ⊗ B) ⊗C) ⊗ D

(A ⊗ B) ⊗ (C ⊗ D)

a

A ⊗ (B ⊗ (C ⊗ D))

a

A ⊗ ((B ⊗C) ⊗ D)

A ⊗ a
(A ⊗ (B ⊗C)) ⊗ D

a

a ⊗ D

((A ⊗ B) ⊗C) ⊗ D
((A ⊗ B) ⊗C) ⊗ D

a

⇒ l
◦

=

The coherence theorem for bicategories [44] says that any diagram built out of a◦, l◦, and r◦

commutes, so any coherence law involving only pentagonators and identity 2-morphisms—such

as the associahedron—must hold in Span2(T ).
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To define the left 2-unitor for the monoidal product, we start with a “four-edged” identity

map of spans. Each edge is a span whose left leg is the identity and whose right leg is an

isomorphism in T ; the source and target composite spans are both the composite of two such

edges, so by our choice of weak pullbacks, their apexes are equal.

(A ⊗ I) ⊗ B A ⊗ (I ⊗ B)
a

(A ⊗ I) ⊗ B

(A ⊗ I) ⊗ B

A ⊗ B
r ⊗ B

A ⊗ l=

((A × I) × B)◦2

(A × I) × B

π1

(A × I) × B

(r × B)π2

((A × I) × B)◦2

π1 (A × l)aπ2

((A × I) × B)◦2

= =

The right-hand 2-morphism in the map of spans is an identity because the triangle equation

holds in the underlying category of T . We define the 2-unitor to be the composite of this identity

map of spans with the inverse unitor for composition:

(I ⊗ A) ⊗ B

I ⊗ (A ⊗ B)

a

A ⊗ B

l

l ⊗ B (I ⊗ A) ⊗ B

(I ⊗ A) ⊗ B

l ⊗ B

⇒ l◦−1 =

The 2-unitors µ and ρ are also equal to the inverse of the unitor for composition:

(A ⊗ I) ⊗ B

A ⊗ (I ⊗ B)

a

A ⊗ B

A ⊗ l

r ⊗ B (A ⊗ I) ⊗ B

(A ⊗ I) ⊗ B

r ⊗ B

⇒ l◦−1 =
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(A ⊗ B) ⊗ I

A ⊗ (B ⊗ I)

a

A ⊗ B

A ⊗ r

r (A ⊗ B) ⊗ I

(A ⊗ B) ⊗ I

r

⇒ l◦−1 =

By the coherence theorem for bicategories, any diagram built out of a◦, l◦, and r◦ commutes,

so any coherence law involving only π, λ, µ, ρ and identity 2-morphisms—such as the unitor

prisms—must hold in Span2(T ).

The hexagon modification R is a “six-edged” identity map of spans: each edge is, again, a

span whose left leg is an identity and whose right leg is an isomorphism in T . The source and

target spans are the composite of three such edges, so because of our choice of weak pullbacks,

the apexes are equal; the right-hand 2-morphism in the map of spans is an equality because the

hexagon equations hold in T.

B ⊗ (C ⊗ A)

(B ⊗C) ⊗ A

a

A ⊗ (B ⊗C)
b

(A ⊗ B) ⊗ C

a

(B ⊗ A) ⊗ C

b ⊗C

B ⊗ (A ⊗C)
a

B ⊗ b

=

((A × B) × C)◦3

(A × B) ×C

π1

B × (C × A)

(B × b)a(b ×C)π3

((A × B) × C)◦3

π1 abaπ3

((A × B) ×C)◦3

= =

The hexagon modification S is more complicated because it has three uses of a•. To define

S , we start with a “ten-edged” identity map of spans. The edges are those of S except that

instead of using a• it uses a−1, and it also includes four extra identity edges. Each edge is,

again, a span whose left leg is an identity and whose right leg is an isomorphism in T . The

source and target spans are the composite of five such edges, so because of our choice of weak

pullbacks, the apexes are equal; the right-hand 2-morphism in the map of spans is an equality

because the hexagon equations hold in T. By Corollary 5.2, the composite of an identity span

with a• is equal to the composite of an identity span with a−1, so we define S to be the composite

of this identity span with four unitors for composition:
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(CA)B

