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CONSTRUCTION OF CATEGORICAL BUNDLES FROM LOCAL
DATA

SAIKAT CHATTERJEE, AMITABHA LAHIRI, AND AMBAR N. SENGUPTA

Abstract. A categorical principal bundle is a structure comprised of categories that
is analogous to a classical principal bundle; examples arise from geometric contexts in-
volving bundles over path spaces. We show how a categorical principal bundle can be
constructed from local data specified through transition functors and natural transfor-
mations.

1. Introduction

A categorical principal bundle π : P //B is a structure analogous to a classical principal
bundle, but with all the spaces involved replaced by categories and maps by functors. Of
interest to us is the case where these categories have a geometric significance; for example,
there is an underlying classical principal bundle π : P // B and the objects of the ‘base
category’ B are the points of B while the morphisms arise from paths on B. In the
‘bundle category’ P the objects are the points of P and morphisms are of the form (γ, h),
where γ comes from a path on P that is horizontal with respect to a connection form on
π : P //B and h is a ‘decoration’ drawn from a Lie group H. There are different notions
of local triviality for such structures. In this paper we construct a categorical bundle from
local data. The local data do not come as a traditional cocycle of transition functions but
rather as functors that fall short of a cocycle relation. We describe a quotient procedure
that leads to “functorial cocycles” and then construct a categorical bundle from such
cocycles.

The literature in category theoretic geometry has grown rapidly in recent years. We
mention here the works of Abbaspour and Wagemann [1], Aschieri et al. [2], Attal [3, 4],
Baez et al. [5,6], Barrett [7], Bartels [8], Breen and Messing [9], Mackaay [17], Parzygnat
[22], Picken et al. [10, 19, 20], Soncini and Zucchini [25], Schreiber and Waldorf [23, 24],
Viennot [26] and Wang [27, 28]. Among others, the works [1, sec. 3], [5, Propn 2.2; 6],
[22, sec. 2] study the relationship between gerbe local data and 2-bundles, as well as
connections on such structures. Our framework and structures are closely related in spirit
but there are differences. In particular we have two categorical groups G and H in terms
of which the local data are specified. The technical nature of what a categorical bundle
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is also specified differently in our approach. A theory of parallel transport for categorical
principal bundles is developed in our earlier work [12]; briefly, a connection on such a
bundle π : P // B is specified through horizontal lifts of morphisms (viewed as paths)
of the base category B to morphisms of P such that the lifting is functorial in a suitable
sense and the categorical group action on the bundle carries such horizontal morphisms
to horizontal morphisms.

1.1. Results and organization. We begin in section 2 with a summary of essential
notions and notation concerning categorical groups, categorical bundles, and categories
arising from points and paths on manifolds. All through this paper the base space of the
bundle is a manifold B, and local data is specified relative to an open covering {Ui}i∈I
of B. Associated to these sets are categories Ui (objects are points of Ui and morphisms
arise from paths on B that lie inside Ui) and overlap categories such as Uik = Ui ∩Uk.

In section 3 we work with two categorical groups G and H, and introduce gerbal
cocycles (subsection 3.1), which are analogous to classical cocycles except that they fall
short of satisfying the exact identities needed for classical cocycles. Then we construct
functorial forms of these gerbal cocycles; briefly put they are given by functors

θik : Uik
//G (1.1)

and natural isomorphisms
Tikm : θikθkm // θim. (1.2)

This is explained in subsection 3.3. We establish several properties of the natural trans-
formations (1.1).

In order to obtain genuine cocycles we take quotients to form a category G and a
categorical group Gτ (these are constructed in subsections 3.10 and 3.12).

We turn next in section 4 to the construction of a globally defined categorical bundle
over B (points forming the base manifold B and morphisms arising from paths on B).
The classical construction of a principal bundle π : X // B from a cocycle of transition
functions may be viewed as the construction of a projective limit from a family of trivial
bundles

Ui ×G // Ui.

Using this viewpoint we construct in section 4 a categorical principal bundle

X //B,

by sewing together the trivial categorical bundles Ui×Gτ using the functorial transition
data in (1.1) and (1.2). Here we use the formalism of quivers, explained in subsection 4.5.

Using techniques similar to those described in this paper it is possible to construct a
categorical principal G-bundle (instead of Ḡτ -bundle), which enjoys a weak local trivial-
ization property, where local triviality is understood in terms of equivalences rather than
isomorphisms. For this it suffices that the target maps τ ′ : J //H and τ : H //G satisfy
the condition that Ker(τ) ∩ Im(τ ′) is trivial, where the notation is as explained at the
beginning of section 3. We will not explore this line of investigation in the present paper.
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2. Basic notions

In this section we summarize the essentials of terminology and notions that we use. The
categories we work with are all small categories, the objects and morphisms forming sets.
In fact the object sets of the categories we work with are smooth manifolds and functors
are, at the level of objects, given by smooth functions.

By a categorical group G we mean a small category along with a functor

G×G //G

that makes both the object set Obj(G) and the morphism set Mor(G) groups. The source
and target maps

s, t : Mor(G) //Obj(G)

are homomorphisms. We say that the categorical group G is a categorical Lie group if
Obj(G) and Mor(G) are Lie groups and s and t are smooth mappings. Associated to a
categorical group G is a crossed module (G,H, α, τ), where G and H are groups, and

τ : H //G and α : G // Aut(H) : g 7→ αg (2.1)

are homomorphisms satisfying the Peiffer identities

τ
(
αg(h)

)
= gτ(h)g−1

ατ(h)(h
′) = hh′h−1

(2.2)

for all g ∈ G and h ∈ H. As a consequence of the first Peiffer identity the image τ(H) is
a normal subgroup of G:

gτ(h)g−1 = τ
(
αg(h)

)
∈ τ(H) for all h ∈ H and g ∈ G. (2.3)

The relationship between G and the crossed module is given by

G = Obj(G) and H = ker s ⊂ Mor(G).

The morphism group Mor(G) can be identified with the semidirect product H oα G:

Mor(G) ' H oα G,

with (h, g) ∈ H oα G having source g and target τ(h)g:

s(h, g) = g and t(h, g) = τ(h)g. (2.4)

Composition of morphisms is given in H oα G by

(h2, g2) ◦ (h1, g1) = (h2h1, g1), (2.5)
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in contrast to the product operation in Mor(G) which is given by the semidirect product
operation

(h2, g2)(h1, g1) =
(
h2αg2(h1), g2g1

)
. (2.6)

The categorical group G is a Lie group if and only if G and H are Lie groups and the
mappings τ : h 7→ τ(h) and (h, g) 7→ αg(h) are smooth.

It will often, but not always, be convenient to identify H and G with the subgroups
H × {e} and {e} ×G in H oα G, so that (h, g) can be written simply as a product:

hg = (h, g). (2.7)

With this notation, conjugation by g (that is, (e, g)) is simply αg:

ghg−1 = (e, g)(h, e)(e, g−1) =
(
eαg(h), g

)
(e, g−1)

=
(
αg(h)αg(e), gg

−1)
=
(
αg(h), e

)
= αg(h).

(2.8)

Let us also note how inverses work with this notation:

(hg)−1 = (h, g)−1 =
(
αg−1(h−1), g−1

)
= αg−1(h−1)g−1

= g−1h−1g · g−1

= g−1h−1,

(2.9)

wherein the second equality in the first line can be verified by working out the product
(h, g)

(
αg−1(h−1), g−1

)
.

