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PARTIAL LINEARITY AND PARTIAL NATURAL MAL’TSEVNESS

DOMINIQUE BOURN

Abstract. We introduced in [7] a notion of Mal’tsevness relative to a specific class
Σ of split epimorphisms. We investigate here the induced relative notion of natural
Mal’tsevness, with a special attention to the example of quandles.

Introduction

In [7] we introduced a notion of Mal’tsevness which is only relative to a class Σ of split
epimorphisms (stable under pullback and containing the isomorphisms), and we investi-
gated what is remaining of the properties of the global Mal’tsev context (A. Carboni and
all [11],[12]), after a first work about partial pointed protomodularity [10].

The Mal’tsev context contains, in particular, the naturally Mal’tsev one introduced by
P.T. Johnstone [15] which corresponds to the “additive heart” of the theory.

So, we shall investigate here what is remaining of the properties of the global naturally
Mal’tsev context inside the relative frame. The generic example for the partial Mal’tsev
context in [8] was the category of quandles, an algebraic structure independently intro-
duced in [16] and [18] for Knot theorists, since it formalized the Reidemeister moves on
oriented link diagrams, see also [13]; so here will be a special attention to the notion of
autonomous quandle which retains the partial naturally Mal’tsev part of the theory.

In [6], the author specified that the non-pointed additive context was actually structured
by a subtle hierarchy of notions. It is not unexpected that, in the relative context,
the previous subtleties grow up in complexity: for instance, there will appear examples of
Mal’tsev (or Σ-Mal’tsev) categories which become naturally Mal’tsev for a certain subclass
Σ′. This gives rise to the beginning of a kind of cartography for the linear and additive
parts in Categorical Algebra.

Notice that our notion of partial Mal’tsevness is different from the relative Mal’tsevness
studied in [14].

This article is organized along the following lines:
Section 1 is devoted to some recalls and to the definition of the partial naturally Mal’tsev
context while Section 2 is devoted to what remains of the results of from [15] and [4] in
this relative context. Section 3 investigates the particular case of the point-congruous
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classes Σ which produces a global naturally Mal’tsev core. In Section 4 we briefly show
that, in the same way as in the global situation, the regular context allows us to extend
some properties from the split epimorphisms to the regular epimorphisms. In Section 5,
on the model of [6], we show that when the category E is a Σ-Mal’tsev category, any fibre
GrdYE of the fibration of internal groupoids GrdE → E (and in particular the category
GpE of internal groups in E) is a Σ-naturally Mal’tsev category. This leads to Section
6 where the stronger notion of Σ-affine category is introduced, since, under the previous
condition, any fibre GrdYE is actually of this kind. Section 7 applies part of the previous
results to the example of the category Qnd of quandles.

1. Partial Mal’tsevness

From now on, any category E will be supposed to be finitely complete, and split epimor-
phism will mean split epimorphism with a given splitting. Recall from [3] that, for any
category E, Pt(E) denotes the category whose objects are the split epimorphisms (=the
“genereralized points”) of E and whose arrows are the commuting squares between such
split epimorphisms, and that ¶E : Pt(E) → E denotes the functor associating with each
split epimorphism its codomain. It is a fibration called the fibration of points.

1.1. Definition. Let Σ be a class of split epimorphisms; denote by Σ(E) the full subcat-
egory of Pt(E) whose objects are in Σ. This class is said to be:
1) fibrational when Σ is stable under pullback and contains the isomorphisms
2) point-congruous when, in addition, Σ(E) is stable under finite limits in Pt(E).

When Σ is fibrational, it determines a pointed subfibration ¶Σ
E : Σ(E)→ E of the fibration

of points. Recall from [7]:

1.2. Definition. Let Σ be a fibrational class of split epimorphisms in E. Then E is said
to be a Σ-Mal’tsev category when, for any leftward pullback of split epimorphisms:

X ×Y Z
pX
//

pZ
��

X
ιXoo

f
��

Z
g

//

ιZ

OO

Y
too

s

OO

the pair (iZ , iX) is jointly extremally epic whenever the split epimorphism (f, s) belongs
to Σ.

In [4], a finitely complete category E was shown to be a Mal’tsev one (i.e. a category in
which any reflexive relation is an equivalence relation [12]) when the previous condition
holds for any split epimorphism (f, s); and a pointed category D was defined to be unital
when the previous condition holds for the class ΠD of the canonically split product projec-
tions (which becomes a point-congruous class in this case). Recall the following definition
from [10]:
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1.3. Definition. Let C′ be a full subcategory of a pointed category C. The category C
is said to be C′-unital when, for any object A ∈ C′ and any object B ∈ C, the canonical
injections iA and iB in the following diagram are jointly strongly epimorphic:

A
iA
// A×B

pAoo pB //
B.

iB
oo

Now let Σ be a fibrational class in E and denote by ΣY the full subcategory of the fibre
PtY (E) whose objects are in Σ. We get immediately:

1.4. Proposition. The category E is a Σ-Mal’tsev category if and only if any (pointed)
fibre PtY (E) is ΣY -unital.

1.5. Examples. 1) Let Mon be the category of monoids. It is unital. But it actually
fulfils the partial Mal’tsev condition for a much larger class of split epimorphisms. A split
epimorphism (f, s) : X � Y will be called a weakly Schreier split epimorphism when, for
any element y ∈ Y , the map µy : Kerf → f−1(y) defined by µy(k) = k · s(y) is surjective.
The class Σ of weakly Schreier split epimorphisms is fibrational (but not point-congruous)
and the category Mon is a Σ-Mal’tsev category.

Proof. Stability under pullback is straightforward. Let be given a submonoid W ⊂
X ×Y Z containing the elements (sg(z), z) and (x, tf(x)). Suppose (f, s) is a weakly
Schreier split epimorphism, taking any (x, z) ∈ X ×Y Z, i.e. such that f(x) = g(z), there
is some k ∈ Kerf such that:

(x, z) = (k · sf(x), z) = (k · sg(z), z) = (k, 1) · (sg(z), z)

so we get: (x, z) ∈ W .

1′) In [17] a split epimorphism (f, s) : X � Y in Mon was called a Schreier split
epimorphism when the map µy is bijective. This defines a sub-class Σ′ ⊂ Σ which was
shown to be point-congruous in [10]; by Theorem 2.4.2 in this same monograph, the
category Mon is a Σ′-Mal’tsev category according to the present definition.
2) Suppose that U : C → D is a left exact functor. It is clear that if Σ is a fibrational
(resp. point-congruous) class of split epimorphisms in D, so is the class Σ̄ = U−1Σ in C.
When, in addition, the functor U is conservative (i.e. reflects the isomorphisms), then C
is a Σ̄-Mal’tsev category as soon as D is a Σ-Mal’tsev one.
3) Let SRg be the category of semi-rings. The functor U : SRg → CoM towards the
category of commutative monoids is left exact and conservative. We call weakly Schreier
a split epimorphism in Σ̄ = U−1Σ. In [10] a split epimorphism in Σ̄′ = U−1Σ′ was called
a Scheier one. Thanks to the point 2), this gives rise to two partial Mal’tsev structures
on SRg, the first one not being point-congruous.
4) A quandle is a set X endowed with a binary operation . : X × X → X which
is idempotent and such that for any object x the translation − . x : X → X is an
automorphism with respect to the binary operation . whose inverse is denoted by −.−1x.
A homomorphism of quandles is a map f : (X, .) → (Y, .) which respects the binary
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operation. This defines the category Qnd of quandles. Quandles recapture the formal
aspects of group conjugation: starting from a group (G, ·), the binary operation x .G y =
y · x · y−1 is a quandle operation.

