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THE EULER CHARACTERISTIC OF AN ENRICHED CATEGORY

KAZUNORI NOGUCHI AND KOHEI TANAKA

Abstract. We develop the homotopy theory of Euler characteristic (magnitude) of
a category enriched in a monoidal model category. If a monoidal model category V is
equipped with an Euler characteristic that is compatible with weak equivalences and
fibrations in V, then our Euler characteristic of V-enriched categories is also compatible
with weak equivalences and fibrations in the canonical model structure on the category
of V-enriched categories. In particular, we focus on the case of topological categories;
i.e., categories enriched in the category of topological spaces. As its application, we
obtain the ordinary Euler characteristic of a cellular stratified space X by computing
the Euler characteristic of the face category C(X).

1. Introduction

The Euler characteristic of a topological space is a classical homotopy invariant. However,
the Euler characteristic is defined not only for topological spaces, but also for finite posets
[Rot64], groupoids [BD01], and categories [Lei08], [BL08], [FLS11], [Nog11], [Nog13].
Moreover, Leinster defined an invariant for categories enriched in a monoidal category,
called magnitude [Lei13]. Our work in this paper is based on magnitude, so we give a
quick review of it here.

Let k be a rig (a ring without negatives). For finite sets I and J , an I×J matrix over
k is a function I×J → k. For an I×J matrix ζ and a J ×H matrix ξ, the I×H matrix
ζξ is defined by ζξ(i, h) =

∑
j ζ(i, j)ξ(j, h) for any i in I and h in H. An I × J matrix ζ

has a J × I transpose ζ∗. Given a finite set I, we write uI : I → k (or simply u) for the
column vector with uI(i) = 1 for all i in I. Let ζ be an I × J matrix over k. A weighting
on ζ is a column vector w : J → k such that ζw = uI . A coweighting on ζ is a row vector
v : I → k such that vζ = u∗J . The matrix ζ has magnitude if it has a weighting w and a
coweighting v. Its magnitude is then

|ζ| =
∑
j

w(j) =
∑
i

v(i) ∈ k.

This definition does not depend on the choice of a weighting and a coweighting.
Let V be a monoidal category, and let

|−| : (ob(V)/∼=,⊗,1) −→ (k, ·, 1)
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be a monoid homomorphism where ob(V) is the collection of objects of V and ob(V)/∼=
denotes the isomorphism classes of objects of V . For a V-category A having finitely many
objects, the similarity matrix of V is the ob(A) × ob(A) matrix ξA over k defined by
ξA(a, b) = |A(a, b)| for any objects a and b of A. If ξA has magnitude, then V-category
A has magnitude; its magnitude is then |A| = |ξA|. In particular, Leinster studied the
magnitude of finite metric spaces. A metric space can be regarded as a category enriched
in the poset of non-negative extended real numbers [0,∞]. See [Lei13] for more details.

In this paper, we consider the case in which a monoidal category is equipped with a
model structure. A model structure on a category consists of three classes of morphisms,
called weak equivalences, fibrations, and cofibrations, satisfying certain conditions, and
this provides a framework to do homotopy theory [Qui67]. If a monoidal model category
V satisfies certain conditions, a model structure is induced on the category V-Cat of
categories enriched in V , called the canonical model structure [BM13]. Suppose that

|−| : (ob(V)/∼=,⊗,1) −→ (k, ·, 1)

is a monoid homomorphism compatible with weak equivalences and fibrations in V ; i.e.,
|−| is an invariant with respect to weak equivalences, and satisfies the product formula
with respect to fibrations. This is a natural assumption for topologists when we regard
|−| as the standard topological Euler characteristic. The topological Euler characteristic
χ is an invariant with respect to weak homotopy equivalences, and satisfies the product
formula χ(E) = χ(B)χ(F ) for a (Serre) fibration E → B with fiber F and connected
base B. By following Leinster’s work, we can define magnitude of V-categories induced
by the monoid homomorphism |−|. In this paper, we call it Euler characteristic when
V is a monoidal model category, and a monoid homomorphism |−| is compatible with
weak equivalences and fibrations. Then, one can ask whether the induced invariant is
compatible with weak equivalences and fibrations in V-Cat. The following is a positive
answer to the question:

1.1. Theorem. Suppose that the category of V-enriched categories admits the canonical
model structure and χ(−) is the Euler characteristic of V-enriched categories.