By a categorical principal bundle with structure categorical group G we mean a functor

π : P //B

that is surjective both on the level of objects and on the level of morphisms, along a
functor

P×G //P

that is a free right action both on objects and on morphisms, such that π(pg) = π(p) for
all objects/morphisms p of P and all objects/morphisms g of G. (For more on categorical
principal bundles we refer to [12].) This is a ‘bare bones’ definition; in practice we are
only concerned with those examples in which G is a categorical Lie group, Obj(P) and
Obj(B) are smooth manifolds, and the object bundle

Obj(P) //Obj(B)

is a principal G-bundle, where G = Obj(G). The morphisms of B arise from paths on
B = Obj(B), as we now discuss.
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2.1. Categories from points and paths. We turn now to categories of points and
paths. Associated to a smooth manifold M there is a category M whose objects are the
points of M , and whose morphisms are all piecewise smooth paths on M . Let us specify
this in more detail. The paths we use are smooth mappings of the form [a, b] //M , where
a, b ∈ R with a < b, and the paths are assumed to be constant near the initial time a and
the terminal time b. Paths γ1 : [a, b] //M and γ2 : [c, d] //M are identified if there is a
constant r such that [c, d] = [a, b] + r and

γ2(t) = γ1(t− r) for all t ∈ [c, d]. (2.10)

The source of γ is the initial point and the target of γ is the terminating point; often we
will find it notationally convenient to write γ0 or even γ(0) to denote the source s(γ), and
γ1 or γ(1) to denote the target t(γ). Composition of morphisms is defined by composition
of paths; the requirement that paths be constant near their initial and terminal times
ensures that the composition of two such paths is smooth and has the same property.

γ0 = γ(a)
γ1 = γ(b)

γ

M

A morphism γ0 // γ1 of
M arises from a path γ :
[a, b] //M

Figure 1: The category M

2.2. Triviality and local triviality. There are different notions of triviality that
are of interest for categorical bundles. The product categorical bundle over a base category
U and having structure categorical group G is given by the projection functor

U×G //U

and the obvious right action of G on U×G. The simplest and strongest notion of triviality
of a categorical principal G-bundle P //U to require that there be an isomorphism of
categories Φ : P // U × G, of appropriate smoothness, that respects the action of G
as well as the projection functor. An alternate notion, which allows a richer geometric
structure, is explored in [15]. An even weaker notion is to require that Φ be an equivalence,
rather than an isomorphism. Corresponding to these notions of global triviality there are
notions of local triviality for categorical bundles.

2.3. Covering subcategories. We will find it convenient to work with subcategories
of B for which paths initiate and terminate in specified sets of the open covering {Ui}i∈I
of a manifold B. To this end let Ui be the category whose object set is Ui and whose
morphisms are the morphisms γ of B that lie entirely inside Ui.

It is also useful to introduce the overlap category

Uik = Ui ∩Uk, (2.11)
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the object set and morphism sets being just the intersections of the corresponding sets for
Ui and Uk. Of course, this overlap category is defined only if Ui∩Uk 6= ∅. Analogously, we
also have triple overlap categories Uikm, if Uj ∩Uk∩Um is nonempty, and, more generally,
UI , for any finite subset I ⊂ I for which the intersection

UI
def
= ∩i∈IUi (2.12)

is nonempty. We denote by SI the set of all nonempty subsets I of I:

SI = {I ⊂ I : UI 6= ∅}. (2.13)

If I, J ∈ SI with I ⊂ J then UJ ⊂ UI and so we have a functor

UJ
//UI (2.14)

induced by the inclusion UJ // UI . Thus, if we denote by SI the category whose object
set is SI and whose morphisms I // I are the inclusion maps J // I, then

U· : I 7→ UI (2.15)

specifies a functor from the category SI to the category CMan whose objects are cat-
egories M arising from manifolds and whose morphisms arise from smooth mappings
between manifolds. The functor U· is specified on morphisms in the obvious way: it
carries the morphism I // J in SI to the ‘inclusion’ functor UI

//UJ .
The set-theoretic union of the morphism sets Mor(Ui) is not generally equal to Mor(B),

and so the categories Ui do not ‘cover’ B in any literal sense. For example, a path that
initiates and terminates in a set Ui but does not lie entirely inside Ui would not appear in
∪iMor(Ui). Thus a construction is needed that implements the idea of sewing together
paths γk, lying inside Uk, for different values of k, to form a more general path γ. This
construction is carried out, in the context of bundles, in subsection 4.2.

To gain further perspective into this matter, let us note that we have the functors

incI : UI
//B (2.16)

induced by the inclusion maps UI // B. If a morphism γi in Ui and a morphism γj in
Uj happen to arise from the same path, lying inside Ui ∩ Uj, then there is a morphism
γij ∈ Mor(Uij) (arising from the same path again, but viewed as lying in Ui ∩ Uj), that
is carried to γi ∈ Mor(Ui) and to γj ∈ Mor(Uj) by the ‘inclusion’ functors U{i,j} //Ui

and U{i,j} //Uj. Then B along with the ‘inclusion’ functors UI
//B is a co-limit for

the functor U· given in (2.15).
Suppose for instance the manifold B is the union of just two of the sets, Ui and Uk,

with Ui ∩Uk being nonempty. A path γ, for example one that begins and ends in Ui ∩Uk
but does not lie entirely inside this intersection, can be broken up into pieces that lie
inside one or the other of these sets:

γ = γm ◦ . . . ◦ γ1,
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where each γj lies either entirely inside Ui or inside Uk. Thus we could view γ, as a
morphism of the colimit category B, as being specified by the sequence of morphisms
γ1, . . . , γm, each in either Mor(Ui) or Mor(Uk), with two such sequences being identified
when they have the same composite as paths.

We present this formalism mainly to motivate the thinking behind the method we use
later in section 4 to construct a global categorical bundle from local trivial ones.

3. Cocycles: from gerbal to functorial

In this section we construct a cocycle with values in a categorical group, starting with
some group-valued locally-defined functions that need not form a cocycle.

All through this paper we will work with a categorical Lie group G, associated with
a Lie crossed module (G,H, α, τ), and a categorical Lie group H, with associated Lie
crossed module (H, J, α′, τ ′).

3.1. Gerbal cocycles. We work with a manifold B, and an open covering

{Ui}i∈I .

By a gerbal cocycle associated with this covering and the Lie crossed module (H, J, α′, τ ′)
we mean a collection of smooth functions

hik : Ui ∩ Uk //H and jikm : Ui ∩ Uk ∩ Um // J, (3.1)

with hik defined when Ui ∩ Uk 6= ∅ and jikm defined when Ui ∩ Uk ∩ Um 6= ∅, such that

him(u) = τ ′
(
jikm(u)

)
hik(u)hkm(u) for all u ∈ Ui ∩ Uk ∩ Um. (3.2)

The pattern here is that on the right the effect of τ ′
(
jikm(u)

)
is to ‘combine’ the subscripts

ik and km into im.
We will use the notation Uik and Uikm for intersections:

Uik = Ui ∩ Uk and Uikm = Ui ∩ Uk ∩ Um. (3.3)

In terms of the categorical group H we have a morphism

ψikm(u) : hik(u)hkm(u) // him(u) for all u ∈ Uikm, (3.4)

where ψikm(u) ∈ Mor(H) ' J oα′ H is given by

ψikm(u) =
(
jikm(u), hik(u)hkm(u)

)
.

