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CLASSICAL AND RELATIVE REALIZABILITY

JAAP VAN OOSTEN AND TINGXIANG ZOU

ABSTRACT. We show that every abstract Krivine structure in the sense of Streicher
can be obtained, up to equivalence of the resulting tripos, from a filtered opca (A, A”)
and a subobject of 1 in the relative realizability topos RT(A’, A); the topos is always a
Boolean subtopos of RT(A’, A). We exhibit a range of non-localic Boolean subtriposes
of the Kleene-Vesley tripos.

Introduction

In an impressive series of papers, Jean-Louis Krivine has been employing extensions of
the untyped A-calculus to create “realizability interpretations” for classical ZF set theory.
He has been working on this project for roughly the last 20 years.

For a long time, this work seemed to have no connections with other interpretations,
also called ‘realizability’, in the Kleene-Troelstra-Hyland tradition (for an overview of
which, see e.g. [24]). And disjoint research groups worked either in ‘Krivine realizability’
or with notions of realizability related to the effective topos or similar toposes.

This situation has recently undergone a drastic change: the series of ‘realizability’
meetings at Chambéry has brought researchers from different traditions together, and in
particular Thomas Streicher, who published [22], has built an important bridge.

After reformulating Krivine’s ‘abstract machine’ as an ‘abstract Krivine structure’
(aks), Streicher proves that from each aks one may construct a so-called filtered order-pca
(a structure for what is called “relative realizability” in Birkedal’s thesis [2] and in [3]),
and hence a topos; the special features of the filtered opca constructed from an aks ensure
that this will be a Boolean topos.

In a series of papers from 2013-2015 ([5, 4, 6]) Walter Ferrer Santos, Jonas Frey, Mauri-
cio Guillermo, Octavio Malherbe and Alexandre Miquel develop theory of ordered pcas
whose associated Set-indexed preorders are Boolean triposes. Frey, moreover, investigated
variations corresponding to different flavours of Krivine realizability ([7]).

All this work is, however, essentially syntactic. The focus of the present paper is on a
mathematical construction of abstract Krivine structures.

We start with the concept of a Basic Combinatorial Object from Pieter Hofstra’s
elegant paper [9]. BCOs form a preorder-enriched category with a KZ-monad D (we
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rehearse the material we need in section 1.1). Every BCO ¥ induces a Set-indexed preorder
[—, 2.

Among BCOs, filtered opcas are characterized as those BCOs for which the Set-indexed
preorder [—, DY) is a tripos. What then might be termed (a la [8]) a “lex cocomplete
filtered opca”, a BCO ¥ such that [—, ] is a tripos, is characterized (by our proposi-
tion 1.15 and theorem 1.17) as a D-algebra whose algebra structure (which is left adjoint
to the unit) preserves finite meets. This generalizes the characterization of locales among
meet-semilattices. We also give a characterization in terms of one of the definitions of
Ferrer Santos et al, sharpening their result (theorem 1.23). Moreover we describe ‘dense’
morphisms of filtered opcas, and recover a suitable analogue of Peter Johnstone’s simple
criterion in [13].

Then, we embark on classical realizability. We prove that for every filtered opca (A, A’)
and downwards closed subset U C A such that U N A’ = (), we have an abstract Krivine
structure. Moreover, the tripos arising from this aks (by Streicher’s construction) repre-
sents a topos which is the Booleanization of a closed subtopos of the standard realizability
topos RT(A’, A): that is, for a subobject U of 1 in RT(A’, A) we get the sheaf subtopos
corresponding to the local operator ((—) — U) — U. And, every tripos resulting from an
aks s of this form.

Finally, we investigate when our Boolean triposes are localic. We compare criteria
independently given by Hofstra and Krivine, and find them, reassuringly, to be equivalent.

Our final theorem specializes to the filtered pca Ky of functions N — N with as filter
the set of recursive functions. We exhibit a range of non-localic Boolean subtriposes of
the Kleene-Vesley tripos (theorem 2.13).

ACKNOWLEDGEMENTS. We gratefully acknowledge fruitful discussions with Thomas Stre-
icher and Jonas Frey; also, the anonymous referee contributed with a number of suggested
improvements and a speculation, which we return to in the ‘epilogue’ at the end of the

paper.

1. BCOs, Filtered OPCAs and Triposes

1.1. BCOs. This section rehearses what we shall need from Hofstra’s paper [9].

1.2. DEFINITION. A Basic Combinatorial Object (BCO) consists of a poset (£, <) and a
set Fx, of partial endofunctions on X2, which structure satisfies the following requirements:

i) FEvery f € Fs has downwards closed domain, and is order-preserving on its domain.
ii) There is a total map i € Fx, such that i(a) < a for all a € 3.

iii) For every pair f,g € Fyx, there is some h € Fy, such that whenever g(f(a)) is defined,
h(a) < g(f(a)).
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1.3. DEFINITION. Let (3, <, Fx) and (0, <, Fg) be BCOs. A morphism from (2, <, Fy)
to (©,<,Fo) is a total function ¢ : 3 — O satisfying the conditions:

i) There is an element u € Fg such that for every inequality a < a’' in 3 we have
u(p(a)) < ¢(a’) in © (in particular, u is defined on all elements in the image of ¢).

ii) For every f € Fx, there is a g € Feo such that for all a in the domain of f, ¢(a) is
in the domain of g, and g(¢(a)) < ¢(f(a)).

Given two morphisms ¢, : 35 — O we say ¢ < 1 if there is an element g € Fo satisfying
g(¢p(a)) <(a) for all a € 3.

It is readily verified that with these definitions, we have a preorder-enriched category
BCO. This category has a terminal object 1 and binary products. Therefore, as in any
cartesian 2-category, one can speak of objects which have finite internal products: a BCO
has internal terminal object (or: internal top element) if the BCO-morphism ¥ — 1 has
a right adjoint (denoted T); and ¥ has internal binary products (binary meets) if the
diagonal map ¥ — ¥ x ¥ has a right adjoint. Such a right adjoint, if it exists, will be
denoted (—) A (—).

If a BCO has finite internal meets, we define the set TV(X) of designated truth-values
as

TV(Y) = {a € X|for some f € Fx, f(T) <a}

Clearly, TV(X) is an upwards closed subset of ¥, and one can show that for all a,b €
TV(Y), also a A b € TV(X). Therefore we think of TV(X) as a filter. However, bear in
mind that a A b is in general not the meet of a and b in the poset (X, <).