1. If A and B are weakly equivalent in V-Cat, then the Euler characteristics of A and
B are equal; i.e., χ(A) = χ(B).

2. If a V-functor p : E → B is a fibration over a connected V-category B in V-Cat
satisfying certain conditions, then χ satisfies the product formula.

Computing the Euler characteristic of cellular stratified spaces is an application of
the Euler characteristic of V-categories. A cellular stratified space is a generalization of
cell complexes, and it is introduced by Tamaki [Tama]. Although a cell complex is a
space defined by attaching closed disks, a cellular stratified space is defined by attaching
globular cells. A globular n-cell is a subspace of the closed disk Dn containing the interior
of Dn. If X is a finite cell complex, the Euler characteristic χ(X) is obtained as an
alternating sum of the cardinalities of the set of n-cells, however in the case of cellular
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stratified spaces this does not work. For example, the half-open interval (0, 1] is a cellular
stratified space consisting of a 1-cell (0, 1] and a 0-cell {1}. We have χ ((0, 1]) = 1 since
(0, 1] is contractible. However, the alternating sum of the numbers of n-cells is 1− 1 = 0.

In [Tama], Tamaki shows that a nice cellular stratified space X is homotopy equiva-
lent to the classifying space BC(X) of the face category C(X) enriched in the category of
topological spaces. By the following theorem, we can show that the standard Euler char-
acteristic χ(X) is equal to our Euler characteristic χ(C(X)) of the topological category
C(X).

1.2. Theorem. Let A be a finite measurable acyclic topological category (Definition 3.6
and 4.11). Then, the Euler characteristic χ(A) coincides with the topological Euler char-
acteristic χ(BA) of the classifying space BA of A.

1.3. Corollary. Let X be a finite locally polyhedral cellular stratified space (Definition
5.6) whose parameter spaces are finite CW-complexes. Then, we have χ(X) = χ(C(X)),
where C(X) is the cylindrical face category of X.

This paper is organized as follows. In Section 2, we give a review of enriched categories
and model categories including the canonical model structure on the category of enriched
categories. In Section 3, we introduce the Euler characteristic of V-enriched categories for
a monoidal model category V , and give a proof of Theorem 1.1. In Section 4, we focus on
the case in which V is the category of topological spaces, and we prove Theorem 1.2 and
Corollary 1.3.

2. Review of enriched categories and model categories

We first begin with a brief review of basic notions of model categories. It was originally
introduced by Quillen in [Qui67] to do homotopy theory in general categories. See [Hov99]
and [Hir03] as references about model categories.

2.1. Definition. A model structure on a category M consists of three distinguished
subcategories W , C, and F , called weak equivalences, cofibrations, and fibrations, and
they satisfy the following properties:

1. If f and g are morphisms of M such that g ◦ f is defined, two of f , g, and g ◦ f are
weak equivalences, then so is the third.

2. All W , C, and F are closed under retracts.

3. Every morphism in W ∩C has the right lifting property for F , and every morphism
in C has the right lifting property for W ∩ F .

4. For any morphism f in M can be factored as p ◦ i by p in F ∩W and i in C, and
also f can be factored as q ◦ j by q in F and j in C ∩W .
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A morphism in W ∩ C is called a trivial cofibration, and a morphism in W ∩ F is called
a trivial fibration, respectively. A category M is a model category if it is equipped with a
model structure on M and closed under all small limits and colimits.

2.2. Definition. Let M be a model category. The homotopy category Ho(M) is the
category consisting of ob(Ho(M)) = ob(M) and Ho(M)(X, Y ) = M(QRX,QRY )/',
where QR is the cofibrant and fibrant replacement and ' is the homotopy relation.

Generally, the homotopy category Ho(M) is defined as the localization

` : M −→M [W−1] = Ho(M)

with respect to the class of weak equivalences W . It is determined uniquely up to equiv-
alence of categories.