Now let

gik = τ(hik) : Uik //G if Uik 6= ∅;
hikm = τ ′(jikm) : Uikm //H if Uikm 6= ∅.

(3.5)
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Then by (3.2) we have

him(u) = hikm(u)hik(u)hkm(u)

gim(u) = τ
(
hikm(u)

)
gik(u)gkm(u)

(3.6)

for all u ∈ Uikm. Thus the system of functions {gik} and {hikm} is a gerbal cocycle
associated with the covering {Ui}i∈I and the Lie crossed module (G,H, α, τ).

There are different notational conventions in specifying gerbe data. Ours is consistent
with [1, Definition 7].

3.2. A second gerbe relation. The conditions (3.6) imply another relation satisfied
by the hik and hikm (suppressing the point u for notational ease):

hijmαgij(hjkm) = hijmhijhjkmh
−1
ij

(by the second Peiffer identity (2.2))

= himh
−1
jmh

−1
ij · hij · hjmh−1kmh

−1
jk · h

−1
ij

(using the first relation in (3.6))

= himh
−1
kmh

−1
jk h

−1
ij

= hikmhikhkm · h−1kmh
−1
jk h

−1
ij (again by (3.6))

= hikmhikh
−1
jk h

−1
ij .

(3.7)

Using the first relation in (3.6) once again, we obtain

hijmαgij(hjkm) = hikmhijk. (3.8)

This along with the second relation in (3.6) ensure that the data {gij} and {hijk} are the
local data for a gerbe structure [1, Definition 7].

3.3. Construction of functorial cocycles. We continue to work with an open
covering {Ui}i∈I of B, and the corresponding path categories Ui and overlap categories
Uik as discussed in subsection 2.1.

Starting with a given gerbal cocycle as in (3.1) let us define

θik : Uik
//G (3.9)

on objects by

θik(u) = gik(u)
def
= τ

(
hik(u)

)
(3.10)

for all u ∈ Uik, assumed nonempty, and on morphisms by

Mor(Uik) //Mor(G)

θik(γ) =
(
hik(γ), gik(γ0)

)
: gik(γ0) // τ

(
hik(γ)

)
gik(γ0),

(3.11)

where γ0 = s(γ) and
hik(γ) = hik(γ1)hik(γ0)

−1. (3.12)
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Let us note that in (3.11) the target of the morphism θik(γ) is gik(γ1):

t
(
θik(γ)

)
= gik(γ1). (3.13)

In this subsection we show that θik is a functor and work out some of the significant
properties of this system of functors.

Let us verify functoriality of θik. If γ and γ′ are morphisms in Uik and γ′0 = γ1 then

θik(γ
′ ◦ γ) =

(
hik(γ

′), gik(γ
′
0)
)
◦
(
hik(γ), gik(γ0)

)
=
(
hik(γ

′)hik(γ), gik(γ0)
)

=
(
hik(γ

′
1)hik(γ0)

−1, gik(γ0)
)

=
(
hik(γ

′ ◦ γ), gik(γ0)
)

= θik(γ
′) ◦ θik(γ)

(3.14)

furthermore, θik clearly maps any identity morphism iu : u // u in Uik to the identity
morphism

(e, gik(u)
)

: gik(u) // gik(u)

in Mor(G).
If the triple overlap category Uikm is defined then we can restrict the transition functor

to obtain a functor
θi k |m| = θik|Uikm

: Uikm
//G. (3.15)

To minimize notational clutter we will drop the subscript |m| and write θik for the re-
stricted functor as well, leaving it to the context to make the intended meaning clear.

Let us now verify that on Uikm there is a natural transformation

Tikm : θikθkm ⇒ θim (3.16)

given on any object u ∈ Uikm by

Tikm(u) =
(
hikm(u), gik(u)gkm(u)

)
∈ H oα G ' Mor(G), (3.17)

where hikm is as given in (3.5). The source of this morphism is the product gik(u)gkm(u)
and the target is

t
(
Tikm(u)

)
= τ
(
hikm(u)

)
gik(u)gkm(u) = gim(u) = θim(u)

by the second equation of the gerbal relations (3.6).

3.4. Proposition. With notation as above, Tikm is a natural transformation.

Thus {θik}, along with {Tikm}, is a functorial cocycle, by which we mean a system of
functors θik : Uik

//G satisfying the relation

Tikm : θikθkm ⇒ θim, (3.18)

where Tikm are natural transformations.
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Proof. The main task is to verify that for any morphism γ : u //v in Uikm the diagram

θik(u)θkm(u)

θik(γ)θkm(γ)

��

Tikm(u)// θim(u)

θim(γ)

��
θik(v)θkm(v)

Tikm(v)
// θim(v)

(3.19)

commutes. To this end let us first compute Tikm(v) ◦
(
θik(γ)θkm(γ)

)
.

Let us recall the way composition works in Mor(G) ' H oα G:

(h′, g′) ◦ (h, g) = (hh′, g) if τ(h)g = g′, (3.20)

bearing in mind that t(h, g) = τ(h)g and s(h′, g′) = g′. Multiplication is given by

(h2, g2)(h1, g1) =
(
h2g2h1g

−1
2 , g2g1

)
. (3.21)

Thus, recalling θik(γ) from (3.11), we have

θik(γ)θkm(γ) =
(
hik(γ)gik(γ0)hkm(γ)gik(γ0)

−1, gik(γ0)gkm(γ0)
)
. (3.22)

and so

Tikm(v) ◦
(
θik(γ)θkm(γ)

)
=
(
hikm(v), gik(v)gkm(v)

)
◦
(
hik(γ)gik(γ0)hkm(γ)gik(γ0)

−1,

gik(γ0)gkm(γ0)
)

=
(
hikm(v)hik(γ)gik(γ0)hkm(γ)gik(γ0)

−1, gik(γ0)gkm(γ0)
)
.

(3.23)

Focusing on the H-component we have:

hikm(v)hik(γ)gik(γ0)hkm(γ)gik(γ0)
−1

= hikm(v)hik(γ)hik(γ0)hkm(γ)hik(γ0)
−1,

(3.24)

upon using the second Peiffer identity (2.2):

τ(h)h1τ(h)−1 = hh1h
−1 for all h, h1 ∈ H. (3.25)

Continuing, we have

hikm(v)hik(γ)gik(γ0)hkm(γ)gik(γ0)
−1

= hikm(v)hik(γ1)hik(γ0)
−1 · hik(γ0) · hkm(γ1)hkm(γ0)

−1 · hik(γ0)−1

= hikm(v)hik(γ1)hkm(γ1)hkm(γ0)
−1hik(γ0)

−1

=
(
hikm(v)hik(v)hkm(v)

)(
hikm(u)hik(u)hkm(u)

)−1
hikm(u)

= him(v)him(u)−1hikm(u)

(3.26)



398 SAIKAT CHATTERJEE, AMITABHA LAHIRI, AND AMBAR N. SENGUPTA

where, in the last equality, we have used the first gerbal relation in (3.6). Thus

Tikm(v) ◦
(
θik(γ)θkm(γ)

)
=
(
him(v)him(u)−1hikm(u), gik(γ0)gkm(γ0)

)
.