1.4. DEFINITION. An order-pca or opca is a poset (A, <) with a partial binary function
(called application) A x A — A, written a,b — ab, which has the following properties:

i) Whenever ab is defined and ' < a,b' < b, then a't/ is defined and o't < ab.

ii) There are elements k ands in A such that for all z,y € A we have (kx)y < x, and for
allz,y, z € A, whenever (xz)(yz) is defined, so is ((sz)y)z, and ((sz)y)z < (zz)(yz).

From now on, when we work in an order-pca, we associate to the left and write abc
instead of (ab)c.

Opcas were defined in [10], and Longley’s definition of applicative morphism for pcas
([19]) was extended there to opcas. For more theory of opcas and unexplained notions
and notations, the reader is referred to [25].

Every opca (A, <) is a BCO (A, <, Fa) where F4 consists of the partial maps ¢, : b+
ab given by the opca structure. Moreover, as BCO every opca has finite internal meets
(for the map a A b we can take pab, where p is a pairing combinator in A; every element
of A can serve as top element, and TV(A) = A).
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1.5. THEOREM. [Hofstra, 5.1] Let A and B be opcas. A function f : A — B is an applica-

tive morphism of opcas precisely when it is a finite internal meet-preserving morphism of
BCOs.

1.6. DEFINITION. A filtered opca is an opca A together with a subset A" which is closed
under application of A and contains choices for k and s (for A). The subset A’ is called
the filter.

It is immediate that, in definition 1.6, A’ itself is an opca; however, not every subset
of an opca A which is closed under the application of A and is an opca with this restricted
application, is a filter: see [26], 5.4 for a counterexample.

Every filtered opca (A, A") is a BCO (A, A’, Fa) where F4 consists of the partial maps
¢q 2 b— ab with a € A'. Every opca A is of course trivially a filtered opca with A’ = A.
Another example of filtered opcas are meet-semilattices (with top element T): application
is the meet operation, and the filter is {T}. Many pcas, considered as opcas with the
discrete order, contain nontrivial filters: Scott’s graph model with the filter of r.e. (or,
more generally, 3J,,) subsets of N; Kleene’s second model K5 of functions N — N, with the
filter consisting of the total recursive functions (or, more generally, A,-functions).

We need two further notions about BCOs: the downset monad D, and the Set-indexed
preorder [—, ¥] (for a BCO X).

For any BCO (X, <, Fs) we can consider the poset DY of downwards closed subsets
of ¥, ordered by inclusion, and system of maps Fpy, which consists of those partial maps
F : DY, — DY for which there is some f € Fy, such that, for all U € DY, F'U is defined if
and only if U is a subset of the domain of f, in which case F'U is the downwards closure
of {f(a)|a € U}.

The operation D is the object part of a 2-monad on BCO: the unit ¥ — DX is given
by the principal downset map J(—) sending a € ¥ to {b|b < a}, and multiplication is
union. The monad D is a so-called KZ-monad; this means that any object carries at most
one algebra structure DY — X, and this structure, when it exists, is left adjoint to the
unit map.

We note that if ¥ is a filtered opca, so is DX: if ¥ = (A, A") then DY = (DA, D)
where ® consists of those downsets of A that meet the filter A’.

Every BCO ¥ gives rise to a Set-indexed preorder [—, X]: for a set X, we have the set
of (total) functions X — ¥, and for two such functions ¢, we have ¢ < 9 if and only
if there exists f € Fyx such that for all x € X, f(¢(z)) is defined and f(o(x)) < ¢(z).
If ¥ is a filtered opca (A, A"), we shall abuse language and write [—, A] for the induced
Set-indexed preorder, even though one should be aware that the preorder involves A’.

We shall be interested in conditions under which the preorder [—, Y] is a tripos.

We note that the assignment ¥ — [—, Y] gives a full 2-embedding of BCO into the
2-category of Set-indexed preorders. We also note, that the indexed preorder [—, Y] has
indexed finite meets if and only if the BCO X has internal finite meets. Moreover, a
map h between BCOs with internal finite meets preserves those meets if and only if
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the corresponding transformation between the indexed preorders preserves indexed finite
meets.

The following pretty theorem characterizes the filtered opcas among BCOs, in terms
of the two notions just discussed:

1.7. THEOREM. [Hofstra, 6.9] A BCO X is (equivalent to) a filtered opca, precisely when
the indexed preorder [—, DX] is a tripos.

1.8. THEOREM. [Hofstra, 6.13] Let ¥ be a BCO with internal finite meets. Then [—, ¥] is
a tripos, precisely when X is a filtered opca (A, A") which has a pseudo-D-algebra structure
\/ : DX — X which satisfies the following condition:

(%) There is an element v € A’ such that whenever we have an o € DA and b,c € A for
which, for each a € a, ab is defined and < ¢, then v(\/ a)b is defined and < c.
See our theorem 1.17 for a more elegant formulation of the condition (x).

We conclude this overview of Hofstra’s results with some material on geometric mor-
phisms.

1.9. DEFINITION. [Hofstra, 7.1] A morphism ¢ : ¥ — O of BCOs is called (computa-
tionally) dense if there is some h € Fg and a function H : Fg — Fx satisfying the
following property: for a € ¥ and g € Feo, if ¢(a) is in the domain of g then H(g)(a) and

h@(H(g)(a))) are defined, and h(¢(H(g)(a))) < g(d(a)).

1.10. THEOREM. [Hofstra, 7.2] BCOs with dense maps form a sub-preorder-enriched cat-
egory of BCO, to which the monad D restricts.

1.11. THEOREM.

i) [Hofstra, 7.3] For a morphism ¢ of BCOs we have: ¢ is dense precisely when D¢
has a right adjoint.

ii) [Hofstra, 7.8] If ¢ is a map between D-algebras, then ¢ is dense if and only if it has
a right adjoint.

Our wording of 1.11ii) seems stronger than Hofstra’s (in the quoted paper), who speaks
ambiguously of “a map of algebras”. However, his proof makes clear that he does not
require an algebra homomorphism.

1.12. THEOREM. [Hofstra, 7.9] Let ¥ be a BCO such that [—,X] is a tripos. Then the
following two statements are equivalent:

i) the tripos [—, %] is localic

i) the preorder TV(X) has a least element.
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CAVEAT. Hofstra formulates this in a stronger way: he asserts that the statements in
1.12 are equivalent to “there is a geometric morphism Set[¥] — Set” (where Set[¥] is
the topos represented by the tripos [—, X]); an equivalence he peremptorily declares to be
“well known”. However, we have not been able to prove this; see more about this point
in the Epilogue to this paper.