C(AB)

a•

(AB)C
b

A(BC)

a•

A(CB)

Ab

(AC)B
a•

bB

A(BC)

A(BC)

a−1

⇒ l◦−1

C(AB)

C(AB)

a−1

⇐ l◦−1

A(CB)

A(CB)

a−1

A(CB)

A(CB)

bB

⇓ l◦

⇒ l◦

=

By the coherence theorem for bicategories, any coherence law involving only π,R, S and

identity 2-morphisms—such as the shuffle and Breen polytopes—must hold in Span2(T ).

To define the syllepsis, we begin with a “four-edged” identity span and compose it with

two unitors for composition. By the coherence theorem for bicategories, any coherence law

involving only R, S , ν and identity 2-morphisms—such as those governing the syllepsis—must

hold in Span2(T ).

AB

AB
AB

AB
AB

BA

b

b•

b•

b

=

⇓ l◦−1

⇓ l◦

Because all these coherence laws hold in Span2(T ), it is a symmetric monoidal bicategory.

In order to prove that the swallowtail coherence law holds, we have to demonstrate an equa-

tion between two maps of spans for every object A in T . These maps go between spans whose

legs are not necessarily isomorphisms, so the approach taken above will not work to prove that

the swallowtail coherence law holds. Each leg is, however, a natural transformation: either a

unitor, an associator, duplication, deletion, a projection, or some product of these. The feet and

apexes of the spans are cartesian products involving only copies of A and the terminal object 1.
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As a calculational aid, we introduce some topological notation for weak pullbacks. We use

one dot for each of the projections from the weak pullback to A that it comes equipped with, and

we use an arc for each 2-isomorphism between two projections. We will denote the terminal

object by 1.

Some examples, assuming A is not terminal:

1. We denote 1 by 1.

2. We denote A by .

3. We denote A × 1 by 1.

4. We denote A × A by .

5. We denote A◦2 by .

6. The weak pullback of the cospan A◦2
π2

→ A
π2

← A×A is the object (A◦2)π2,π2
(A×A) equipped

with morphisms

π1, π2, π3, π4 : (A◦2)π2,π2
(A × A)→ A

and 2-isomorphisms

K1 : π1 ⇒ π2

and

K2 : π2 ⇒ π4.

We denote the object (A◦2)π2,π2
(A × A) by

.

Note that we form this diagram by juxtaposing examples 5 and 4 and adding an arc be-

tween the second dot in each pair.

7. We denote A◦4 by .

8. The weak pullback of the cospan A × A
A×∆
→ A × (A × A)

a◦(∆×A)
← A × A is the object

(A × A)A×∆,a◦(∆×A)(A × A) equipped with morphisms

π1, π2, π3, π4 : (A × A)A×∆,a◦(∆×A)(A × A)→ A

and 2-morphisms

K1 : π1 ⇒ π3,

K2 : π2 ⇒ π3,

and

K3 : π2 ⇒ π4.



790 MICHAEL STAY

We denote the object (A × A)π2,π2
(A × A) by

.

Note that we form this diagram by juxtaposing two copies of example 4 and adding three

arcs. This object is isomorphic to example 7 by A × b × A.

To show that Span2(T ) is compact closed, we have to show the existence of the 1-morphisms

i and e, the existence of the 2-morphisms ζ and θ, and show that ζ and θ satisfy the swallowtail

coherence law. The real meat of the proof will be in showing that ζ (and therefore θ) can be

defined in terms of an identity span much like the pentagonator and other 2-morphisms above;

the “dressing” of this span with unitors for composition follows very much as above.

The cap i : I → A ⊗ A∗ is the span

1
!
← A

∆
→ A × A;

the cup e : A∗ ⊗ A→ I is its reverse i•,

A × A
∆
← A

!
→ 1.

When A is terminal, we define ζA and θA to be the unique 2-morphism on the unique morphism

from A to itself.