(3.27)

On the other hand, θim(γ) ◦ Tikm(u) is given by:

θim(γ) ◦ Tikm(u) =
(
him(γ1)him(γ0)

−1hikm(u), gik(u)gkm(u)
)
, (3.28)

on using the expression for Tikm(u) from (3.17). Comparing with (3.27) we conclude that
the diagram (3.19) commutes.

Next let us make an observation about the product θik(γ)θkm(γ):

3.5. Proposition. With notation as above,

Θikm(γ)θik(γ)θkm(γ) = θim(γ) (3.29)

for all γ ∈ Mor(Uikm), where

Θikm(γ) =
(
hikm(γ), gikm(γ0)

)
, (3.30)

with
hikm(γ) = hikm(γ1)hikm(γ0)

−1,

where on the right we have the function hikm on Uikm as in (3.5), and gikm(u) = τ
(
hikm(u)

)
for all objects u of Uikm.

Proof. The H-component of θik(γ)θkm(γ) is(
θik(γ)θkm(γ)

)
H

= hik(γ)gik(γ0)hkm(γ)gik(γ0)
−1

= hik(γ)hik(γ0)hkm(γ)hik(γ0)
−1

= hik(γ1)hik(γ0)
−1 · hik(γ0) · hkm(γ1)hkm(γ0)

−1 · hik(γ0)−1

= hik(γ1)hkm(γ1)
(
hik(γ0)hkm(γ0)

)−1
.

(3.31)

On the other hand, switching notation and writing hg for (h, g) ∈ H ×α G, and gikm =
τ(hikm), we have:

Θikm(γ)−1θim(γ)

=
(
hikm(γ1)hikm(γ0)

−1gikm(γ0)
)−1

θim(γ)

= gikm(γ0)
−1hikm(γ0)hikm(γ1)

−1 him(γ1)him(γ0)
−1gim(γ0).

(3.32)
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(Here we have used the validity of working with inverses in the notation hg = (h, g), as
explained in (2.9).) Inserting gikm(γ0)gikm(γ0)

−1 before the term gim(γ0), we have:

Θikm(γ)−1θim(γ)

= gikm(γ0)
−1hikm(γ0) · hikm(γ1)

−1 him(γ1) · him(γ0)
−1gikm(γ0)·

· gikm(γ0)
−1gim(γ0)

= hikm(γ0)
−1hikm(γ0) · hikm(γ1)

−1 him(γ1) · him(γ0)
−1hikm(γ0)·

· gikm(γ0)
−1gim(γ0)

(3.33)

where we have used the second Peiffer identity (2.2) to switch the conjugation by gikm to
conjugation by hikm. Next, using the gerbal relations (3.6) we conclude that

Θikm(γ)−1θim(γ)

= hik(γ1)hkm(γ1)
(
hik(γ0)hkm(γ0)

)−1 · gikm(γ0)
−1gim(γ0)

(3.34)

The H-component of this clearly matches the right hand side of (3.31):(
Θikm(γ)−1θim(γ)

)
H

=
(
θik(γ)θkm(γ)

)
H
. (3.35)

The G-component of θik(γ)θkm(γ) is

gik(γ)gkm(γ)

which again matches the G-component gikm(γ0)
−1gim(γ0) on the right hand side of (3.34)

again by the gerbal relations (3.6).
We have thus shown that Θikm(γ)−1θim(γ) equals θik(γ)θkm(γ).

3.6. Quotients for cocycles. We continue with the same notation and framework.
In particular, (G,H, α, τ) and (H, J, α′, τ ′) are Lie crossed modules. The image τ ′(J) is
a normal subgroup of H, as noted earlier in (2.3). Then ττ ′(J) is a subgroup of G. We
assume that τ ′(J) and ττ ′(J) are closed subgroups of H and of G, respectively. Let us
observe that ττ ′(J) is normal inside τ(H):

τ(h)ττ ′(j)τ(h)−1 = τ
(
hτ ′(j)h−1

)
= ττ ′

(
α′h(j)

)
(3.36)

for all h ∈ H and j ∈ J . Let G be the quotient set

G = G/ττ ′(J), (3.37)

and Gτ the quotient group
Gτ = τ(H)/ττ ′(J). (3.38)

We recall from (3.5) the functions

gik = τ(hik) : Uik // τ(H) ⊂ G.
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Thus, by the normality observation (3.36),

gik(u)ττ ′(J)gik(u)−1 = ττ ′(J),

for all u ∈ Uik. Let us recall from (3.6) the gerbal relation

gim(u) = τ
(
hikm(u)

)
gik(u)gkm(u) (3.39)

for all u ∈ Uikm. Thus the functions gik form a cocycle modulo ττ ′(J). Working with the
Gτ -valued functions

gik : Uik //Gτ : u 7→ gik(u) = gik(u)ττ ′(J) for u ∈ Uikm, (3.40)

we have then
gik(u)gkm(u) = gim(u) for all u ∈ Uikm. (3.41)

Thus, {gik} is a genuine Gτ -valued cocycle, associated to the covering {Ui}i∈I , in the
traditional sense.

3.7. A bundle from the cocycle. Let

X //B

be the bundle that is specified by the open covering {Ui}i∈I and the G-valued transition
functions {gik}. A point of X is an equivalence class

[i, u, g],

where (i, u, g), (j, v, g′), with u ∈ Ui, v ∈ Uj, and g, g′ ∈ Gτ , are ‘equivalent’ if v = u and

g′ = gji(u)g. (3.42)

That this is in fact an equivalence relation on the set

∪i∈I{i} × Ui ×Gτ

is readily checked. We will return to more on this in section 4.

3.8. Morphism cocycles. Turning now to morphisms, let us recall the relation (3.29):

Θikm(γ)θik(γ)θkm(γ) = θim(γ) (3.43)

for all γ ∈ Mor(Uikm), where

Θikm(γ) =
(
hikm(γ), gikm(γ0)

)
=
(
τ ′
(
jikm(γ)

)
, τ
(
hikm(γ0)

))
=
(
τ ′
(
jikm(γ1)jikm(γ0)

−1), ττ ′(jikm(γ0)
))
,

(3.44)
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and
θim(γ) =

(
him(γ), gim(γ0)

)
. (3.45)

Thus the H oα G-valued functions θij form a cocycle modulo the elements of the form(
τ ′(j), ττ ′(j′)

)
in H oα G, where j, j′ ∈ J . Let us denote the set of all such elements by

JH :
JH = {

(
τ ′(j), ττ ′(j′)

)
: j, j′ ∈ J} ⊂ H oα G. (3.46)

We now verify that JH is a normal subgroup of Hoα τ(H), so that there is a useful notion
of equality ‘modulo’ JH .

3.9. Proposition. The mapping

τ : J oα′ H //H oα G : (j, h) 7→
(
τ ′(j), τ(h)

)
(3.47)

is a homomorphism. The set JH forms a normal subgroup of H oα τ(H) ⊂ Mor(G).

Proof. First let us check that τ is a homomorphism:(
τ ′(j2), τ(h2)

)(
τ ′(j1), τ(h1)

)
=
(
τ ′(j2)ατ(h2)

(
τ ′(j1)

)
, τ(h2)τ(h1)

)
=
(
τ ′(j2)h2τ

′(j1)h
−1
2 , τ(h2h1)

)
by the second Peiffer identity in (2.2)

=
(
τ ′(j2)τ

′(α′h2(j1)), τ(h2h1)
)

by the first Peiffer identity in (2.2)

=
(
τ ′
(
j2α

′
h2

(j1)
)
, τ(h2h1)

)
.