1.13. FILTERED OPCAS, TRIPOSES AND DENSE MORPHISMS. In this section we present
some notions Hofstra did not explicitly give in his paper. In particular, we need an
appropriate definition of morphism between filtered opcas, as well as a characterization
of the dense ones among these. Moreover, we have some refinements and generalizations.

1.14. DEFINITION. Let (A, A") , (B,B’) be filtered opcas. An applicative morphism
(A, A") = (B, B') is a function f: A — B satisfying the following conditions:

i) Foralla € A thereis ab € B withb < f(a) (so, f maps A" into the upwards
closure of B').

ii) There is an element r € B' such that for all a’ € A" and a € A, whenever d'a is

defined in A, rf(a')f(a) is defined in B and rf(a’) f(a) < f(d'a).

iii) There is an element w € B’ such that for every inequality v < y in A, uf(x) is
defined and uf(z) < f(y).

The following result corresponds to theorem 1.5:

1.15. PROPOSITION. For filtered opcas (A, A’) and (B, B’), a function f : A — B is an
applicative morphism precisely when it is a finite-meet preserving map of BCOs.

PROOF. Let ¢ : (A, A") — (B, B’) be an applicative morphism. Then ¢ is a map of BCOs:
requirement i) of definition 1.3 is identical to requirement iii) of 1.14, and for ii) of 1.3,
given f € A'| pick b € B’ such that b < ¢(f) (by i) of 1.14) and let g = (y)rby, where r
is from ii) of 1.14. If fa is defined in A, then r¢(f)p(a) < ¢(fa), so go(a) < rbp(a) <
ro(f)¢la) < ¢(fa).

We need to show that ¢ preserves internal finite meets. Since ¢ maps A’ into the
upwards closure of B’, ¢ preserves the terminal object. Binary internal meets are given
by the pairing combinators in the respective opcas. If we denote pairing and unpairing in
A by p, po, p1 and in B by q, qo, q1, then for

t = (2)q(ré(po)z)(ré(p1)z)
we have to(paa’) < qo(a)p(a’) for all a,a’ € A; for
u = (z)r(ré(p)(qox)) (1)

we have u(qo(a)p(a’)) < ¢(paa’) for all a,a’ € A. So ¢ preserves internal finite meets.
Conversely, suppose ¢ : (A, A’) — (B, B’) is a morphism of BCOs which preserves
internal finite meets. Requirement i) of 1.14 is satisfied because ¢ preserves top elements.
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Requirement iii) is satisfied because ¢ is a map of BCOs. As for requirement ii), let « € B’
be such that for all a,a’ € A,

a(qg(a)g(a’)) < ¢(pad’)

(since ¢ preserves finite meets). There is an element d € A’ such that whenever aa’ is
defined in A, d(paa’) < aa’. Since ¢ is a map of BCOs, there is e € B’ such that when
aa’ is defined in A, ep(paa’) < ¢(aa’). Combining, we have for a,a’ € A such that aa’ is
defined,

ea(qp(a)p(a’)) < ¢laa’)

so if r = (zy)ea(qry) then r satisfies requirement ii) of 1.14. n

Next, we look at filtered opcas (A, A") for which the indexed preorder [—, A] is a tripos.
By Hofstra’s theorem 1.8, (A, A’) carries the structure of a pseudo D-algebra satisfying
the condition (*). In order to be explicit and to fix notation, let us define what we mean
by “pseudo D-algebra”:

1.16. DEFINITION. A pseudo D-algebra structure on a BCO X is a function \/ : DX — X
satisfying the following conditions, where we write Lo for the downwards closure of o, and

la for L{a}:
1) There is u € Fx, such that for every inclusion o C o' in DX, u(\/ «) is defined and
u(Va) <\
2) For all f € Fx there is some gy € Fx,. such that for all « € DX: if for all x € «
f(z) is defined, then go(\/ @) is defined and go(\/ o) < \/(I{f(z) |z € a}).

8) There are elements gs, hs € Fx such that for all A € D*X:

gs(V(H{V ala e A}) <V(UA)
hs(V(UA) < VI{V ala € A})

4) There are elements gy, hy € Fx such that for all a € ¥, g4(\/({a)) < a and hy(a) <

V{la).

1.17. THEOREM. A filtered opca (A, A") with pseudo D-algebra structure \/ satisfies con-
dition (x) of 1.8, precisely when \/ is an applicative morphism of filtered opcas. That is,
(by 1.15), if and only if \/ preserves internal finite meets.

PROOF. First suppose \/ is an applicative morphism. So, we have r € A’ such that when-
ever af is defined in D(A, A"), r(\/ «)(V B) is defined and r(\/ a)(\V/ 5) < VI {ab|a €

a,b e p}.
Now suppose for all a € « that ab is defined and ab < ¢. Then «({b) is defined and

a(lb) € Habla € a,b e} C lc
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We have r(\/ «)(\/ }b) < V(a(lb)). We have u € A’ such that

u(r(\/ a)(\/ 40) < u(\/(a(b)) < \/ lc
Let g4, hq € A’ be as given by definition 1.16 4). Then since hyb < \/ |b,
ga(u(r(V a)(V b)) < g4(V ) <c
ga(u(r(V a)(hb))) < ga(V lc) < c

Now let v = (xy)gs(u(rz(hay))). It is easy to verify that v € A’ and that v satisfies the
condition (x).

Conversely, suppose v satisfies (x). We have to prove that \/ is an applicative morphism.
For i) of 1.14, we have to prove that for « in the filter of D(A, A’), \/ « is in the upwards
closure of A’. The filter of D(A, A’) consists of those downsets of A which intersect A’.
Pick a € an A’. Then |a C « so u(\/la) < \« (where u is from 1) of 1.16). And
hsa <\ la, so

u(hga) < u(\/ la) < \/a

Since u and hy are in A’, we see that i) is satisfied.

Condition iii) of 1.14 holds because \/ is supposed to be a map of BCOs.