In [8] a split epimorphism (f, s) : X � Y in the category Qnd was called a punctur-
ing (resp. acupuncturing) split epimorphism when, for any element y ∈ Y , the map
s(y) / − : f−1(y) → f−1(y) is surjective (resp. bijective). The class Σ of punctur-
ing (resp. Σ′ of acupuncturing) split epimorphisms was shown to be fibrational (resp.
point-congruous), and the category Qnd was shown to be a Σ-Mal’tsev (and a fortiori a
Σ′-Mal’tsev) category.

1.6. Partial linearity and partial natural Mal’tsevness. On the model of the
previous definitions, let us introduce the following stricter ones:

1.7. Definition. Let C′ be a full subcategory of a pointed category C. The category C
is said to be C′-linear when, for any object A ∈ C′ and any object B ∈ C, the canonical
injections iA and iB in the following diagram define a binary sum:

A
iA
// A×B

pAoo pB //
B.

iB
oo

It is clear that a pointed category C is linear in the classical sense when the subcategory
C′ coincides with C.

1.8. Definition. Let Σ be a fibrational class of split epimorphisms in E. Then E will
be said to be a Σ-naturally Mal’tsev category when, for any leftward pullback of split
epimorphisms:

X ×Y Z
pX
//

pZ
��

X
ιXoo

f
��

Z
g

//

ιZ

OO

Y
too

s

OO

the upward and rightward square is a pushout whenever the split epimorphism (f, s) belongs
to Σ.

Clearly a Σ-naturally Mal’tsev category is a Σ-Mal’tsev one. Recall that a finitely com-
plete category E is a naturally Mal’tsev one (i.e a category in which any object is equipped
with a natural Mal’sev operation [15]) if and only if the previous condition holds for any
split epimorphism (f, s), see [4]. An additive category is just a pointed naturally Mal’tsev
category. Let Σ be a fibrational class in E; we get immediately as above:

1.9. Proposition. The category E is a Σ-naturally Mal’tsev category if and only if any
(pointed) fibre PtY (E) is ΣY -linear.
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1.10. Examples. 1) Any linear category D is a ΠD-linear category.
2) Let CoM be the pointed category of commutative monoids. It is linear. A split
epimorphism (f, s) : X � Y is a (resp. weakly) Schreier one if and only if the canonical
comparison map Y ×Kerf → X is bijective (resp. surjective). In other words, in CoM ,
the class Σ′ of the Schreier split epimorphisms coincide with the class Π of the canonically
split product projections. The category CoM of commutative monoids provides us with
a situation where a Σ-Mal’tsev category is a Σ′-naturally Mal’tsev category as well for a
certain subclass Σ′ ⊂ Σ.
3) A quandle X is said to be autonomous when the binary operation . is a quandle
homomorphism. Let us denote by AQd the full subcategory of Qnd whose objects are
the autonomous quandles. Let (f, s) be an acupunturing split epimorphism and let us
denote by ρ(x) the unique element of f−1(f(x)) of such that sf(x) . ρ(x) = x. When X
is autonomous, the function ρ : X → X is a homomorphism of quandles. From:
sf(x . x′) . (ρ(x) . ρ(x′)) = (sf(x) . sf(x′)) . (ρ(x) . ρ(x′))
= (sf(x) . ρ(x)) . (sf(x′) . ρ(x′)) = x . x′

we get ρ(x) . ρ(x′) = ρ(x . x′) by the uniqueness of the factorization property.

1.11. Proposition. The category AQd is a Σ′-naturally Mal’tsev category where Σ′ is
the class of acupuncturing split epimorphisms.

Proof. Consider any pullback of split epimorphisms in AQd with (f, s) in Σ′:

X ×Y Z
pX
//

pZ
��

X
ιXoo

f
��

Z
g

//

ιZ

OO

Y
too

s

OO

Suppose (x, z) ∈ X ×Y Z. We have z = k(z) . tg(z) = k(z) . tf(x), where the mapping k
defined by k(z) = z .−1 tg(z) is a quandle homomorphism since Z is autonomous. Since
(f, s) is in Σ′, we have x = sf(x).ρ(x) = sg(z).ρ(x) where ρ is a quandle homomorphism
as well. Whence:

(x, z) = (sg(z), k(z)) . (ρ(x), tf(ρ(x))) = ιZ(k(z)) . ιX(ρ(x))

Suppose now we have a pair (m : Z → T, n : X → T ) of quandle homomorphisms in AQd
such that m ◦ t = n ◦ s. Then the unique desired quandle factorization l : X ×Y Z → T
is (necessarily) defined by l(x, z) = m(k(z)) . n(ρ(x)); this shows that the upward and
rightward square is a pushout.

We construct many further examples of Σ-natural Mal’tsevness in Section 5.7.

2. First properties of the Σ-naturally Mal’tsev categories

Recall the following characterizations from [15] and [4]: a finitely complete category D is
a naturally Mal’tsev one if and only if any of the following conditions is satisfied:
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1) any fibre PtY (E) of the fibration of points ¶D is linear
1′) any fibre PtY (E) of the fibration of points ¶D is additive
2) it is a Mal’tsev category in which any pair of equivalence relations centralizes each
other, or equivalently any equivalence relation is central
3) any internal reflexive graph is a groupoid (the Lawvere condition)
4) any base change along a split epimorphism with respect to the fibration of points ¶D
is an equivalence of categories.

In this section we shall investigate what is remaining of these characterizations in the par-
tial context. The translation of the condition 1) is the characterization given by Proposi-
tion 1.9. Recall from [7] (see also [10]) the following definition and results concerning the
Σ-Mal’tsev categories:

2.1. Definition. A graph X1 on an object X will be said to be a Σ-graph when it is
reflexive:

X1
d1
//

d0 //
Xs0oo

and such that the split epimorphism (d0, s0) belongs to the class Σ. The same definition
applies respectively to relations, internal categories, and internal groupoids.
A morphism f : X → Y is called Σ-special when its kernel relation R[f ] is a Σ-equivalence
relation. An object X is said to be Σ-special when the terminal map τX : X → 1 is Σ-
special.

2.2. Proposition. Let E be a Σ-Mal’tsev category. Any Σ-relation S on an object X
is necessarily transitive. A Σ-relation S is an equivalence relation if and only if the map
d0 : S → X is Σ-special. On a Σ-graph there is at most one structure of internal category.
When a Σ-special map f is split by any map s, the split epimorphism (f, s) lies in Σ.

The first two assertions allow to measure precisely the weakening of the partial context in
comparison with the global one in which any reflexive relation is an equivalence relation.

Commutation in PtY (E)

Consider two maps with same codomain in the fibre PtYE as on the left hand side and
suppose that the split epimorphism (f, s) is in Σ; then take, as on the right hand side,
the pullback of f along g:

X ′

!!
φ
��}}

U h //

g   

V

��

Xkoo
f

~~

U h //

g !!

s′
==

V

��

Xkoo
f

}}

t′
aa

Y

t
``

s

>>OO

Y

t
aa

s

==OO
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2.3. Definition. Let E be a Σ-Mal’tsev category and (f, s) a split epimorphism in Σ. The
pair (h, k) of morphisms is said to commute in the fibre PtYE when there is a (necessarily
unique) map φ : X ′ → V such that φ.t′ = k and φ.s′ = h. The map φ is called the
cooperator of this pair.