(3.48)

Hence JH , being the image under τ of the subgroup J oα′ τ
′(J) ⊂ J oα′ H, is a subgroup

of H oα G. This image is clearly contained inside H oα τ(H).
Let us now work out how elements of

Im(τ) = τ ′(J) oα τ(H)

behave under conjugation by elements of H oα τ(H). The advantage of working with the
smaller subgroup H oα τ(H) rather than H oα G is that we have the relation

αg
(
τ ′(j)

)
= hτ ′(j)h−1 = τ ′

(
α′h(j)

)
∈ τ ′(J),

if g = τ(h), h ∈ H and j ∈ J . Now let h, h0, h1 ∈ H and j ∈ J ; then, working in the
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group H oα G, we have the conjugation(
h, τ(h0)

)(
τ ′(j), τ(h1)

)(
h, τ(h0)

)−1
=
(
hατ(h0)

(
τ ′(j)

)
, τ(h0h1)

)(
h, τ(h0)

)−1
=
(
hατ(h0)

(
τ ′(j)

)
, τ(h0h1)

)(
ατ(h0)−1(h−1), τ(h0)

−1)
=
(
hατ(h0)

(
τ ′(j)

)
ατ(h0h1)ατ(h0)−1(h−1), τ(h0h1h

−1
0 )
)

=
(
h · h0τ ′(j)h−10 · (h0h1h−10 )h−1(h0h1h

−1
0 )−1, τ(h0h1h

−1
0 )
)

=
(
τ ′
(
α′hh0(j)

)
· hh0h1h−10 h−1 · h0h−11 h−10 , τ(h0h1h

−1
0 )
)
.

(3.49)

As it stands it is not apparent if this is an element of JH ; however, we need to insert the
condition that the second component of

(
τ ′(j), τ(h1)

)
is in fact in ττ ′(J), by requiring

that
h1 = τ ′(j1),

for some j1 ∈ J . Then we have(
h, τ(h0)

)(
τ ′(j), τ(h1)

)(
h, τ(h0)

)−1
=
(
τ ′
(
α′hh0(j)

)
· hh0h1h−10 h−1 · h0h−11 h−10 , τ(h0h1h

−1
0 )
)

=
(
τ ′
(
α′hh0(j)α

′
hh0

(j1)α
′
h0

(j1
−1)
)
, ττ ′

(
α′h0(j1)

))
,

(3.50)

which is indeed an element of JH .

3.10. The quotient category G. We denote by G the pair comprised of the object
set

Obj(G) = G/ττ ′(J) (3.51)

and the morphism set
Mor(G) =

(
H oα G

)
/JH , (3.52)

where, as before,

JH = τ ′(J)× ττ ′(J) ⊂ H oα τ(H) ⊂ H oα G = Mor(G).

Let us note that JH is closed under composition: if f ′2 =
(
τ ′(j2), ττ

′(j′2)
)

and f ′1 =(
τ ′(j1), ττ

′(j′1)
)

are such that the composition f ′2 ◦ f ′1 is defined as a morphism of G then

f ′2 ◦ f ′1 =
(
τ ′(j2j1), ττ

′(j1)
)
∈ JH . (3.53)

We define source and target maps

s :Mor(G) //Obj(G)

t :Mor(G) //Obj(G)
(3.54)

to be the maps induced by the source and target maps in the category G. The following
result verifies that these maps are well-defined and lead to a category G.
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3.11. Proposition. G, as specified above, is a category under composition, source and
target as inherited from G. The quotient mappings

Obj(G) //Obj(G) : g 7→ gττ ′(J)

Mor(G) //Mor(G) : (h, g) 7→ (h, g)JH
(3.55)

specify a functor
q : G //G. (3.56)

Proof. The source map
s : Mor(G) //Obj(G)

maps an element
(
τ ′(j1), ττ

′(j2)
)

of the subgroup

JH = τ ′(J)× ττ ′(J) ⊂ H oα τ(H) ⊂ H oα G

to ττ ′(j2), which lies in ττ ′(J). The target map

t : Mor(G) //Obj(G)

carries
(
τ ′(j1), ττ

′(j2)
)

to ττ ′(j1j2), which is also in ττ ′(J). Hence s and t induce well-
defined maps (

H oα G
)
/JH //G/ττ ′(J) (3.57)

where the set on the left is the quotient set of cosets.
Let f ′1, f

′
2 ∈ JH be such that the composition

(f2f
′
2) ◦ (f1f

′
1)

in Mor(G) is meaningful. Then

(f2f
′
2) ◦ (f1f

′
1) = (f2 ◦ f1)(f ′2 ◦ f ′1) ≡ (f2 ◦ f1) mod JH , (3.58)

by (3.53). Hence the composition law in Mor(G) induces a well-defined composition law
in the quotient

(
H oα G

)
/JH .

It is clear that for each x = gττ ′(J) ∈ G the morphism (e, g) ∈ H oα G induces the
identity morphism 1x.

Thus G is a category, and the way we have defined source, target, identity morphisms,
and composition in G ensures that q : G //G is a functor.
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3.12. The categorical group Gτ . Let us recall that JH is a normal subgroup inside
H oα τ(H) rather than in H oα G. Thus the quotient

(H oα τ(H))/JH

is actually a group. Moreover, the subgroup H oα τ(H) is closed under the composition
law in H oα G; in fact if

f1 =
(
h1, τ(h′1)

)
, f2 =

(
h2, τ(h′2)

)
∈ H oα τ(H) ⊂ Mor(G),

are morphisms for which the composition f2 ◦ f1 is meaningful, that is

τ(h′2) = τ(h1h
′
1),

we have
f2 ◦ f1 =

(
h2h1, τ(h′1)

)
∈ H oα τ(H). (3.59)

As we have seen in (3.53) JH is also closed under composition and by (3.58) the
composition law in H oα G then induces a well-defined operation on the quotient(

H oα τ(H)
)
/JH .

In summary, for the subcategory Gτ of G specified by

Obj(Gτ ) = τ(H)/ττ ′(J)

Mor(Gτ ) =
(
H oα τ(H)

)
/JH ,

(3.60)

both object set and morphism set are groups, with the obvious quotient group structures.
Moreover, since s and t are clearly group homomorphisms, Gτ is in fact a categorical
group. Furthermore, the ‘quotient’ functor q : G // G defined in (3.56) restricts to a
functor

qτ : Gτ
//Gτ , (3.61)

where Gτ is the subcategory of G whose object set is τ(H) and whose morphisms are those
morphism of G whose sources lie in τ(H). It is readily checked that qτ is a homomorphism
both on objects and on morphisms.

3.13. Categorical group extensions. Another way to interpret the results of pre-
ceding section is in terms of extensions of categorical groups. We work, as before, with
the categorical Lie groups H and G, with associated Lie crossed modules (H, J, α′, τ ′) and
(G,H, α, τ), respectively. By a homomorphism λ : H //G we mean a functor

λ : H //G

such that λ : Obj(H) = H // Obj(G) = G and λ : Mor(H) = H oα J //Mor(G) =
H oα′ G both are Lie-group homomorphisms.
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Let Hτ ′ be the categorical group, with object group τ ′(J) ⊂ H and morphism group
J oα′ τ

′(J) ⊂ J oα′ H :

Obj(Hτ ′) := τ ′(J) ⊂ H,

Mor(Hτ ′) := J oα′ τ
′(J) ⊂ J oα′ H.