For 1.14 ii), suppose «f is defined, so for all a € a,b € (3, ab is defined in A. Note
that u(\/ Lab) < \/ af for a € a,b € B. Also, hy(ab) <\/ L(ab), so

u(ha(ab)) < u(\/ Hab)) < \/(aB)
Let & = (zy)u(hg(xy)), then £ € A" and for a fixed b €  we have for all a € «,
€ab < \/(af). By (x) we have that v(\/{{a|a € a})b is defined and
v(\/{ala e a})b < \/(ap)

Let n = (yx)vaxy. Then n € A" and

nb(\/{¢ala € a}) <v(\/{éala € a}b < \/(ap)
This holds for all b € 3, so by (*) we have

o(\/{nvlb € BH(\/{¢ala € a}) < \/(ap)
Hence,
n(\{€ala € ah)(\/{np|b e }) < \/(aB)
By 2) of 1.16, choose £, € A" such that for all «, 5,
§'(Va)<V{a|aea}
n'(V B) < V{nb|b e b}
and let z = (zy)n({'x)(n'y). Then z € A" and
2(Va)(VB) < nEVa)'(Vp)
< n(V{€alaca})(V{nb|be p}) < V(ab)

so z realizes condition ii) of 1.14. "
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1.18. REMARK. 1. Note that one may reformulate theorem 1.17 thus: for a filtered opca
(A, A’), the Set-indexed preorder [—, A] is a tripos precisely when (A, A’) is a pseudo
D-algebra in the subcategory (of BCO) of filtered opcas and applicative morphisms.

2. Theorem 1.17 is, in view of proposition 1.15, the generalization to the context of
filtered opcas, of the condition of infinite distributivity for locales. Indeed, a suplattice
L is a locale precisely when the supremum map \/ : DL — L preserves finite meets:
Vian 8) = (Va) AV B).

3. Jonas Frey pointed out to us that one might use the term “lex cocompleteness” for
the condition that the unit has a finite-meet preserving left adjoint; this phenomenon is
studied extensively in [8]. Seeing the inclusion ¥ — D3 as some sort of “mini-Yoneda”,
one might also draw a parallel with Street’s result ([21]) that under some size condition,
a cocomplete category is a Grothendieck topos if and only if its Yoneda embedding has a
left exact left adjoint.

Let us draw an immediate inference from theorem 1.17:

1.19. COROLLARY. Suppose % is a BCO such that [—,%] is a tripos. Then [—,X] is a
subtripos of [—, DX].

PROOF. The assumption implies, by 1.8, that ¥ is a filtered opca, and, by 1.17 and 1.15,
that the transformation of indexed preorders [—, DY| — [—, ¥] induced by \/, preserves
finite meets. Hence the pair \/ 4 |(—) defines a geometric inclusion of [—, ] into [—, D]

|

At this point we would like to relate our notion of filtered opcas satisfying the condition
of 1.8, to the notion of implicative oca discussed in [4].

1.20. DEFINITION. [Ferrer Santos et al] An implicative ordered combinatory algebra
(ioca) is a filtered opca (A, A") satisfying the following conditions:

a) The application map is total.
b) The poset (A, <) has infima of arbitrary subsets.

c) There is an operation called implication, a,b+— (a = b), order-reversing in the first
argument and order-preserving in the second, such that for all a,b,c € A we have:
a < (b= c¢) if and only if ab < c.

d) There is an element e € A’ such that for all a,b,c € A: if ab < ¢ thenea < (b= ¢).

Ferrer Santos et al prove the following result:

1.21. THEOREM. [Ferrer Santos et al, 5.8] If (A, A") is an implicative oca, then [—, A] is
a tripos.

However, the requirements for an ioca are too strong for the conclusion. We reformu-
late the notion so that we obtain an equivalence.
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1.22. DEFINITION. A pre-implicative opca is a filtered opca (A, A") satisfying the follow-
ing conditions:

i) There is a map )\ : P(A) — A and there are constants i,i" € A’ such that for all
aC A:
foralaca, i(Na)<a
forallbe A, if b <a for all a € a, then i'b < \ «

ii) There is a binary implication a,b — (a = b) on A and there are constants e, e’ € A’
satisfying, for all a,b,c € A:

if ab < c then ea < (b= c¢)
if a < (b= c) then €ab < ¢

Note that in particular, the application on A need not be total.

1.23. THEOREM. Let 3 be a BCO. Then [—,X] is a tripos if and only if ¥ is a pre-
implicative opca.

PROOF. First, suppose that [—, X] is a tripos. By Hofstra’s theorem 1.8, we know that >
is a filtered opca (A, A’) which carries a pseudo D-algebra structure \/ : DA — A, which

satisfies condition ().
For a, f € DA we define I(«, 3) as

I(a,8) = {a € Alfor all d’ € a, ad’ is defined and an element of 5}

Clearly, I(«, ) € DA. Define the operation = by

(b=rc) = \/I{b,lo)

Now if ab < ¢ then clearly a € I({b,lc), so Ja C I(]b,)c) so with u as in 1) of 1.16 we
have u(\/{a) < (b = ¢) and since with h4 from 4) in 1.16 we have hya <'\/ ]a, we find

u(hga) < (b= c)

So if e is defined as (z)u(hsx) then e satisfies the first condition in ii) of definition 1.22.
For the second condition of 1.22 ii), we note that for a € I(]b,]c) we have ab defined
and ab < ¢; by (x) we see that v(b = ¢)b is defined and < ¢; so if a < (b = ¢) then
vab < c¢. Hence we can take v as our €, and we conclude that the operation = and the
constants e, ¢ satisfy 1.22 ii).
For the map /\, defined on arbitrary subsets a C A, let O(«) be the set of lower
bounds of « (then O(«) € DA) and put

/\a = \/O(a)

If a € « is arbitrary, then for all b € O(a), skkb < a. So if g, is as in 1.16 2) for skk, then
g2(/\ @) < a. Hence we can take go as our i.
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The second condition reads: for all b € O(a), i'b < Aa = \/O(a). But we have a
combinator w € A’ such that whenever 5 € DA and a € 8, wa < \/ 5. So it is clear how
to pick i’. We conclude that (A, A") has the structure of a pre-implicative opca.

Conversely, suppose (A, A’) is a filtered opca endowed with operations / and = and

elements i,1', e, e satisfying the conditions for a pre-implicative opca. For an indexed

family {®z |z € X} of elements of A, we shall also write A\ .y ®x for A{®x |z € X}.
Define \/ : DA — A by

Ve = A(/\@=0b)=0b)

beA aca

We prove that this map \/ provides (A, A’) with a pseudo D-algebra structure which
satisfies condition (x) of theorem 1.8.
We define a number of elements of A’

N Do S
|

And we note the following facts concerning these elements:

a) For a € DA, a family {®,|a € a} and o/ C «, we have

n(\ ) < N\ @

aca aca’
b) For inequalities b < ¥, ¢ < ¢’ in A we have

£ =)
(b= ¢

< (b=¢)
< (b=/{)

¢) For a C o in DA we have
K(\/a) < \/0/

d) If fe A a€DAand fa <b for every a € a, then
P\ a)<b

By way of example, we spell out the proofs of c¢)and d); the other statements are left to
the reader.