2.3. Remark. [Theorem 1.2.10 of [Hov99]] If X is cofibrant and Y is fibrant in a model
category M , then there exists a natural isomorphism Ho(M)(X, Y ) ∼= M(X, Y )/'.

Next, we review of basic notions of enriched categories. Let (V ,⊗,1) denote a monoidal
category throughout this paper. A V-enriched category is a generalization of a category
using hom-objects in V instead of hom-sets. For more details, see [Kel05].

2.4. Definition. A V-enriched category, or simply, a V-category A consists of a set of
objects ob(A) and a hom-object A(a, b) of V for each pair of objects a and b of A with
composition morphisms ◦ : A(b, c) ⊗A(a, b) → A(a, c), and the identity 1 → A(d, d) for
each object a, b, c, d in A, satisfying two coherence conditions with respect to associativity
and unitality of composition. We call A finite if ob(A) is finite.

A V-functor f : A → B between two V-categories A and B consists of a map f :
ob(A)→ ob(B) on objects and a morphism A(a, b)→ B(f(a), f(b)) in V which preserves
the composition and identities for each pair of objects a, b in ob(A).

The following model structure on the category of small categories is called the folk
model structure (see [JT91]). It is closely related to the model structure on the category
of V-categories.

2.5. Definition. A functor p : E → B between small categories is called an isofibra-
tion if for any object e in E and any isomorphism f : p(e) → b in B, there exists an
isomorphism g : e→ e′ in E such that p(g) = f .

A functor i : X → Y is called an isocofibration if it is injective on the set of objects.

2.6. Theorem. [Folk model structure] The category of small categories admits the fol-
lowing model structure:

1. The weak equivalences are equivalences of categories.

2. The fibrations are isofibrations.

3. The cofibrations are isocofibrations.
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When V is a nice monoidal model category [Hov99], the category V-Cat of small V-
categories also admits a model structure called canonical. This is a mixture of the model
structure on V and the above folk model structure on the category of small categories.
In order to define the canonical model structure, we need the category of connected
components π0A of a V-category A.

2.7. Definition. For an object X in a monoidal model category V, the connected compo-
nents π0X of X is the set of morphisms Ho(V)(1, X) in the homotopy category. Moreover,
for a V-category A, the category of connected components π0A of A is a small category
whose set of objects is ob(A) and set of morphisms from an object a to an object b of A
is (π0A)(a, b) = π0(A(a, b)).

We call the object X connected if the set of connected components π0X = Ho(V)(1, X)
is a single point. A small category C is called connected when there exists a zigzag sequence
of morphisms

x −→ x1 ←− x2 −→ · · · −→ xn−1 ←− y

starting at x and ending at y for any two objects x and y of C. We call a V-category A
connected if the category π0A of connected components is connected. Moreover, we call
A strongly connected if A is connected and every hom-object A(x, y) is connected in V.

2.8. Definition. Let V be a monoidal model category. A V-functor f : A → B is called
a local weak equivalence (resp. local fibration, local trivial fibration) if the morphism
on hom-objects A(x, y) → B(f(x), f(y)) is a weak equivalence (resp. fibration, trivial
fibration) in V for each objects x, y of A.

1. We define a V-functor f : A → B to be a DK-equivalence if it is a local weak
equivalence and π0f : π0A → π0B is an equivalence of categories.

2. We define a V-functor p : A → B to be a naive fibration if it is a local fibration and
π0p : π0A → π0B is an isofibration of categories.

3. We define a V-category A to be locally fibrant if A(a, b) is fibrant in V for any
objects a and b of A.

2.9. Definition. Let V be a monoidal model category. A model structure on the category
of small V-categories is called canonical if it has the following properties:

1. A V-category is fibrant if and only if it is locally fibrant.

2. A V-functor f : A → B is a trivial fibration if and only if it is surjective on the set
of objects and a local trivial fibration.

3. The weak equivalences are DK-equivalences.

4. The fibrations between fibrant objects are naive fibrations.
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The definition of the canonical model structure in [BM13] only requires conditions 1
and 2 stated above. Hence, our definition is narrower than [BM13]. However, in order to
clarify the relation with DK-equivalences and naive fibrations, we use the above definition.
Note that if there exists a model structure on V satisfying these conditions, it is determined
uniquely.