(3.62)

Likewise, let Gτ be the categorical group with

Obj(Gτ ) := τ(H) ⊂ G,

Mor(Gτ ) := H oα τ(H) ⊂ H oα G.
(3.63)

Restricting the group homomorphism

τ : J oα′ H //H oα G

in Proposition 3.9 to J oα′ τ
′(J) we obtain a homomorphism

τ |Joα′τ ′(J) : J oα′ τ
′(J) //H oα τ(H) ⊂ H oα G, (3.64)

whereas τ : H //G restricts to a group homomorphism

τ |τ ′(J) : τ ′(J) // τ(H). (3.65)

Moreover the pair
(
τ |Joα′τ ′(J), τ |τ ′(J)

)
specifies a functor τ̂

τ̂ : Hτ ′
//Gτ ,

τ |τ ′(J) : Obj(Hτ ′) //Obj(Gτ ),

τ |Joα′τ ′(J) : Mor(Hτ ′) //Mor(Gτ ).

(3.66)

The diagram

J oH

st

��

J o τ ′(J)_?
oo

τ |Joτ ′(J) //

st
��

H o τ(H) �
� //

st
��

H oG

st

��
H τ ′(J)_?
oo

τ |τ ′(J)
// τ(H) �

� // G

illustrates the morphisms of interest.

3.14. Proposition. Equation (3.66) specifies a functor; moreover,

τ̂ : Hτ ′
//Gτ

is a homomorphism between categorical Lie groups.
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Proof. Recalling the definition of τ in (3.47), we write for composable morphisms
(j2, τ

′(j̃2)), (j1, τ
′(j̃1)) ∈ J oα′ τ

′(J),

τ
(
(j2, τ

′(j̃2)) ◦ (j1, τ
′(j̃1))

)
= τ
(
j2j1, τ

′(j̃1)
)

=
(
τ ′(j2j1), ττ

′(j̃1)
)

=
(
τ ′(j2)τ

′(j1), ττ
′(j̃1)

)
=
(
τ ′(j2), ττ

′(j̃2)
)
◦
(
τ ′(j1), ττ

′(j̃1)
)

= τ
(
j2, τ

′(j̃2)
)
◦ τ
(
j1, τ

′(j̃1)
)
.

(3.67)

Note (3.46) and (3.66) imply

Obj
(
Im(τ̂)

)
= ττ ′(J) ⊂ τ(H) ⊂ G,

Mor
(
Im(τ̂)

)
= JH ⊂ H oα τ(H) ⊂ H oα G.

(3.68)

On the other hand according to Proposition 3.9 and (3.36) JH , ττ
′(J) are respectively

normal subgroups of H oα τ(H) and τ(H). Thus corresponding to the functor τ̂ , we have
the quotient categorical group Gτ (constructed in subsection 3.12)

Gτ = Gτ/τ̂(Hτ ′),

and the quotient functor (see (3.61))

qτ : Gτ
//Gτ/τ̂(Hτ ′) = Gτ .

Consequently we have a short exact sequence of categorical groups (crossed modules).
In other words the categorical group Gτ is an extension of the categorical group Gτ by
Im(τ̂):

{eH} × {eG} // JH
� � //

st
��

H o τ(H) qτ
//

st
��

H o τ(H)/JH

st
��

// {eH} × {eG}

{eG} // ττ ′(J) �
� // τ(H) qτ

// τ(H)/ττ ′(J) // {eG}

Let us turn our attention to functorial cocycles constructed in subsection 3.3. As before
let {Ui}i∈I be an open covering of B, and Ui, Uik respectively be the corresponding path
categories and overlap categories as discussed in subsection 2.1. We have shown that a
gerbal cocycle given by {hik} and {jikm}, as in (3.1), leads to functorial cocycles

θik : Uik
//Gτ ⊂ G,
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constructed in (3.9)–(3.11). Furthermore by Proposition 3.4, on nonempty triple overlaps
Uikm we have natural transformations

Tikm : θikθkm =⇒ θim.

More conveniently, using Proposition 3.5, for γ ∈ Mor(Uikm) we can write

Θikm(γ)θik(γ)θkm(γ) = θim(γ)

and for any u ∈ Obj(Uikm) we have (see (3.39))

gim(u) = τ
(
hikm(u)

)
gik(u)gkm(u).

In fact by (3.44) and (3.5) we have

Θikm(γ) ∈ JH ⊂ H o τ(H)

τ
(
hikm(u)

)
∈ ττ ′(J) ⊂ τ(H)

(3.69)

and in turn we obtain a functor Θ̂ikm : Uikm
// Im(τ̂)

Θ̂ikm :Uikm
// Im(τ̂)

Obj(Uikm) //Obj(Im(τ̂)) = ττ ′(J)

u 7→ τ(hikm(u)) = ττ ′(jikm(u))

Mor(Uikm) //Mor(Im(τ̂)) = JH

γ 7→ Θikm(γ)

(3.70)

satisfying
Θ̂ikmθikθkm = θim. (3.71)

Let us note that qτ ◦ Θ̂ikm : Uikm
//Gτ is the trivial functor, taking the constant value

identity on both objects and morphisms.
Defining θik := qτ ◦ θik : Uik

//Gτ by composition of functors

Uik
θik //

θik !!C
CC

CC
CC

C Gτ

qτ
��

Gτ

we have then the functors
θik : Uik

//Gτ , (3.72)

satisfying
θikθkm = θim (3.73)

on the triple overlap categories Uikm. This means that both the collections
{
θik
∣∣
Obj(Uik)

}
i,k∈I

and
{
θik
∣∣
Mor(Uik)

}
i,k∈I satisfy genuine cocycle relations respectively for the groups Obj(Gτ ) =
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τ(H)/ττ ′(J) and Mor(Gτ ) = H o τ(H)/JH . Our objective henceforth will be to show
how this leads to a global categorical Gτ -principal bundle over B.

Let us note that construction of a categorical principal bundle is more than the mere
construction of an Obj(Gτ ) = τ(H)/ττ ′(J)-principal bundle over Obj(B) = B and a
Mor(Gτ ) =

(
H o τ(H)

)
/JH-principal bundle over Mor(B).

In this context we note that non-abelian gerbes have been described in terms of fibra-
tion over a group extension [2, 17]. A description of non-abelian differentiable gerbes in
terms of the “G-extension” of Lie groupoids can be found in [16]. It is not our objective
in this paper to give a new or alternate description of gerbes, but rather to study the kind
of global categorical structures that arise out of non-abelian gerbes, and their geometric
interpretation.

3.15. Summary. Starting with Lie crossed modules (G,H, α, τ), associated with a cate-
gorical Lie group G, and (H, J, α′, τ ′), associated with a categorical Lie group H, and a
manifold B, we introduced local data (hik, jikl), named ‘gerbal cocycle’, associated with
an open covering {Ui}i∈I . From this data we constructed categories Ui (with objects
being the points of Ui and morphisms coming from the paths lying in Ui) and functors
θik : Uik

// G that, along with certain natural transformations Tikm : θikθkm ⇒ θim,
form a ‘functorial cocycle’. We introduced a category G, by quotienting the object and
morphism groups of Obj(G) by subgroups specified by τ and τ ′. Inside G is a subcate-
gory Gτ that is a categorical group and contains all the geometrically relevant data. Our
results in this section show that the system of function {gik}, where gik = τ(hik), and
{θik}, where

θik(γ) = θik(γ)JH ∈
(
H oα τ(H)

)
/JH , (3.74)

form cocycles in the traditional sense.