For c), assume o € . Then by a), n(A,co (@ = b)) < A,eala = 1), so by b),

§(Aaeala = b) = b) < n(\gea (@ = b)) = b, hence €/(§(Aeo(a = ) = ) (1(Ageo (@ =
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b))) < b. Therefore, by definition of H, H(A,.,(a = b) = b)(A\,co (@ = b)) < b, hence
e(H(Nyeala = b) = b)) < Ajew(a = b) = b. Since i(\/ a) < A\,c.(a = b) = b and
application is downwards closed and order-preserving, we get e(H(i(\/ a))) < A,eo (@ =
b) = b, soi'(e(H(i(\V «)))) <V, which is K(\/ a) </« as desired.

For d), suppose for all a € @ we have fa < b; hence for all @ € o we have ef < a = b. By
definition of i and i’ then, we have i'(ef) < A,c,(a = b) and i(\/ ) < (A cn(a = b)) = b.

Therefore
P\ a) <€(i(\/ a))(i(ef)) <0

Now to prove that \/ is a pseudo D-algebra map, requirement 1) of definition 1.16
follows at once from property c). For requirement 4) we define the element

Q = (2)i'(e((u)€ (iv)u)z)

and we claim that whenever a € o, Qa <\/ a. Indeed,

a€a(

i(Ageal@ =0)) < (a=0b),s0€(i(A,cn(a = b)))a < b, hence
((uv)e'(iv)u)a(N\,cq(a” = b)) < b, ie.
e<uv> "(iv)u)a < A, eq(@ = b) = b, hence
i (e((uv)€(iv)u )a) <\ «, from which we get
Qa <

Va

For the other inequality of 1.16 4), we claim that for R = (x)e/(ix)(i'(e(skk))) we have
R(\/ la) < a; the verification is easy.
For requirement 2) we use statement d). Suppose fa is defined for all @ € a. Then

Q(fa) < \V{fala € a} for all a € a, hence P({x)Q(fz))(V a) < VI{fala € a} as

desired.

For requirement 3), let A € D?A, a € A. Since a C |JA we have K(\/ a) < V(U A)
by ¢). Hence Kz < \/(JA) for all x € [{Va|a € A}, so PK(\/ {Vala € A} <
V(UJ.A). The other inequality of 3) is realized by the element P((x)Q(Qzx)): for a € J A,
there is @ € A such that a € a. Then Qa < \/a, so Qa € [{\a|a € A} whence

Q(Qa) < VI{Vala e A} By d), we have P((2)Q(Qx))(VUA) < VIH{Vala € A}
We conclude that \/ is a pseudo D-algebra structure on (A, A’).

’

It remains to show that the map \/ satisfies condition (x) of 1.8. This also readily follows
from statement d) above. Suppose for all a € «, ab is defined and ab < ¢. Then for all
a € a, ((r)xb)a < ¢, whence P({x)zb)(\/ o) < ¢. Hence if v = (uw)P({x)xw)u, then
v(\ )b < ¢ as required. And obviously, v € A'. =

We now turn to computationally dense maps between filtered opcas. The following def-
inition is a direct translation of Hofstra’s general notion of a dense map between BCOs
(1.9).
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1.24. DEFINITION. Suppose f : (A, A") — (B, B') is an applicative morphism of filtered
opcas. Then f is called computationally dense if there is an element m € B’ with the
following property:

(cd) For every b/ € B’ there is an o' € A" such that for all a € A,
¢ if ' f(a) is defined then so is a’a, and mf(a’a) <V f(a)

In Skolemized form, condition (cd) reads:

(cd — sk) There is a function g : B — A’ such that for alll/ € B' and a € A,
if U f(a) is defined then so is g(b')a, and mf(g(b')a) <V f(a)
Peter Johnstone, in [13], has given a simplification of the definition of a computation-
ally dense applicative morphism for pcas. A similar simplification can also be obtained
here:

1.25. PROPOSITION. Let f : (A, A") — (B, B’) be an applicative morphism. Then f is
computationally dense if and only if there is a function h : B — A’ and an element t € B’
such that for allb' € B,

tf(h(b)) <V

PROOF. Suppose f is applicative, with elements r,u € B’ satisfying ii) and iii) of defini-
tion 1.14, respectively.

For the ‘only if’ part, assume g : B" — A’ and m € B’ satisfy (cd-sk). Pick o’ € A’
arbitrary, and fix some v € B’ with v < f(a’) (by i) of 1.14). Define h(b') = g(kb'), then
h maps B’ into A". Let t = (z)m(rzv), then t € B'.

For an arbitrary &' € B’, we have ki f(a') defined, so by (cd-sk) we have m f(g(kt')a’) <
k' f(a') < ¥'. In other words, mf(h(b')a’) < ¥'. Since in particular h(b')a’ is defined, we
have rf(h(V'))f(a') defined and rf(h(b'))f(a’) < f(h(b)d'), so m(rf(h(b))v) is defined
and m(r f(h(0'))v) < mf(h(b')a’) < V. We see that tf(h(b')) is defined and tf(h(b')) <V,

as desired.

For the ‘if” part, assume h : B’ — A" and t € B’ satisfy tf(h(V')) < b for all ¥/ € B'.
Let p, po, p1 be pairing and unpairing operators in A’. Choose qo,q; € B’ with q; < f(p;)
(by 1.14 i)). Suppose b’ € B', V' f(a) defined. Then tf(h(V))f(a) < ' f(a). Since
po(ph(V)a) < h(b') we have

rf(po)f(ph(b')a) < f(po(ph(V)a))

and hence
u(rgof (ph(b')a)) < uf(po(ph(b')a)) < f(h(b'))
Let N = (z)u(rqoz), so N f(ph(b')a) < f(h(')). Then

t(Nf(ph(t)a)) f(a) < tf(h(V))f(a) <V f(a)
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Also, since py(ph(b')a) < a we have, in a similar way,

u(rayf(ph(b)a)) < uf(pi(ph(t)a)) < f(a)
Let M = (x)u(rqiz). We see that for m = (z)t(Nz)(Mz), we have

mf(ph(b)a) < b'f(a)
So if we define g(b') as ph(d’) then mf(g(t')a) < b f(a), as desired. n

Now suppose ¥ and © are BCOs such that [—, Y] and [—, O] are triposes. Then by 1.8,
Y2 and © are filtered opcas which are also pseudo D-algebras.