To define ζA when A is not terminal, we start with an identity map of spans. The source span

is

A
π1

← A◦10 π10

→ A.

The target span is the composite

(r−1)• ◦ (A ⊗ e) ◦ a ◦ (i ⊗ A) ◦ l−1 ◦ A,

where by r−1 we mean the span A ← A
r−1

→ A × 1, and similarly for l−1. To see that it is, in

fact, an identity map of spans, consider the target span. In the diagrams below, we elide the

2-isomorphisms for clarity; we also denote the morphism 〈πi, . . . , π j〉 out of a weak pullback by

πi− j.

We start building the composite span by composing the spans A and l−1. The cospan in the

composite is the identity on A, so the apex is A◦2 :

• •

•

1•

•
l−1

π1

π2

Next, we compose with i⊗A; this cospan is the same as example 6 except for the addition of an

irrelevant terminal object at the nadir of the cospan:
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• •

•

1•

•
l−1

π1

π2

!•

∆•

π1−2 π3−4

Next, we compose with the associator:

• •

•

1•

•
l−1

π1

π2

!•

∆•

π1−2 π3−4

a

π1−4

π5−7

Next, we compose with A ⊗ e:

• •

•

1•

•
l−1

π1

π2

!•

∆•

π1−2 π3−4

a

π1−4

π5−7

•1
•∆

•!

π1−7

π8−9

Finally, we compose with (r−1)•:
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• •

•

1•

•
l−1

π1

π2

!•

∆•

π1−2 π3−4

a

π1−4

π5−7

•1
•∆

•!

π1−7

π8−9

•

•

r−1

π1−9

π10

Inspection of the composite span above shows that none of the cospans involving ∆ are of

the form A◦n
fπn

→ C
gπ1

← B◦m where f and g are isomorphisms, so the choice of weak pullback for

those cospans does not matter there. The apex of this composite is made up of ten

dots connected by nine arcs in a single chain. It is evident that can be permuted to

A◦10 = . By Corollary 5.6, there is a map of spans

A A

π1 π10

π1 π10

σ= =

in the same equivalence class as the identity.

We define the 2-morphism ζ to be the composite of this identity map of spans with

1. inverse unitors for composition on the source morphism mapping from the identity span

on A to the span A
π1

← A◦10
π10

→ A,

2. a unitor for composition on the target morphism mapping (l−1 ◦ A) to l•, similar to what

we did when defining the 2-morphism S , and

3. the isomorphism of spans
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A × 1 A

A × 1

r

A

r−1

r−1= =

on the target.

The 2-morphism θA follows mutatis mutandis.

In the left hand-side of the swallowtail coherence law, the only parts not accounted for by

the coherence theorem for bicategories are the two uses of the isomorphism of spans in item 3

above: once in ζ ⊗ A and once in A∗ ⊗ θ−1. The composite isomorphism of spans is

(A × 1) × A A × A

A × A

r−1 × A

A × (1 × A)

A × l

(A × 1) × A

a

A × A

r−1 × A

r−1 × A

= =

Because the triangle laws hold in T , the composite isomorphism is the identity. Therefore the

swallowtail coherence law holds in Span2(T ) and Span2(T ) is compact closed.

5.8. Corollary. When C is a category with finite products and pullbacks, the bicategory Span(C)

of objects of C, spans in C, and maps of spans is compact closed.

Proof. When C is a category with finite products and pullbacks, Span(C) is a special case of

Theorem 5.7 where all the 2-morphisms in the weak pullbacks are identities.

5.9. Corollary. The bicategories Cospan(ResNet) and Circ are compact closed.
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Proof. The coproduct of two resistor networks is given by juxtaposition; the pushout of a cospan

S ←֓ R ֒→ T of resistor networks is given by juxtaposition followed by identifying the images

of R in S and T . Cospans in ResNet are spans in ResNetop, where the coproduct and pushout

become product and pullback, so Cospan(ResNet) is compact closed by the previous corollary.

Since every object is self-dual in Cospan(ResNet), the subcategory Circ whose objects are re-

sistor networks with no edges is also compact closed.
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