Immediately, we get:

2.4. Proposition. Let E be a Σ-naturally Mal’tsev category. Then any pair of the
previous kind commutes.

Proof. The desired factorization is a straightforward consequence of the fact that the
quadrangle with X ′ is underlying a binary sum in the fibre PtY (E).

From that, we get a part of condition 3), namely a weakening of the Lawvere condition:

2.5. Proposition. Let E be a Σ-naturally Mal’tsev category. Any Σ-reflexive graph:

X1
d1
//

d0 //
X0s0oo

is underlying a (unique) internal category structure. In particular any split epimorphism
(f, s) : X � Y in Σ is underlying a (unique) structure of commutative monoid in the
fibre PtY (E).

Proof. It was shown in [7], that, in a Σ-Mal’tsev category, a Σ-reflexive graph is an
internal category if and only if the following subobjects commute in PtX0E:

X1
//
(d0,1X1

)
//

d0
$$

X0 ×X1

pX0

��

X1
oo

(d1,1X1
)

oo

d1
zzX0

s0
dd

(1X0
,s0)

OO
s0

::

which is necessarily true here when (d0, s0) is in Σ, according to the previous proposition.

Similarly, let us recall the following definition and results generalizing the global Mal’tsev
context ([19], [9]):

2.6. Definition. Let E be a Σ-Mal’tsev category and (R, S) a pair of a reflexive relation
R and a Σ-relation S on the object X. We say that the two reflexive relations R and S
centralize each other (which we shall denote by [R, S] = 0 as usual) when the two following
subobjects commute in the fibre PtX(E):

R //
(dR1 ,d

R
0 )
//

dR1 &&

X ×X
p0

��

Soo
(dS0 ,d

S
1 )

oo

dS0

xx
X

sR0

ff

sS0

88
s0

OO
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It is the case if and only if there is a (unique) map p : R×X S → X (called the connector
of the pair (R, S)) such that p(xRx′Sx′) = x and p(xRxSx′) = x′.

Again, immediately we get a part of condition 2):

2.7. Proposition. Let E be a Σ-naturally Mal’tsev category. Then any pair (R, S) of a
reflexive relation R and a Σ-relation S on the object X centralize each other. In particular,
any Σ-equivalence relation is central. Any Σ-special morphism f : X → Y has a central
kernel relation.

2.8. Corollary. Let E be a Σ-naturally Mal’tsev category. Then any Σ-special object
X of E is endowed with a (unique) natural Mal’tsev operation in E.

Proof. An object X is Σ-special if and only if the indiscrete equivalence relation ∇X is
a Σ-relation. In the Σ-naturally Mal’tsev context we get [∇X ,∇X ] = 0 and a connector
p which produces the Mal’tsev operation:

X ×X ×X
p0
��

p2 //

p

''

X ×X
p0
��

s1
oo

X ×X p1 //

s0

OO

X
s0

oo

s0

OO

The naturality of this operation follows from the fact that the pair (s0, s1) of the previous
diagram is jointly strongly epic.

When Σ is not point-congruous, this Mal’tsev operation on X does not necessarily belong
to the full subcategory of Σ-special objects, since X ×X is even not necessarily Σ-special
when X is so; as for the point-congruous context, see Proposition 3.3 in the next section.
We get also another part of condition 3):

2.9. Corollary. Let E be a Σ-naturally Mal’tsev category. Then a Σ-reflexive graph is
a Σ-groupoid if and only if the map d0 is Σ-special. In particular:
1) any Σ-special morphism f : X → Y split by s gives it an abelian group structure in
PtY (E)
2) a groupoid is a Σ-groupoid if and only if its underlying graph is a Σ-graph.

Finally let us investigate condition 4):

2.10. Proposition. Let E be a Σ-naturally Mal’tsev category. Then any split epimor-
phism (g, t) : Y ′ � Y makes the base change g∗ : ΣY → ΣY ′ an equivalence of categories.

Proof. In a Σ-Mal’tsev category we know that this base change g∗ is fully faithful. It
remains to show that when E is a Σ-naturally Mal’tsev one, it is essentially surjective.
Let us start with any split epimorphism (f ′, s′) : X ′ � Y ′ in Σ. Complete the lower
row with the kernel equivalence relation of g and denote by t1 the unique map such that
d1.t1 = 1Y ′ and d0.t1 = t.g. Then consider the following diagram where (f̌ ′, š′) is d∗0(f ′, s′),
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in other words where the non dotted left hand side square indexed by 0 is a pullback of
split epimorphisms with a map σ0 : X ′ → X̌ above s0 : Y ′ → R[g]:

X̌

f̌ ′

��

δ1
//

δ0 //
X ′oo

τ1
oo

f ′

��

g′ // // X

f

��

τ
oo

R[g]

š′

OO

d1
//

d0 //
Y ′

t1

WW

oo g // //

s′

OO

Y

s

OO

t
oo

Since (f ′, s′) is in Σ and E is a Σ-naturally Mal’tsev category, the upward and rightward
left hand side square is a pushout which produces a map δ1 above d1 giving rise to the
upper reflexive graph. The square indexed by 1 is a pullback as well since d∗1(f ′, s′) is
produced by the pushout along the common splitting s0 of d0 and d1. This pullback
indexed by 1 in turn produces the splitting τ1 above the splitting t1 and makes (f ′, s′) =
t∗1(f̌ ′, š′) = t∗1d

∗
0(f ′, s′) = g∗t∗(f ′, s′) with t∗(f ′, s′) in Σ since (f ′, s′) is in Σ.

A unital category provides an example of a Σ-Mal’tsev category with fulfills the previous
property with respect to the class Σ = Π of canonically split product projections without
being Σ-naturally Mal’tsev. We shall finish this section by

2.11. Proposition. Let E be a Σ-naturally Mal’tsev category. When the split epimor-
phism (f, s) is in Σ, then the monomorphism s is canonically and naturally normal to an
equivalence relation Rs.

Proof. Consider the following leftward pullback of split epimorphisms:

X × Y

pX

��

f×1
//

ψs

ss

Y × Y

p0

��

oos×1oo

p1

ttX

(1,f)

OO

f
// Y

s0

OO

oosoo

When (f, s) is in Σ, the rightward and upward square is a pushout. So the map p1 :
Y × Y → Y produces a factorization ψs : X × Y → X such that ψs.(1, f) = 1X and
ψs.(s× 1) = s.p1. Whence a reflexive relation (pX , ψ) : X × Y ⇒ X on X. It is actually
an equivalence relation Rs since (f, s) is in Σ. The fact that (s, s×1) determines a discrete
fibration between ∇Y and Rs (since so does (f, f × 1) in the inverse direction) makes the
monomorphism s normal to the equivalence relation Rs.
To check the naturality of this construction, start with a commutative diagram of split
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epimorphisms in Σ:

X̄

f̄
��

x // X

f

��
Ȳ y

//

s̄

OO

Y

s

OO

We have to show that x : X̄ → X induces a morphism Rs̄ → Rs between the canonical
equivalence relations, namely that ψs.(x × y) = x.ψs̄. It is checked by composition with
the jointly strongly epic pair ((1, f̄), (s̄× 1)).