Every geometric morphism [—,¥] — [—,©] arises (by fullness of the embedding of
BCO into the 2-category of Set-indexed preorders) from an adjoint pair of maps between
Y. and © which preserve internal finite meets; that is, by 1.15, an adjoint pair of ap-
plicative morphisms. Since a map between D-algebras is dense precisely when it has a
right adjoint (1.11ii)), we see that such geometric morphisms are uniquely determined by
computationally dense applicative morphisms @ — ..

2. Krivine structures and triposes, and filtered opcas

Thomas Streicher ([22]) has reformulated Krivine’s classical realizability (as presented in,
e.g., [16, 17]) in a style reminiscent of combinatory logic, and therefore susceptible to an
analysis with notions from the theory of pcas. He formulates the notion of an abstract
Krivine structure. Out of an abstract Krivine structure one constructs a filtered opca %
(in fact, an implicative oca in the terminology of Ferrer Santos et al-seel.20) such that
the tripos [—, 3] is Boolean. This provides a link between Krivine’s interpretations of Set
Theory and Topos Theory. It is an interesting question whether in the topos resulting from
[—, Y] one can build (using the ideas of algebraic set theory, for which see [14]) internal
models which would faithfully reflect Krivine’s interpretations; as was done, for example,
in Hyland’s effective topos, for the Friedman-McCarty realizability interpretation for IZF,
n [15].

The first author discovered that, given a filtered opca (A, A’) and a nontrivial subter-
minal object in the relative realizability topos RT(A, A’), one can construct an abstract
Krivine structure ([23]). A similar idea appeared in Wouter Stekelenburg’s PhD thesis
([20]). This section provides the details and also shows that, up to equivalence of the
resulting toposes, every abstract Krivine structure arises in this way.

This means we have a pretty concrete way to present toposes arising out of abstract
Krivine structures; but we still have to filter out the non-localic triposes. These are the
ones of interest, as the set theory of Boolean localic triposes is basically forcing (see [1] for
an exposition). It turns out that Hofstra’s condition 1.12 (which we shall compare with
a criterion given by Krivine) gives rise to some recursion-theoretic calculations in our pet
example: Kleene’s second model of functions N — N, with the total recursive functions
as filter.
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2.1. DEFINITION. [Streicher] An abstract Krivine structure (aks) consists of the following

data:

i)

i)

iii )

A set A of terms, together with a binary operation t,s — t-s : A x A — A, and
distinguished elements K, S, a.

A subset QP of A (the set of quasi-proofs), which contains K,S and «, and is closed
under the binary operation of i).

A set 11 of stacks together with a ‘push’ operation
t,r—tm: AxIT—11I

(when we iterate this operation, we associate to the right, and write t.s.m fort.(s.m)),
as well as an operation
T keI — A

A subset L (the pole) of A x II, which satisfies the following requirements:

(S1) If (t,s.w) €L then (t-s,m) €L
(S2) If (t,7) €L then (K,t.s.w) €L (for any term s)
(S3) If ((t-u)-(s-u),m) €L then (S,t.sum) €Ll
(S4) If (t,kr.m) €L then (ac,t.m) €L
(

t, k
(S5) If (t, ) el then (kq,t.7") €L (for any ')

Given a set U of terms and a set a of stacks, we define

ULt = {relllforallteU, (t,7) €L}
alt = {teA|forallmea, (t,7) €l}

Clearly, we have closure operators (—)% on both P(A) and P(II). For a C II, we also

write || for «

L

Let Py (I1) be {3 C 11| 3L = 3}, ordered by reverse inclusion. We define an appli-
cation e on P, (II) by putting

aef = {melll|foralltec|alandsc|f| (tsr)cl}tt

Moreover, let & C P, (II) be the set

= {a e PLD)[lalNQP # 0}
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2.2. THEOREM. [Streicher] The set Py (I1) forms, together with the given application, a
total order-ca, and ® is a filter in it. The Set-indexed preorder [—, Py (I1)] is a Boolean
tripos.

Ferrer Santos et al ([4]) observe that, in fact, the order-ca P, (II) is an implicative
order-ca (see definition 1.20), with implication defined by

a=pB = {tx|tclal,mep}t
and that the element {a}* realizes ‘Pierce’s Law’:
{c}r <((a=B)=a)=a

Consequently, they define a Krivine order-ca as an implicative order-ca with a distin-
guished element in the filter, which realizes Pierce’s Law.

They give a recipe for constructing, from each Krivine order-ca A, an abstract Krivine
structure K 4. And it turns out that the tripos constructed from K 4 in Streicher’s way,
is equivalent to the tripos [—,.A] (theorem 5.15 in [4]). We call such triposes Krivine
triposes.

We follow a different approach, which in our view leads to a simpler representation of
Krivine triposes. Let us recall (see [25] for details) that in any opca one has a represen-
tation of the natural numbers {n|n € N}; since n is ks-definable, it will be in any filter.
Moreover, we have a coding of sequences |ay,. .., a,—1] (which, again, is k, s-definable so
in the filter whenever ay, ..., a,_1 are). Let us summarize the properties we need in the
following lemma:

2.3. LEMMA. Let (A, A') be a filtered opca. Then for a standard coding of natural numbers
and sequences from A, there are elements b,c,d,t € A" which satisfy:

i) Foralln € N and k > n, bnfag,...,a] < a,

i) Foralln € N and k> n, cifag, ..., a) < [an,...,a
iii) For alla € A, dafag, ..., a,-1] <la,aq,...,an_1]

iv) Foralla € A, ta < [a]

We can now define an aks out of a filtered opca (A, A’) together with a downwards
closed subset U C A which does not meet the filter: U N A’ = (.

2.4. DEFINITION. Given (A, A’) and U as above, we define an aks K(A, A", U) as follows:
1) A=A, QP = A, 11 is the set of coded sequences [ag, ..., a, 1] of A.

2)  The push operation A x IT — 11 sends a, 7 to daw where d is as in 2.3 iii). We write
a.m for this.
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3) The total binary operation A x A — A sends a,b to (m)a(b.w). We write a-b for this.
Note, that the operation a,b — a-b is total and should not be confounded with the
partial operation on A which forms the opca structure; the latter is written a,b — ab,
as we have been doing all along.