2.10. Example. Here are some examples of canonical model structures.

1. An ordinary category is a category enriched in the category of sets (Set,×, ∗). If Set
is equipped with the trivial model structure, then the category of small categories
Cat admits the canonical model structure which coincides with the folk model
structure [JT91].

2. A topological category is a category enriched in the category of topological spaces
(Top,×, ∗). Let CGWH denote the full subcategory of compactly generated weak
Hausdorff spaces. If CGWH is equipped with the classical model structure, then
the category of CGWH-categories admits the canonical model structure [Ili15].

3. A 2-category is a category enriched in the category of small categories (Cat,×, ∗).
If Cat is equipped with the folk model structure [JT91], then the category of 2-
categories admits the canonical model structure [Lac02].

4. A simplicial category is a category enriched in the category of simplicial sets (Set∆op

,
×, ∗). If Set∆op

is equipped with the classical model structure, then the category of
simplicial categories admits the canonical model structure [Ber07].

5. A DG-category over a ring R is a category enriched in the category of chain com-
plexes (ChR,⊗, R). If ChR is equipped with the projective model structure, then
the category of DG-categories admits the canonical model structure [Tab05].

Berger and Moerdijk give a general condition on V for existence of the canonical model
structure in Theorem 1.9 of [BM13].

3. The Euler characteristic of enriched categories

In this section, we focus on homotopical properties of the Euler characteristic.

3.1. The Euler characteristic of V-categories. The Euler characteristic (mag-
nitude) of V-categories in [Lei13] is constructed by a monoid homomorphism

|−| : (ob(V)/∼=,⊗,1)→ (k, ·, 1)

sending finite coproducts to finite sums from the set of isomorphism classes of objects to
a rig k. We write it simply as |−| : V → k. Leinster introduced the following notions to
define magnitude.
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3.2. Definition. Let V be a monoidal category with a monoid homomorphism |−| : V →
k, and let A be a V-category.

1. The similarity matrix of A is the function ξ : ob(A)× ob(A)→ k given by ξ(a, b) =
|A(a, b)|.

2. Let u : ob(A) → k denote the column vector with u(a) = 1 for any object a of A.
A weighting on A is a column vector w : ob(A) → k such that ξw = u. Dually, a
coweighting on A is a row vector v : ob(A)→ k such that vξ = u∗.

Note that we have ∑
i∈ob(A)

w(i) = u∗w = vξw = vu =
∑

j∈ob(A)

v(j)

if both a weighting and a coweighting exist. Moreover,∑
i∈ob(A)

w(i) = u∗w = vξw = vξw′ = u∗w′ =
∑

i∈ob(A)

w′(i)

for two (co)weightings w and w′ on A, and the equality guarantees the following definition.

3.3. Definition. [Definition 1.1.3 of [Lei13]] Let V be a monoidal category with a monoid
homomorphism, and let A be a V-category. We say that A has magnitude if it has both a
weighting w and a coweighting v on A. Then, the magnitude of A is defined by

|A| =
∑

i∈ob(A)

w(i) =
∑

j∈ob(A)

v(j).

3.4. Remark. Let V be a monoidal category with a monoid homomorphism. For a V-
category A, if the similarity matrix ξ of A has an inverse matrix ξ−1 : ob(A)×ob(A)→ k,
then there uniquely exist a weighting and a coweighting, which are given by w(b) =∑

a∈ob(A) ξ
−1(a, b) and v(a) =

∑
b∈ob(A) ξ

−1(a, b). Hence, A has magnitude, and we have

|A| =
∑

a,b∈ob(A) ξ
−1(a, b).

3.5. Definition. Let V be a monoidal model category, and let W be a full subcategory
of V that is closed under finite coproducts and direct summands. A measure of V is a
monoid homomorphism sending finite coproducts to finite sums

|−| : (ob(W)/∼,⊗,1) −→ (k, ·, 1)

from the set of weak equivalence classes of ob(W) to a rig k. We write it simply as
|−| :W → k.