3. The case of the point-congruous classes

When the class Σ is fibrational, the Σ-special morphisms are stable under pullback. It
is also clear that any isomorphism is Σ-special. We shall denote by Σl(E) the category
whose objects are the Σ-special morphisms and whose morphisms are the commutative
squares between them. When Σ is point-congruous, Σl(E) is stable under finite limit in
E2. Similarly we shall denote by ΣlYE the full subcategory of the slice category E/Y
whose objects are the Σ-special morphisms. Recall from [8] the following:

3.1. Lemma. Let E be a point-congruous Σ-Mal’tsev category. If g.f and g are Σ-special,
so is f : X → Y . In particular, any splitting s of f gives rise to a split epimorphism
(f, s) in Σ. The subcategory ΣlYE of the slice category E/Y is a Mal’tsev category.

Proof. The kernel congruence R[f ] is given by the following pullback in the category
EquE of equivalence relations in E:

R[f ] //
��

j
��

∆Y
��
s0��

R[g.f ]
R(f)

// R[g]

where ∆Y is the discrete equivalence relation on Y . The equivalence relations R[g] and
R[g.f ] are Σ-relations. Since the pullbacks in EquE are levelwise, and the class Σ is point-
congruous, the relation R[f ] is a Σ-relation as well. In particular, any morphism in ΣlYE
is Σ-special, and so any reflexive relation in ΣlYE is an equivalence relation. Accordingly
the subcategory ΣlYE of the slice category E/Y is a Mal’tsev category.

In particular, if we denote by ΣE] = Σl1E the full subcategory of E whose objects are the
Σ-special objects, it is a Mal’tsev category, called the Mal’tsev core of the point-congruous
Σ-Mal’tsev category E; any of its morphisms is Σ-special.

3.2. Example. 1) The Mal’tsev core of the Σ′-Mal’tsev category Mon of monoids is the
category Gp of groups, see [10].
2) The Mal’tsev core of the Σ̄′-Mal’tsev category SRg of semi-rings is the category Rg of
rings, see [10].
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3) The Mal’tsev core of the Σ′-Mal’tsev category Qnd of quandles is the category LQd
of latin quandles, namely those quandles X which are such that, for any element x, the
function x .− is bijective, see [8].

Now we get:

3.3. Proposition. Let E be a point-congruous Σ-naturally Mal’tsev category. The sub-
category ΣlYE of the slice category E/Y is a naturally Mal’tsev category. This is the case,
in particular, of its core ΣE].
Proof. The quickest way to show it is to prove that it satisfies the Lawvere condition
(condition 3) of the beginning of Section 2. Consider any reflexive graph in ΣlYE:

X1

g1

��

d0 //

d1
//
X0

g0

��

s0oo

Y Y

By Lemma 3.1 any map in ΣlYE is Σ-special and by Corollary 2.9, the map d0 being
Σ-special, the reflexive graph is underlying a groupoid structure.

3.4. Example. 1) The core of the Σ′-naturally Mal’tsev category CoM of commutative
monoids is the additive category Ab of abelian groups.
2) The core of the Σ′-naturally Mal’tsev category AQd of autonomous quandles is the
naturally Mal’tsev category LAQd of latin autonomous quandles, namely sets X endowed
with an idempotent binary operation . which is a homomorphism for this law and is such
that, for any element x, both x .− and − . x are bijective.

4. The regular and exact contexts

In a regular category [1], relations can be composed. A regular category is a Mal’tsev one
if and only if any pair of reflexive relations does permute [11]. Recall from [7]:

4.1. Proposition. Let E be a regular Σ-Mal’tsev category. Given any pair of a reflexive
relation R and a Σ-equivalence relation S on a object X, the two relations do permute.

So, this result holds in any regular Σ-naturally Mal’tsev category.

4.2. Lemma. Let E be a regular Σ-Mal’tsev category and the following square be a pullback
of split epimorphisms along the regular epimorphism y:

X̄

f̄
��

x // // X

f
��

Ȳ y
// //

s̄

OO

Y

s

OO

When its domain (f̄ , s̄) belongs to Σ, the upward square is a pushout. Accordingly the
base change functor: y∗ : ΣY → ΣY ′ is fully faithful.
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Proof. Consider any pair (φ, σ) of morphisms such that φ.s̄ = σ.y (∗):

R[x]

R(f̄)

��

dx1

//

dx0 //
X̄oo

f̄

��

x // //

φ ++

T

f

��

X̄

R[y]

R(s̄)

OO

dy1

//

dy0 //
Ȳoo

y
// //

s̄

OO

Y
σ

DDs

OO

and complete the diagram by the kernel relations R[y] and R[x] which produce the left
hand side pullbacks above. Since the regular epimorphism x is the quotient of its kernel
relation, we shall obtain the desired factorization by showing that φ coequalizes the pair
(dx0 , d

x
1). Now the left hand side squares being pullbacks and the split epimorphism (f̄ , s̄)

being in Σ, the coequalization can be checked by composition with the jointly extremally
epic pair (R(s̄), sx0). This is trivial for the composition by sx0 , and a consequence of the
equality (∗) for the composition by R(s̄).
Full faithfulness. Consider the following diagram:

X̄
m′

!!f̄

��

x // // X
f

��

m
!!

X̄ ′

f̄ ′

��

x′
// // X ′

f ′

��
Y ′ y

// //

s̄

OO

s̄′

CC

Y
s′

CC

s

OO

where the downward squares are pullback, (f, s) is in Σ and m′ a morphism in PtY ′(E).
Since (f, s) is in Σ, so is (f̄ , s̄) and the upward vertical square is a pushout; whence a
unique map m : X → X̄ such that m.x = x′.m′ and m.s = s′; we get also f ′.m = f since
x is a regular epimorphism; so m is a map in the fibre PtY (E) such that y∗(m) = m′.

Similarly to the global Mal’tsev situation, the exact context (and more generally the
efficiently regular one, i.e. a context in which a regular sub-equivalence relation of an
effective equivalence relation (X,R), is itself effective) allows us, here, to extend some
properties from the split epimorphisms to the regular epimorphisms. For instance, from
Proposition 2.10, we get:

4.3. Proposition. When E is an efficiently regular (and a fortiori exact) Σ-naturally
Mal’tsev category such that pulling back along regular epimorphisms reflects the split epi-
morphisms in Σ, the base change functors along regular epimorphisms are equivalence of
categories.