4) Using the elements b and c from 2.3 i),it), and writing 7; for bir and 7; for ¢jm,

we put:
K = (mmr>
5 = (m)((mo: 7T2) (1°72) ) >3
= (p)pom
= (m)mo(kns, - T>1)

5)  Finally, the pole I is defined by
1L = {(t,n) |t is defined and tw € U}

2.5. THEOREM. The structure defined in 2.4 is indeed an abstract Krivine structure.

PROOF. We have to check that the pole satisfies properties (S1)—(S5) from definition 2.1.
For (S1), suppose (t,s.m) €L, so t(s.m) € U. Then (t-s)r € U since (t-s)m < t(s.7);
hence (t-s,7) €.
For (S2), suppose (t,7) €L so tw € U. Note that (t.s.7)y < t and (t.s.7)>2 < 7, hence

K(t.s.m) < (t.s.m)o((t.5.7)>2) < tm

so K(t.s.m) € U and therefore (K, t.s.m) € L.
For (S3), suppose ((t-u)-(s-u),7) €L, so ((t-u)-(s-u))m € U. Now

S(t.sum) < ((tw)-(su))m

so S(t.s.u.w) € U, hence (S,t.s.u.m) €L.

For (S4), suppose (t,k..m) €L so t(ky.w) € U. Then «(t.n) € U since «(t.n) <
t(kr.m). Therefore (a,t.m) €L.

For (S5), suppose (t,7) €L so tm € U. We have k,(t.7') < tm; hence k,(t.7") € U, so
(kr,t.m') L. =

Let us denote the aks constructed from A, A’, U by IC%} 4 and let us call the filtered opca
constructed from ICX 4 by Streicher’s construction, P(H)X - We wish to compare the
tripos [—, P(I1)Y ] to the tripos [—, D(A, A’)]. First we recall a standard topos-theoretic
construction.

For a subset a of A we write « — U for the set

{a € Alfor all b € a, ab is defined and ab € U}

Note that since U € DA, (« — U) € DA. For ¢ : I — DA we write ¢ — U for the
function taking i € I to ¢(i) — U.
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2.6. DEFINITION. The Booleanization of the tripos [—, D(A, A")] with respect to U is
the Boolean subtripos of [—, D(A, A’)] which can be defined in any of the following three
equivalent ways:

1) For any set I, we have the set of functions ¢ : I — DA which are isomorphic in
[—,D(A, A")] to (¢ = U) — U (as sub-preorder of [I,D(A, A’)]);

2) For any set I, all functions ¢ : I — DA but ordered by: ¢ < 1 if and only if
¢ < ((¢ =U) = U)in[I,D(A,A)];

3) For any set I, all functions ¢ : I — DA but ordered by: ¢ < v if and only if
(W —=U)<(6—U)in[I,D(A,A)].

2.7. THEOREM. The tripos [—, P(I1)Y 4| is equivalent to the Booleanization of [—, D(A, A')]
with respect to U.

PROOF. Streicher has characterized the preorder in the tripos [—, P (IT)] arising from an
aks, as follows ([22], Lemma 5.5): for ¢,¢ : [ — Py (II), ¢ < 1 if and only if there is an
element ¢ € QP satisfying:

for alli € I, all u € |¢(:)] and all 7 € ¥ (i), (t,u.m) €L

The first thing to notice is that this preorder extends to [I,P(II)] and that in the lat-
ter preorder, every ¢ is isomorphic to ¢ (both inequalities are realized by (S-K)-K);
therefore, the tripos [—, Py (II)] is equivalent to [—, P(II)] (this was also noticed by Ferrer
Santos et al; see 5.15 of [4]). In our case of P(II)}] ,, we can therefore consider all functions
¢ : I — P(II), ordered as follows: ¢ < if and only if for some a € A" we have

(o) for alli € I, all u € ¢(i) — U and all w € ¥(i), a(u.7) is defined and in U

Now if a € A’ satisfies (o) then for all i € I, (um)a(u.m) is an element of A" which is in
(p(i) = U) — (¥(i) — U); hence a € A’ realizes (¢p — U) < (¢ — U) in [I,D(A, A')].
Conversely, if a € A’ realizes (¢ — U) < (¢ — U) in [I,D(A, A")], then (p)apop>1 is an
element of A" satisfying (o).

Furthermore we notice that any element of [I, D(A, A’)] is isomorphic to a function
¢: 1 — D(A,A) of the form i — [ X; where X; is a set of coded sequences: this is easy.

We conclude that any ¢ € [I, D(A, A")] of the form ¢ — U is, up to isomorphism, in
the image of the map

1, P, 0] = [1,D(A, A')

given by ¢ — (¢ — U).

Hence, we see that [—,P(H)% ] 18 equivalent to the opposite of the Booleanization
of [, D(A, A")] with respect to U. However, since the latter is an indexed pre-Boolean
algebra and since every Boolean algebra is isomorphic to its opposite (by the negation
map), we have the claimed result. [
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2.8. THEOREM. Every Krivine tripos is the Booleanization of [—, D(A, A")] with respect
to U, for some filtered opca (A, A") and a downset U of A which does not meet A’.

PROOF. By Streicher’s result, a Krivine tripos is of the form [—, A] for some filtered oca
(A, A’). By 1.19, it is therefore a subtripos of [—, D(A, A’)], and in particular a Boolean
subtripos. But now by standard topos theory (see Lemma A4.5.21 in [12]), it must be
the Booleanization of [—, D(A, A’)] with respect to some U, as required. n

2.9. WHEN 1S A KRIVINE TRIPOS LOCALIC? Recall that Hofstra had characterized, for
a BCO X such that [—, X] is a tripos, when this tripos is localic: TV (X) must have a least
element (theorem 1.12).

Krivine ([18] formulated a condition for an aks to lead to an interpretation of set
theory which is a forcing interpretation: the set

T = (L= D)|Nn|L—=(T—=1)]

must contain an element of the set QP of quasi-proofs.
Taking into account the way logic is interpreted in an aks, this means the following:
for some a € QP we have:

(Kr) Vs € ItVt, m((a,t.s.7) €L and (a,s.t.w) €l)

2.10. THEOREM. Let K be an aks, and Xx be the filtered oca resulting from IC by Stre-
icher’s construction. Then KC satisfies (Kr) if and only if TV(Xx) has a least element.