4. Construction of bundles from local data

In this section we start with a gerbal cocycle (3.1) as described in the preceding section
and construct a categorical bundle

X //B

as a limit of ‘local’ categorical bundles Xα
//Uα.

We take as given a manifold B, an open covering {Ui}i∈I of B, and a gerbal cocycle
{hik, jikl} as in (3.1). We use the notation and constructions from the preceding section.
We also work with the categorical group

Gτ ,

whose objects form the quotient group

τ(H)/ττ ′(J),
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and whose morphisms form the quotient group(
H oα τ(H)

)
/JH ,

where JH is the normal subgroup defined in (3.46). We will make the standing assumption
that τ(H), τ ′(J) and ττ ′(J) are closed subgroups; this ensures that the quotients are Lie
groups.

For the sake of practical convenience, mainly notational, it would be useful to assume
that τ is surjective:

τ(H) = G. (4.1)

This would make it possible for us to work with G instead of Gτ as the structure cate-
gorical group for the resulting categorical principal bundle P.

4.1. A local system of categorical bundles. As in subsection 2.3, we denote by
SI the set of all finite nonempty subsets I of I for which the intersection

UI = ∩k∈IUk (4.2)

is nonempty. We can visualize I itself as a simplex whose vertices are the points i ∈ I.
We also have, for every I ∈ SI , the category

UI

whose object set is UI and whose morphisms arise from the paths on B that lie entirely
within each Ui for i ∈ I:

Mor(UI) = ∩i∈IMor(Ui). (4.3)

Source, target, and composition are all inherited from any of the Ui. It will be useful to
keep track of the index i and the collection of indices I.

We consider also the categories

{(i, I)} ×UI ×Gτ ,

where the objects are of the form (i, I, u, g), with u ∈ UI and g ∈ Gτ = τ(H)/ττ ′(J),
and morphisms are of the form (i, I, γ, φ), where γ ∈ Mor(UI) and φ ∈ Mor(Gτ ) =(
H oα τ(H)

)
/JH . Source and target maps are given by

s(i, I, γ, φ) =
(
i, I, s(γ), s(φ)

)
t(i, I, γ, φ) =

(
i, I, t(γ), t(φ)

)
.

(4.4)

Consider a pair of indices i, k ∈ I, where I ∈ SI . We think of the open set UI and two
trivializations of a bundle over UI , with transition function gik. At the categorical level
we have a functor

Φki : {(i, I)} ×UI ×Gτ
// {(k, I)} ×UI ×Gτ , (4.5)
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which is given on objects by

(i, I, u, g) 7→
(
k, I, u, gki(u)g

)
and is given on morphisms by

(i, I, γ, φ) 7→
(
k, I, γ, θki(γ)φ

)
. (4.6)

Moreover, if I ⊂ J (so that UI is a larger set than UJ) and i ∈ I then we have an
‘inclusion’ morphism

{(i, J)} ×UJ ×Gτ
// {(i, I)} ×UI ×Gτ (4.7)

that takes any object (i, J, u, g) to (i, I, u, g) and that takes any morphism (i, J, γ, φ) to
(i, I, γ, φ).

4.2. From local data to the global category. Our goal is to splice together the
local data into a base category and a ‘bundle’ category X. The base category is simply
B, with object set the manifold B and morphisms being smooth paths on B with suitable
identifications (as discussed in the context of (2.10)). We think of the category X as being
a limit of the system of categories {(i, I)} ×UI ×Gτ along with the functors discussed
in (4.5) and (4.7). The role played by I in (i, I, u, g) is not essential and is meant only to
help track the intersection sets UI .

4.3. The object set of X. The object set of the category X is the bundle space X
for the bundle obtained from the cocycles {gik : i, k ∈ I}. Thus a point of X is an
equivalence class

[i, u, g],

where i ∈ I, u ∈ Ui, g ∈ Gτ = τ(H), and the equivalence relation is defined by requiring
that [i, u, g] and [k, u′, g′] be equal if and only if u′ = u ∈ Ui ∩ Uk and

g′ = gki(u)g.

We have then injections

{(i, I)} × UI ×Gτ
//X : (i, I, u, g) 7→ [i, u, g]. (4.8)

We have essentially seen this construction in subsection 3.7.

4.4. Towards morphisms. Proceeding towards morphisms, we need first the quadruples

(i, I, γ, φ),

where i ∈ I, I ∈ SI , γ ∈ Mor(UI), φ ∈ Mor(Gτ ). Thus we have here a path γ that lies
inside the open set

UI = ∩j∈IUj,
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a particular index choice i ∈ I that indicates a trivialization over Ui, and a morphism
φ = (h, g) of Gτ that we think of as indicating, through g, the ‘location’ of the path in
the bundle X along with a decoration h on it. A difficulty arises when we try to form a
composition

(j, J, γj, φj) ◦ (i, I, γi, φi)

where the composition s(γj) = t(γi). It is not apparent what this composition ought to
be. The ‘coarsest’ solution to this difficulty is to define the composite simply to be the
sequence of two quadruples (

(i, I, γi, φi), (j, J, γj, φj)
)
.

4.5. Quivers. The language of quivers helps with the structure here. By a quiver Q we
mean a set E of (directed) ‘edges’ and a nonempty set V of vertices, along with source
and target maps s, t : E // V . This gives rise to a category CQ, called the free category
for Q: the object set is just V , and a morphism is a sequence (e1, . . . , en) of edges with
the target of each edge ei equal to the source of the next edge ei+1; in addition, we also
include an identity morphism for each object. Composition is defined by concatenation
of sequences.

4.6. The quiver of decorated local paths. Returning to our context, the vertex
set V for our quiver Q is X, consisting of all equivalence classes [i, I, u, g]; edges are the
quadruples

(i, I, γi, φi),

with source and target given by

s(i, I, γi, φi) = [i, I, s(γi), s(φi)]

t(i, I, γi, φi) = [i, I, t(γi), t(φi)].
(4.9)

However, in the resulting quiver category CQ certain morphisms need to be identified. It
is convenient to do this at an algebraic level rather than ‘geometric’, and so we turn first
to the notion of the quiver algebra.