Proof. Suppose E is a Σ-naturally Mal’tsev and g : Y ′ � Y a regular epimorphism.
From the previous proposition, it remains to show that g∗ is essentially surjective. On
the model of Proposition 2.10 let us start with any split epimorphism (f ′, s′) : X ′ � Y ′

in Σ and complete the lower row with the kernel equivalence relation. Then consider the
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following diagram where (f̌ ′, š′) is d∗0(f ′, s′), in other words where the non dotted left hand
side square indexed by 0 is a pullback of split epimorphisms with a map σ0 : X ′ → X̌
above s0 : Y ′ → R[g]:

X̌

f̌ ′

��

δ1
//

δ0 //
X ′oo

f ′

��

g′ // // X

f

��
R[g]

š′

OO

d1
//

d0 //
Y ′oo

g
// //

s′

OO

Y

s

OO

Since (f ′, s′) is in Σ and E is a Σ-naturally Mal’tsev category, the upward and rightward
left hand side square is a pushout which produces a map δ1 above d1 giving rise to the
upper reflexive graph. It is a reflexive relation since so is R[g]. It is an equivalence relation
since (f ′, s′) is in Σ and R[g] is so. Accordingly the pair (f ′, f̌ ′) is underlying a discrete
fibration between equivalence relations. Now, when E is efficiently regular, the upper
equivalence relation is effective as soon as the lower one is so. Take g′ the quotient of
this upper equivalence relation. It produces a split epimorphism (f, s) such that the right
hand side square is a pullback since so are the left hand side ones. If pulling back along
regular epimorphisms reflects the split epimorphisms in Σ, the split epimorphism (f, s)
belongs to Σ.

Any regular linear category is such that pulling back along regular epimorphisms reflects
the canonically split product projections. This is in particular the case of the category
CoM of commutative monoids. Proposition 2.6 in [8] asserts that the category Qnd of
quandles is such that pulling back along regular epimorphisms reflects the puncturing
and acupuncturing split epimorphisms; so it is still the case for the category AQd of
autonomous quandles.

5. Internal groupoids

5.1. Internal groupoids and abelian groupoids. Let E be a finitely complete
category, and GrdE denote the category of internal groupoids in E. An internal groupoid
Z1 in E will be presented (see [2]) as a reflexive graph Z1 ⇒ Z0 endowed with an operation
π2:

R2[d0]

R(π2)

��
p2 //

p0
//

p1 // R[z0]

π2

��

p0
//

p1 // Z1

d1 //

d0
//
Z0

s0oo

making the previous diagram satisfy all the simplicial identities (including the ones in-
volving the degeneracies), where R[d0] is the kernel equivalence relation of the map d0.
In the set theoretical context, this operation π2 associates the composite g.f−1 with any
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pair (f, g) of arrows with same domain. We denote by ( )0 : GrdE → E the forgetful
functor which is a fibration. Any fibre GrdXE above an object X has an initial object
∆X, namely the discrete equivalence relation on X, and a final object ∇X, namely the
indiscrete equivalence relation on X. This fibre is quasi-pointed in the sense that the
unique map

$ : 0→ 1 = ∆X � ∇X
is a monomorphism; this implies that any initial map is a monomorphism, and we can
define the kernel of any map as its pullback along the initial map of the codomain. Recall
from [6] the following:

5.2. Definition. In a finitely complete quasi-pointed category, we shall call endosome
of an object X the (unique) split epimorphism defined by the following pullback:

EnX εX //

��

X

��
0

OO

$
// 1

The fibre Grd1E is nothing but the category GpE of internal groups in E which is necessar-
ily pointed protomodular. It was shown in [3] that any fibre GrdXE is still protomodular
although non-pointed. This involves an intrinsic notion of normal subobject and abelian
object. They both have been characterized in [5]. Let us recall that:

5.3. Proposition. The groupoid Z1 is abelian in the fibre GrdZ0E if and only if its
endosome:

En1Z1
//ε1Z1 //

e1Z1
��

Z1

ω1Z1
��

∆Z0
// //

OO

∇Z0

is abelian; in other words if and only if the group ε1 : En1Z1 � Z0 of the “endomorphisms”
of Z1 in the slice category E/Z0 is abelian.

In the set theoretical context, this means that any group of endomaps in Z1 is abelian. We
shall denote by AbGrdXE the full subcategory of GrdXE whose objects are the abelian
groupoids.
Now consider any internal functor f

1
: W 1 → Z1 in AbGrdXE. Suppose it is split by a

functor s1, and consider the following pullback determining the kernel of f
1
:

K1[f
1
] //
k1 //

��

W 1

f
1
��

∆X //
α1Z1

//

OO

Z1

s1

OO

In the case X = 1, the upward square is actually a pushout in AbGrd1E = AbE the
category of abelian groups in E. It was shown in [6] that this is no longer the case in



432 DOMINIQUE BOURN

general in the fibers AbGrdXE. However, in this same article it was shown that when E is
a Mal’tsev category, any groupoid is abelian and that any pullback of split epimorphisms
in GrdXE produces an upward pushout in GrdXE; this implies that any fibre GrdXE is
naturally Mal’tsev. The purpose of this section is to investigate what is remaining of these
results in the partial Σ-Mal’tsev context.
For that, let us point out the following observation; let a split epimorphism (f

1
, s1) in

GrdXE be given as above:
When E = Set there is a mapping l : W1 → K1[f

1
] defined by l(x

w→ x′) = w.s1f1(w−1)
which is a retraction of k1 and makes the following rightward diagram a pullback of split
epimorphisms in Set:

K1[f
1
] //

k1 //

��

W1

f1
��

l

��

X //
α1Z1=s

Z1
0

//

OO

Z1

s1

OO

d
Z1
0

SS

(1)

We have: l(w′.w) = (s1f1(w−1).l(w′).s1f1(w)).l(w)
while: l(w−1) = s1f1(w).l(w)−1.s1f1(w−1);
this map l is the unique one such that 1W1 = πW1

2 (()−1k1l, s1.f1). Finally it is worth
noticing that the split epimorphism (l, k1) actually lies in the fibre PtX(E):

K1[f
1
] //

k1 //

##

W1
d
W1
0

~~

l

��

X
s
W1
0

>>cc

Proof. Straightforward calculation based on the fact that w = s1f1(w).l(w).

Now we get the following lemma:

5.4. Lemma. Let E be finitely complete category and (f
1
, s1) a split epimorphism in the

fibre GrdXE. Then there is a unique natural map l : W1 → K1[f
1
] in E such that

1W1 = πW1
2 (()−1k1l, s1.f1). It is a retraction of k1 and makes the rightward part in diagram

(1) a pullback of split epimorphisms in E.

Proof. It is straightforward from the previous observation and from the Yoneda embed-
ding that the map l described above in Set is representable in E as soon as it is finitely
complete.
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Now suppose given a pair h1 : K1[f
1
]→ V 1, t1 : Z1 → V 1 of internal functors in GrdXE.

Reformulating Lemma 1.3 from [6] we get:

5.5. Lemma. When E = Set, there is a (necessarily unique) factorization g
1

: W 1 → V 1

such that g
1
.k1 = h1 and g

1
.s1 = t1 if and only if, for any arrow w in W1, we have

h1l(w.s1f1(w−1) = t1f1(w).h1l(w).t1f1(w−1).
If we denote by ȟ1 : W1 → V1 the mapping defined by ȟ1(w) = h1l(w.s1f1(w−1) and
ť1 : W1 → V1 the mapping defined by ť1(w) = t1f1(w).h1l(w).t1f1(w−1), the pair (ȟ1, ť1)
is equalized by k1 (1) and by s1 (2).