PROOF. For the only if part, suppose K satisfies (Kr). Krivine proved already (see p. 16
of [18] that there is a quasi-proof ¢ with the property that for every X C II and every
b e QP: if b € |X|, then t € | X|. Since t € QP, {t}* € ® (where ® is the filter of ¥x).
And for every g € ® we have t € ||, so

BC B C ittt

which, given that the order in ¥ is reverse inclusion, tells us that TV(X) has a least
element.

Conversely, suppose a € ® is the least element of . Then for all 5 € &, 8 C «, so for
every b € QP, {b}+ C a. If a € |a| N QP, then o C {a}t, so for all b € QP we have
[} € {a}t,

Let K’ be K-((S-K)-K); then it is easy to verify that if (¢,7) €L, then (K, s.t.m) €L,
for any term s.

Now for s € IIt, 7 € II we have (s,7) €1 and hence, for any term ¢, we have
(K,s.t.m) €l and (K',t.s.7) €1, whence s.t.m € {K}t and t.s.m € {K'}+. Since both K
and K’ are quasi-proofs, by the property of a we find that both s.t.7w and t.s.7 are elements
of {a}t, i.e. (a,s.t.7) €L and (a,t.s.w) €1, as desired. =
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Let us spell out what it means for the tripos [—, P(IT)Y 4] to be localic. The filter consists
of those a C A for which (&« — U) N A" # (). We require that there is a least such «;
keeping in mind that the order on P(II)Y 4 is reverse inclusion, we need an a such that

) (a=UNA#0D
ii) Whenever (83— U)ND, 8C a
The following proposition simplifies this somewhat:

2.11. PROPOSITION. The tripos [—,P(H)%,A,] is localic if and only if there exists an
element e € A" with the property that whenever b € A', a € A and ba € U, then ea € U.

Proor. Obvious. |

2.12. EXAMPLE.
1) ForU = A—A', the tripos [—, P(I)§ 4] is localic, since e = skk satisfies criterion 2.11

2) Every filter A" on an opca A induces a preorder <r on A which is analogous to
Turing reducibility: a; <7 as if and only if for some b € A’ we have bay < ay.
Note, that a; < as implies ay <7 aq, so for any a € A the set {b € A|a <r b} is
downwards closed w.r.t. <.

Now suppose that the set U is upwards closed w.r.t. <; (hence downwards closed
w.r.t. <). Then whenever b € A" and ba € U, we have ba <7 a and skka < a hence
a <t skka, so we get skka € U, which means that again, skk satisfies criterion 2.11
and [—, P(I1)Y 4] is localic,

We conclude this paper with a family of examples where [—, P(I1)§ ] is non-localic.
We consider the pca Ky, which is the set of functions N — N. Given two such functions
a, 3, we define the relation af3(n) = k as: there is a number N € N satisfying:

al[n, 5(0),...,86(N=1)])=k+1
for all I < N, a([n, B(0),...,5(l—=1)]) =0

Here, [...] refers to some computable coding of sequences of natural numbers. We then
say: af is defined, if and only if for each n € N there is some k such that af(n) = k, and
af is then the corresponding function N — N. This is a partial combinatory algebra.
The pca K, has a filter: the set of total recursive (computable) functions N — N. We
write (KCa, Rec) for the corresponding filtered opca. We are interested in choices for U
such that the tripos [—, P(IT)¥, ge. is non-localic.
We remind the reader of the natural topology on ICy: basic open sets are of the form

V, = {a € Ks]a(0) =0p,...,a(n) =0,}

for some finite sequence o = (0, ..., 0,).
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2.13. THEOREM. Let U be a set of nonrecursive functions. If U is discrete as a subspace
of Ka, then the tripos [—, P(IL)E, pec) is non-localic.

PROOF. Suppose, for a contradiction, that « is some recursive function with the property
that for every recursive 8 and arbitrary v, if 8y € U then ay € U. First we note that for
7 € U and skk € Ky, which is recursive, (skk)7 =7 € U, so at € U. Therefore we can fix
some 7w € K9 and some 7 € U such that am = 7.

Since U is discrete, there is some number N such that the basic neighbourhood

Utr(0),...,7(n))

contains no element of U except 7. Let N’ be a natural number big enough so that for
every i, 0 < i < N, there is some k < N’ such that «([¢, 7(0),...,7(k —1)]) = 7(i) + 1.

Claim. Let " € Uz(o),...x(vy)- Then for every j € N, either an’(j) = 7(j) or there is no
k such that an'(j) = k.

Proof of Claim: suppose 7" as in the Claim, and jy such that for some k # 7(jo) we have
an’'(jo) = k. Let ¢ be least such that

a([jo, 7 (0),..., 7't —1)]) =k+1

and let M = max(N’,t). Define 7" € Ky as follows:

» w(i) i< M
m'(i) = { 7(i — (M + 1)) otherwise

Clearly, there is some recursive function § such that S7” = 7 € U; hence, an” € U, but
by construction we must have ar” = 7, but this contradicts the fact that an”(jo) # 7(jo)-
This proves the claim.

But now, with « recursive and the finite sequence (7(0), ..., 7(N’)) given, we have a recipe
to compute 7: for any input j, either there is some k& < N’ such that «([j, 7(0), ..., 7(k)] >
0 (and then for the least such k, this must be 7(j) + 1); or there is some sequence
(no, ..., Ny,) which is minimal such that

a([j,7(0), ..., 7(N"), 10, - - ., 7m]) > O

and then, by the claim, the result must be 7(j) + 1. This algorithm contradicts the
assumption that 7 € U, and hence non-computable. [

EPILOGUE We have constructed non-localic boolean subtriposes of the Kleene-Vesley
tripos. We have also seen that every classical realizability tripos a la Streicher comes
from a filtered opca.

The question is now, of course: what about the toposes represented by our non-localic
triposes? Are they necessarily non-localic too? This is a problem posed in one of the
seminal publications in tripos theory, [11], see the discussion following their theorem
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4.1. Every topos Set[X] coming from a tripos [—, 3] is endowed with a “constant objects
functor” V : Set — Set[X], and has of course (being locally small) a global sections functor
[ : Set[X] — Set. Now the authors of [11] characterize, not when Set[¥] is Grothendieck
(or localic), but when the pair (I, V) constitutes a geometric morphism; leaving the
question, whether Set[¥] might be localic (or Grothendieck) “in some ‘non-obvious’ way”,
explicitly open. As far as we know, the question is still open.
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