4.7. The quiver algebra. The quiver algebra AQ of a quiver Q is the free algebra
on the set of non-identity morphisms of the quiver category CQ quotiented so that the
product of two morphisms that have non-matching source-target relation is zero and in
other cases the product is given by concatenation; thus an element of AQ can be expressed
uniquely as a linear combination of sequences of paths of the form

(e1, . . . , en),

where n ≥ 1, each ei ∈ E, and t(ei) = s(ei+1) for all i ∈ {1, . . . , n}. The product of two
such morphisms is given by

(e1, . . . , en) · (en+1, . . . , em) = (e1, . . . , em) if t(en) = s(en+1),

and is 0 in all other cases. In particular, if (e1, . . . , en) is above, with source-target
matching for successive edges, then

e1e2 . . . en = (e1, . . . , en). (4.10)



412 SAIKAT CHATTERJEE, AMITABHA LAHIRI, AND AMBAR N. SENGUPTA

4.8. A quotient of the quiver algebra. For the quiver algebra of our path quiver
CQ, let N0 be the ideal in AQ generated by all elements of the form

(i, I, γ, φ)− (j, J, γ, θij(γ)φ), (4.11)

where I, J ∈ SI , i ∈ I, j ∈ J , γ is any morphism in U{i,j}, and φ ∈ Mor(Gτ ). Moreover,
from a geometric viewpoint, if the sets UI and UJ lie inside UK then, for any γi ∈ Mor(Ui)
and γj ∈ Mor(Uj) for which s(γj) = t(γi), the composition

(j, J, γj, φj) ◦ (i, I, γi, φi)

ought to be obtainable by transforming both to the (k,K) system:(
k,K, γj, θkj(γj)φj)

)
◦
(
k,K, γi, θki(γi)φi

)
=
(
k,K, γj ◦ γi,

(
θkj(γj)φj

)
◦
(
θki(γi)φi

))
.

(4.12)

With this in mind, we consider the ideal N generated by N0 along with all elements of
AQ of the form

(k,K, γk, φk)− (i, I, γi, φi) · (j, J, γj, φj), (4.13)

where I, J,K ∈ SI are such that

K ⊂ I ∩ J (which implies UI , UJ ⊂ UK) (4.14)

and

γj ◦ γi = γk(
θkj(γj)φj

)
◦
(
θki(γi)φi

)
= φk.

(4.15)

Thus in the quotient algebra AQ/N we have

[k,K, γk, φk] = [i, I, γi, φi][j, J, γj, φj]. (4.16)

4.9. Equivalent morphisms in the quotient. We define two non-identity mor-
phisms of the category CQ to be equivalent if they have the same image in the quotient
algebra AQ/N . We denote by

[i, I, γ, φ]

the equivalence class in AQ/N corresponding to the element (i, I, γ, φ) in AQ. Thus,

[i, I, γ, φ] = [j, J, γ, θij(γ)φ] (4.17)

if γ ∈ Mor(U{i,j}).
We denote the set of equivalence classes of non-identity morphisms of CQ by

Mor(X)0, (4.18)

with notation anticipating our objective of showing that X is a category. The subscript
0 here is a ‘temporary hold’ pending inclusion of identity morphisms.
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4.10. The mor-set Mor(X). Now we include an identity morphism 1x for each object
x ∈ Obj(X), and define

Mor(X) = {1x : x ∈ Obj(X)} ∪Mor(X)0. (4.19)

4.11. Source and target. The source and target maps

s, t : E // V

of a quiver Q give rise to linear maps

s, t : AQ // R[V ], (4.20)

where the latter is the free real vector space over the set V of vertices (thus every element
of R[V ] is uniquely a (finite) linear combination of the form

∑
j ajvj, with aj ∈ R and

vj ∈ V ). These maps do not respect multiplication since

s(e1e2) = s(e1) and t(e1e2) = t(e2),

for example. Now returning to our context, let us note that, with notation as in (4.13),

s(φk) = s
(
θki(γi)φi

)
= s
(
θki(γi)

)
s(φi)

= θki
(
s(γi)

)
s(φi),

(4.21)

and similarly for the targets. Consequently we have the following source/target consis-
tency:

s(k,K, s(γk), φk) =
(
k,K, s(γi), θki

(
s(γi)

)
s(φi)

)
= s(i, I, s(γi), φi);

t(k,K, γk, φk) = t(j, J, t(γj), φj).
(4.22)

Moreover, for γ ∈ U{i,j}, where i ∈ I and j ∈ J , and any φ ∈ Mor(Gτ ), we have

s(i, I, γ, φ) = s
(
j, J, s(γ), θij(γ)φ

)
t(i, I, γ, φ) = t

(
j, J, t(γ), θij(γ)φ

)
.

(4.23)

Because of these relations and (4.22), the value of s on a quiver algebra element of the
form e1 . . . en, being just s(e1), remains unchanged if any of the ei is replaced by either a
single-edge element e or a two-edge morphism ee′ related to ei in any of the ways described
above in (4.17). An analogous statement holds for the target map t. Hence the source
and target maps descend to well-defined linear maps

s, t : AQ/N // R[V ]. (4.24)

In particular, s and t are well-defined maps when restricted to Mor(X)0 (the values of s
and t on elements of Mor(X)0 are elements of V ). For the identity morphism 1x we define
both source and target to be x.
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4.12. Composition of morphisms in X. The multiplication operation onAQ induces a
well-defined operation on the quotient AQ/N and this restricts to a well-defined operation
on Mor(X)0. We use this to define composition of elements in Mor(X)0. Concretely,
composition is given by concatenation:

(en+1 . . . en+m) ◦ (e1 . . . en) = e1 . . . enen+1 . . . en+m, (4.25)

where each ej is of the form
ej = [j, J, γj, φj]

and
t(en) = s(en+1).

(This last condition ensures that the product on the right in (4.25) is not 0 but an element
of Mor(X)0 instead.) The significance of (4.25) is that the value of the right hand side as
an element of Mor(X)0 is independent of the specific choices of the ej used in representing
the elements of Mor(X) being composed on the left. The definition (4.25) makes it clear
that if f, g ∈ Mor(X) for which t(f) = s(g) then g ◦ f is defined an

s(g ◦ f) = s(f) and t(g ◦ f) = t(g). (4.26)

Of course, we define composition with identity morphisms by

f ◦ 1x = f and 1y ◦ f = f (4.27)

if x = s(f) and y = t(f). Associativity of the composition law on Mor(X) follows from
associativity of the concatenation process.

We have thus constructed the category X.

4.13. Projection to B. There is a well-defined projection functor

π : X //B

given by

[i, I, u, g] 7→ u[
i1, I1, γi1 , φi1 ] . . .

[
in, In, γin , φin

]
7→ γin ◦ . . . γi1

(4.28)

That this is well-defined on morphisms follows from the first relation in (4.15).

4.14. Local triviality. It is clear that at the object-level we have traditional local
triviality of the principal Gτ -bundle X // B. At the level of morphisms any morphism
of X that projects to a morphism γ that lies entirely inside UI arises from some

(i, I, γ, φ) ∈ Mor
(
{(i, I)} ×UI ×Gτ

)
.

Thus the category XI , with objects in π−1(UI) and morphism projecting to UI , is iso-
morphic to UI ×Gτ :

Φi,I : UI ×Gτ
//XI :

{
(u, g) 7→ [i, I, u, g];

(γ, φ) 7→ [i, I, γ, φ].
(4.29)
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4.15. Action of the group Gτ . There is a well-defined right action

X×Gτ
//X :

{(
[i, I, u], g

)
7→ [i, I, ug];(

[i, I, γ, φ], ψ
)
7→ [i, I, γ, φψ].

(4.30)

That the action is well-defined on morphisms may be seen from

(φ2 ◦ φ1)ψ = (φ2ψ) ◦ (φ1ψ). (4.31)

Using local triviality it follows that this action is free.
We have thus shown that

X //B

is a categorical principal Gτ -bundle. Let us recall that we assumed in (4.1) that τ(H) = G.
Dropping this assumption means simply that X //B is a categorical principal Gτ -bundle.
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