Proof. For any δ : x→ x in K1[f
1
], we must have g1(δ) = h1(δ), and for any φ : x→ x′

in Z1, we must have g1.s1(φ) = t1(φ). So for any w : x→ x′ in W 1, we must have:
g1(w) = g1(s1f1(w).l(w)) = g1(s1f1(w)).g1(l(w)) = t1f1(w).h1l(w)
and in the same way:
g1(w) = g1(w.s1f1(w−1)).g1(s1f1(w)) = h1(w.s1f1(w−1)).t1(f1(w))
Whence our condition. It remains to check that this condition is sufficient to show that
this definition of g1 is functorial, which is a straightforward calculation. Finally we check:
ȟ1(δ) = h1(δ) = ť1(δ) (1) and ȟ1(s1(φ)) = h1(1x′) = t1(1x′) = ť1(φ) (2).

5.6. Lemma. When E is a finitely complete category, the functions ȟ1 and ť1 as above are
representable in E. The pair (ȟ1, ť1) is equalized by k1 and by s1. There is a (necessarily
unique) factorization g

1
: W 1 → V 1 such that g

1
.k1 = h1 and g

1
.s1 = t1 if and only if we

have ȟ1 = ť1.

Proof. The first point is straightforward; the second and third points are obtained by
the Yoneda embedding from the previous lemma.

Starting with any internal groupoid Z1 in E, let us consider the following diagram in
GrdZ0E where the right hand side square is a pullback:

En1Z1

// ε1Z1 //

ε̄1Z1

//

e1Z1
��

Z1 ×0 Z1

p1 //

p0
��

Z1

ω1Z1
��

∆Z0
// //

OO

Z1 ω1Z1

//

s0

OO

∇Z0

It produces a unique factorization ε̄1Z1 and the left hand side pullback. From the previous
Lemma, and reformulating Proposition 4.2 in [6], we get: there is a map lZ1 in E making
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the rightward left hand side square a pullback of split epimorphism in E:

En1Z1

// //
//
ε̄1Z1

//

e1Z1
��

Z1 ×0 Z1
p1 //

p1

ss

p0
��

lZ1




Z1

ω1Z1=(d
Z1
0 ,d

Z1
1 )

��
Z0
//

s
Z1
0

//

OO

Z1 ω1Z1

//

s0

OO

d
Z1
0

TT Z0 × Z0

(2)

which, with the map p1, produces an action of the vertical left hand side group in E/Z0

on the split epimorphism (dZ1
0 , sZ1

0 ).

5.7. Groupoids in Σ-Mal’tsev categories. Suppose now E is a Σ-Mal’tsev category.
Given any object Y , we shall denote by ΣY the class of those split epimorphisms (f

1
, s1)

in the fibre GrdYE which are such that the split epimorphism (f1, s1) in E belongs to
Σ. It is fibrational (resp. point-congruous) as soon as Σ is so. A groupoid in GrdYE is
ΣY -special when the map (dZ1

0 , dZ1
1 ) : Z1 → Z0 × Z0 is Σ-special in E.

To take a step further, we shall need now the following definitions:

5.8. Definition. Let D be a category equipped with a fibrational class Σ. It will be said
to be Σ-antepenessentially affine when, for any square of split epimorphisms:

X ′ x //

f ′
��

X

f
��

Y ′ y
//

s′

OO

Y

s

OO

the upward square is a pushout as soon as the downward square is a pullback whenever
(f, s) is in Σ. It is equivalent to saying that any change of base functor y∗ : ΣY → ΣY ′ is
fully faithful. This category will be said to be Σ-penessentially affine when moreover any
of these (fully faithful) change of base functors y∗ is saturated on subobjects (i.e. induces
a bijection on subobjects).

Clearly any Σ-antepenessentially affine category is a Σ-naturally Mal’tsev one. Since the
pair (x, s) above is jointly extremely epic, the split epimorphism (f, s) is strongly split in
the sense of [7] and so any Σ-antepenessentially affine category is Σ-protomodular as well.
The previous definitions generalize those from [6] where a category E was said antepe-
nessentially affine (resp. penessentially affine) when the same properties hold for any
split epimorphism in E. Recall that any antepenessentially affine category is protomod-
ular and naturally Mal’tsev; moreover in the same way as in an additive category, in a
penessentially affine category, any monomorphism is normal. Now we can assert:

5.9. Proposition. Let Σ be a point-congruous class of split epimorphisms. If E is Σ-
antepenessentially affine, any fibre ΣlY (E) is antepenessentially affine; in particular its
core ΣE] is antepenessentially affine.
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Proof. Straightforward from Lemma 3.1, since any split epimorphism in these fibers
belongs to Σ.

When E is Mal’tsev category, any fibre is GrdYE is penessentially affine. In this section we
shall review what is remaining of this observation in the partial context of the Σ-Mal’tsev
categories.

5.10. Theorem. Let E be a Σ-Mal’tsev category. Then any fibre GrdYE above Y is
ΣY -penessentially affine. A groupoid is a ΣY -special groupoid if and only if the under-
lying split epimorphism of its endosome is in Σ; accordingly any ΣY -special groupoid is
an abelian groupoid. When, in addition, Σ is point-congruous, the core ΣY (GrdYE)] is
antepenessentially affine.

Proof. Let us show first GrdYE is ΣY -antepenessentially affine. Since GrdYE has a
initial object, it is sufficient to check the property for the initial pullbacks. So let (f

1
, s1)

be a split epimorphism in ΣY . We have to show that the following upward square is a
pushout in GrdYE:

K1[f
1
] //
k1 //

��

W 1

f
1
��

∆Y //
α1Z1

//

OO

Z1

s1

OO

According to Lemma 5.4 we get the following pullback in E:

K1[f
1
] //

k1 //

��

W1

f1
��

l

��

Y //
α1Z1=s

Z1
0

//

OO

Z1

s1

OO

d
Z1
0

SS

Suppose given a pair h1 : K1[f
1
]→ V 1, t1 : Z1 → V 1 of internal functors in GrdYE. Since

(f1, s1) is in Σ, the pair (k1, s1) is jointly strongly epic in E. So, according to Lemma 5.6,
we have then ȟ1 = ť1, and we get the desired (unique) factorization g

1
: W 1 → V 1.

Now let us show it is ΣY -penessentially affine. So let i1 : A1 � K1[f
1
] a subobject in

ΣY
∆Y

. Let us consider the following diagram in E where the upper parallelogram is a
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rightward pullback:

A1
// //
##

i1

##

��

W ′
1 ##

j1

##

l′oo

K1[f
1
] //
k1
//

��

W1

f1
��

loo

Y //
s
Z1
0

//

OO

ZZ

Z1

s1

OO

d
Z1
0oo

It produces a subobject W ′
1 of W1 in E. Since the lower square is a rightward pullback

as well, so is the external quadrangle which produces a split epimorphism (f ′1, s
′
1) : W ′

1 �
Z1 which is in Σ, since so is A1 � Y . The pair (f ′1, s

′
1) is actually underlying a split

epimorphism between reflexive graphs. It remains to show that the subgraph W ′
1 is

actually a subgroupoid of W 1. In Set, the subobject W ′
1 is the set of those arrows

w : x → x′ in W1 which are such that l(w) = s1f1(w−1).w belongs to A1. The formulae
l(w′.w) = (s1f1(w−1).l(w′).s1f1(w)).l(w) and l(w−1) = s1f1(w).l(w)−1.s1f1(w−1) shows
that, in order to check that W ′

1 is underlying a subgroupoid, it is enough to check that

s1(φ).a.s1(φ−1) belongs to A1 whenever a belongs to A1 for any pair (a, φ) : x
φ→ x′

a→ x′

in the following pullback A1 ×1 Z1:

A1
//

k̄1

//

��

A1 ×1 Z1

π1
��

l̄oo

Y //
s
Z1
0

//

OO

Z1

σ1

OO

d
Z1
1oo

Denote by χ : A1 ×1 Z1 → W1 the map defined by χ(a, φ) = a.s1(φ). The condition
described above is equivalent to the fact that l.χ : A1 ×1 Z1 → K1[f

1
] factorizes through

A1, or to the fact that the pullback ī1 : Ā1 � A1 ×1 Z of i1 along l.χ is an isomorphism.
Observe that k̄1 factorizes through ī1 since l.χ(a, 1x′) = a, in the same way as σ1 since
l.χ(1x′ , φ) = 1x. Now, since A1 is a subobject in ΣY

∆Y
, the split epimorphism A1 � Y is

in Σ, and so is (π1, σ1). Accordingly the pair (k̄1, σ1) is jointly strongly epic in E. Since
both k̄1 and σ1 factorizes through ī1, it is an isomorphism.
The groupoid Z1 is ΣY -special if and only, in the diagram (2) in E above, the map
(dZ1

0 , dZ1
1 ) : Z1 → Z0 ×Z0 is Σ-special or equivalently if and only if the split epimorphism

(p0, s0) in Σ. So it is the case if and only if the underlying split epimorphism of its
endosome on the vertical left hand side is in Σ. When it is so, the induced group in E/Z0

is necessarily abelian, and the groupoid Z1 is an abelian groupoid. The last point is a
consequence of the previous proposition.

It does not seem possible to show that the construction of the groupoid W ′
1 of the first

part of the theorem is stable in ΣY (GrdYE)], or in other words to show that the core
ΣY (GrdYE)] is penessentially affine.
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5.11. Proposition. Let E be a Σ-Mal’tsev category. Let h1 : Z ′1 → Z1 be any internal
functor in the fibre GrdYE. If Z ′1 and Z1 are Σ-groupoids, then any pullback of split
epimorphism in this fibre:

W ′
1

k1 //

f ′
1 ��

W 1

f
1
��

Z ′1 h1

//

s′1

OO

Z1

s1

OO

produces an upward pushout, namely the change base h∗1 : PtZ1
→ PtZ′

1
with respect to

the fibration of points is fully faithful. It is moreover saturated on subobjects.

Proof. Since the initial groupoid ∆Y is a Σ-groupoid, it is enough to check the property
for the initial pullbacks:

K1[f
1
] //
k1 //

��

W 1

f
1
��

∆X //
α1Z1

//

OO

Z1

s1

OO

The proof now is exactly the same as in Theorem 5.10 since, the groupoid Z1 being a
Σ-groupoid (i.e. the split epimorphism (dZ1

0 , sZ1
0 ) being in Σ), the pair (k1, s1) is jointly

strongly epic in E.
Again, the saturation on subobjects is checked exactly as in Theorem 5.10 since, the
groupoid Z1 being a Σ-groupoid, the pair (k̄1, σ1) in this proof is jointly strongly epic in
E.

We get some precisions about the fibre GrdYE when the object Y is supposed to be
Σ-special in E:

5.12. Proposition. Let E be a Σ-Mal’tsev category and Σ be point-congruous. Let us
denote by ΣGrdYE the full subcategory of GrdYE whose objects are the Σ-groupoids. When
the object Y is Σ-special in E, any Σ-groupoid on Y is ΣY -special and therefore an abelian
groupoid. This full subcategory ΣGrdYE of the core ΣY (GrdYE)] is penessentially affine.

Proof. When Y is Σ-special, then the groupoid ∇Y (i.e. the terminal object of the fibre
GrdYE) is a Σ-groupoid. When Σ is point-congruous, the subcategory ΣGrdYE is stable
under finite limits in GrdYE. When Z1 is a Σ-groupoid, the following diagram in E:

Z1

d0
��

(d
Z1
0 ,d

Z1
1 )
// Z0 × Z0

p0
��

Y

s0

OO

Y

s0

OO

shows by Lemma 3.1 that the map (dZ1
0 , dZ1

1 ) : Z1 → Z0×Z0 is Σ-special in E since so are
d0 and p0. Accordingly Z1 is ΣY -special.
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Then ΣGrdYE is antepenessentially affine since so is ΣY (GrdYE)]. As for the construction
of the subgroupoid W ′

1 from the subobject A1, it remains to check it lies in ΣGrdYE. It
is the case since, in the pullback defining it, we noticed that the map l:

K1[f
1
]

##

W1
d
W1
0

~~

loo

Y
s
W1
0

>>cc

actually lies in PtY (E), and more precisely in ΣY in our case, and since, Σ being point-
congruous, ΣY is stable under finite limits in PtY (E).

With Theorem 5.10 we produced examples of Malt’sev categories (since they are proto-
modular) which are Σ-naturally Mal’tsev as well, for a certain class Σ of split epimor-
phisms.

6. Σ-affine categories

In this section we shall deal with what is remaining of both conditions 1′) and 4) of the
characterization given in Section 2.

6.1. Definition and characterization. For that, it is worth introducing the follow-
ing:

6.2. Definition. Let E be a category endowed with a fibrational class Σ of split epimor-
phisms. We call it Σ-affine, if the base change f ∗ : PtY (E) → PtX(E) is an equivalence
of categories whenever f is underlying a split epimorphism (f, s) : X � Y in Σ.

6.3. Proposition. Let E be a finitely complete category and Σ a fibrational class of split
epimorphisms. The following conditions are equivalent:
1) E is Σ-affine
2) E is Σ-naturally Mal’tsev and any split epimorphism in Σ is endowed with an abelian
group structure
3) E is Σ-naturally Mal’tsev and any split epimorphism in Σ is Σ-special.
When, in addition, Σ is point-congruous, the condition 2) is equivalent to:
2′) E is Σ-naturally Mal’tsev and any fibre ΣY is additive.

Proof. Since s∗ is a left inverse to f ∗, saying that f ∗ is an equivalence of categories is
equivalent to saying that its inverse equivalence is s∗, or that the inverse equivalence of
s∗ is f ∗. Here this means that pushing out along s coincides with pulling back along
f . If the condition 1) holds for any split epimorphism in Σ, then the condition of Σ-
natural Mal’tsevness is fulfilled and any split epimorphism (f, s) in Σ is given a canonical
commutative monoid structure. Then consider the following rightward pullback of split
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epimorphism:

R[f ]

d0
��

d
// X

f

��

oos1oo

X

s0

OO

f
// Y

s

OO

oosoo

Since s∗ : PtX(E) → PtY (E) is an equivalence of categories there is a unique map
d : R[f ] → X making the leftward square a pullback of split epimorphism. The com-
mutativity of this square makes d a subtraction on (f, s) which gives a group structure to
this canonical commutative monoid structure.
On the other hand any abelian group structure on a split epimorphism in Σ makes f
Σ-special by Corollary 2.9.
Conversely suppose that E is a Σ-naturally Mal’tsev category and that any split epi-
morphism (f, s) in Σ makes f Σ-special. Take any split epimorphism (g′, t′) : X ′ � X
and denote (g, t) = s∗(g′, t′). Complete the lower row below with the kernel equivalence
relation of f and denote by s1 the unique map such that d1.s1 = 1X and d0.s1 = s.f .
The split epimorphism (d0, s0) is in Σ since f is Σ-special. Then consider the following
diagram where (ǧ′, ť′) is d∗0(g′, t′), in other words where the non dotted left hand side
square indexed by 0 is a pullback of split epimorphisms with a map σ0 : X ′ → Ř above
s0 : X → R[f ]:

Ř

ǧ′

��

δ1
//

δ0 //
X ′oo

σ1
oo

g′

��

f ′ // // Y ′

g

��

s′
oo

R[f ]

ť′

OO

d1
//

d0 //
X

s1

WW

oo f // //

t′

OO

Y

t

OO

s
oo

Since (d0, s0) is in Σ and E is a Σ-naturally Mal’tsev category, the upward and rightward
left hand side square is a pushout which produces a map δ1 above d1 giving rise to the
upper reflexive graph. The square indexed by 1 is a pullback as well since d∗1(g′, t′) is
produced by the pushout along the common splitting s0 of d0 and d1. This pullback
indexed by 1 in turn produces the splitting σ1 above the splitting s1 and makes (g′, t′) =
s∗1(ǧ′, ť′) = s∗1d

∗
0(g′, t′) = f ∗s∗(g′, t′).

Suppose now Σ is point-congruous and E is Σ-naturally Mal’tsev. Then the fibre ΣY is
stable under finite limits in PtY (E). So, if any split epimorphism (f, s) : X � Y in Σ is
endowed with a natural abelian group structure, the fibre ΣY is an additive subcategory
of Ab(PtY (E)). Conversely if ΣY is additive, the commutative monoid structure on any
split epimorphism (f, s) in Σ is actually a group structure.

The category CoM of commutative monoids is an example of a Π-naturally Mal’tsev
category which is not Π-affine. Any protomodular Σ-naturally Mal’tsev category is Σ-
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affine: any split epimorphism (f, s) : X � Y in Σ is endowed with a canonical monoid
structure of (f, s) in PtY (E) (by Proposition 2.5) which is actually a group structure,
since E is protomodular.

6.4. Corollary. Let E be a Σ-Mal’tsev category, then any fibre GrdYE is a ΣY -affine
category.

6.5. Back to the autonomous quandles.

6.6. Proposition. The category AQd of autonomous quandles is Σ′-affine, where Σ′ is
the class of acupuncturing split epimorphisms.

Proof. Let (f, s) : X � Y a split epimorphism and (g, t) : Y � Z a split epimorphism
in Σ′ with its associated homomorphism ρ : Y → Y (see Example 1.10.3). Then consider
the following rightward pullback along t, and complete the diagram with the universal
quadrangle:

Y ×Z f−1Z

pY

��

pZ

**
ψ

&&
X

f

��

f−1Z

f̄

��

oot′oo
jj

iZ

jj

Y
g // //

s

OO
iY

]]

Z

s̄

OO

oo
t

oo

Since AQd is Σ′-naturally Mal’tsev, there is a natural factorization ψ defined by ψ(y, a) =
k(a).sρ(y). We have f.ψ(y, a) = y and a = k(a). s̄f̄(a) = k(a).stg(y). So ψ is injective.
It remains to show it is surjective. Let us set:

g′(x) = (x .−1 sρf(x)) . stgf(x)

We check: f(g′(x)) = (f(x) .−1 ρf(x)) . tgf(x) = tgf(x) . tgf(x) = tgf(x). From
g′(x) = k(g′(x)) . sfg′(x) = k(g′(x)) . stgf(x), we get:

k(g′(x)) = g′(x) .−1 stgf(x) = x .−1 sρf(x)

whence: ψ(f(x), g′(x)) = k(g′(x)) . sρf(x) = (x .−1 sρf(x)) . sρf(x) = x.

7. Internal groups in Qnd

The results of Section 5.7 apply in particular to the category GpE = Grd1E of internal
groups in a Σ-Mal’tsev category E. This will allow us to elaborate on the results already
given in [8] about the category Gp(Qnd) of internal groups in the category of quandles.
Denote U : GpE → E the forgetful functor which is conservative. The class Σ1 with
respect to this same section coincides with the class Σ̄ = U−1Σ. So we get:
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7.1. Proposition. Let E be a Σ-Mal’tsev category. A split epimorphism (f, s) : X � Y
in GpE is in Σ̄ if and only if its kernel K[f ] is a Σ-special object in E, which implies
that it is an abelian group. The category GpE is Σ̄-penessentially affine. When Σ is
point-congruous, the full subcategory of Σ-special (necessarily abelian) groups, i.e. the
core Σ̄GpE], is included in AbE and stable under finite limits in AbE; accordingly this
core is an additive category.

Proof. Since (f, s) is in Σ, the terminal map K[f ] → 1 is in Σ, but K[f ] being an
internal group the terminal map K[f ] → 1 is Σ-special by Corollary 2.9, and K[f ] is a
Σ-special object. Conversely when K[f ] is Σ-special, the following rightward pullback in
E, as in diagram (1) above:

K[f ] //
k1 //

��

X

f
��

l

		

1 // //

OO

Y

s

OO

SS

makes Σ-special the split epimorphism (f, s) which therefore belongs to Σ. The second
point is Theorem 5.10.

We recalled above that the category Qnd of quandles is a Mal’tsev category relatively
to the two classes Σ′ ⊂ Σ of respectively the acupincturing and puncturing split epi-
morphisms. Accordingly the category Gp(Qnd) is both Σ̄-penessentially affine and Σ̄′-
penessentially affine. Recall from Corollary 5.26 in [8] that the inclusion Gp(AQd) �
Gp(Qnd) is actually an isomorphism. The core Σ̄′Gp(Qnd)] = Σ̄′Gp(AQd)] is the addi-
tive category Ab(LAQd) of the internal abelian groups in the latin autonomous quandles.
Let us also recall from [8] the following observations. Denote by ZautGp the category
whose objects are the pairs ((G, ·), g) of a group and an automorphism g such that for
all x the element h(x) = g(x−1) · x is in the center of G (which makes h an endomor-
phism of groups), and whose morphisms are the group homomorphisms commuting with
these automorphisms. The forgetful functor U : ZautGp → Gp being conservative and
the category Gp being protomodular, the category ZautGp is protomodular as well and
consequently a Mal’tsev category.
There is a functor Al : ZautGp→ Gp(Qnd) = Gp(AQd) defined by Al((G, ·), g) = (X, .g)
with x.gy = g(x·y−1)·y = g(x)·g(y)−1 ·y = g(x)·h(y). The functor Al is an isomorphism
of categories.
We shall denote by the same symbols the classes of split epimorphisms in ZautGp induced
by the classes Σ̄′ ⊂ Σ̄ in Gp(Qnd). A split epimorphism (f, s) in ZautGp is in Σ̄ (resp. Σ̄′)
if and only if the restriction of h to K[f ] is surjective (resp. bijective). So, we can assert
that the pointed protomodular category ZautGp is both Σ̄′-penessentially affine and Σ̄-
penessentially affine. The core Σ̄′ZautGp] is the additive full subcategory LAutAb of
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ZautGp whose objects are the pairs ((A,+), g) of an abelian group and an automorphism
g such that IdA − g is an isomorphism.
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