3.6. Definition. For a monoidal model category V with a measure |−| :W → k, we call
a V-category A measurable on W if A(a, b) belongs to ob(W) for any objects a and b of
A.



8 KAZUNORI NOGUCHI AND KOHEI TANAKA

3.7. Definition. Let V be a monoidal model category and |−| :W → k be a measure of
V from a full subcategory W of V to a rig k. A V-category A has Euler characteristic if
A is measurable on W and has magnitude for the measure. Then, we call the magnitude
Euler characteristic of A.

Proposition 1.4.3 and 1.4.4 of [Lei13] show the following properties of Euler charac-
teristic with respect to products and coproducts.

3.8. Proposition. [Lei13] Let V be a monoidal model category with a measure. Suppose
that A1,A2, . . . ,An are V-categories having Euler characteristics. Then,

1. χ(⊗iAi) =
∏

iAi when V is a symmetric monoidal model category. Furthermore,
the unit V-category K consisting of only a single point and the unit 1 in V has Euler
characteristic one.

2. χ(
∐

iAi) =
∑

i χ(Ai). Furthermore, the initial V-category ∅ has Euler characteristic
zero.

3.9. The canonical model structure and the Euler characteristic. We in-
vestigate the relation between the Euler characteristics of V-categories and the canonical
model structure on the category of V-categories.

We first show invariance of the Euler characteristic of V-categories with respect to DK-
equivalences. If V is a monoidal model category, the homotopy category Ho(V) admits a
monoidal structure by the total derived functor of the tensor product of V (see Section
4.3 in [Hov99]). The localizing functor ` : V → Ho(V) is a monoidal functor sending weak
equivalences to isomorphisms. Thus, it induces a 2-functor `∗ : V-Cat → Ho(V)-Cat.
A V-functor f : A → B is a DK-equivalence if and only if `∗(f) : `∗(A) → `∗(B) is an
equivalence of Ho(V)-categories. Hence, the following theorem follows from Proposition
1.4.1 of [Lei13].

3.10. Theorem. Let V be a monoidal model category with a measure. Suppose that two
finite measurable V-categories A and B are DK-equivalent. Then, their Euler character-
istics are equal χ(A) = χ(B) if A or B has Euler characteristic.

Another important homotopical property of the Euler characteristic is the product
formula with respect to fibrations. In the category of topological spaces, a fibration
p : E → B over a connected base B with fiber F yields under suitable hypotheses the
equality χ(E) = χ(B)χ(F ). When B has connected components Bi, the above equality
is generally extended as the following form:

χ(E) =
∑
i∈π0B

χ(Bi)χ(Fi),

where Fi is the fiber over a point of Bi. We focus on the relation between the Euler
characteristic of V-categories and naive fibrations.
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3.11. Definition. Let p : E → B be a morphism in a monoidal category V. The fiber
Fb of p over b : 1→ B is defined by the pullback

Fb //

��

E

p

��
1

b
// B

in V. The fiber Fb of a V-functor q : E → B over an object b of B can be defined in V-Cat
similarly to the above case. Note that choosing an object b of B gives a V-functor K → B
from the unit V-category K consisting of a single object and the unit 1 as the hom-object.
The fiber Fb is a V-category consisting of the inverse image q−1(b) as objects and the fiber
of q : E(x, y)→ B(b, b) over the identity 1b : 1→ B(b, b) as the hom-object Fb(x, y).

3.12. Lemma. Let V be a right proper monoidal model category with cofibrant unit. Sup-
pose that p : E → B is a fibration between fibrant objects in V, and B is connected. Then,
any two fibers Fb and Fb′ are weakly equivalent.

Proof. The morphisms b, b′ : 1 → B are homotopic to each other. Hence, there exist a

cylinder object C with a factorization 1
∐

1
j0

∐
j1→ C → 1 and a morphism h : C → B

such that h ◦ j0 = b and h ◦ j1 = b′. We have the following commutative diagram:

1 b //

��

B E
poo

C
h // B E

poo

1 b′ //

OO

B E
poo

in which each vertical morphism is a weak equivalence. By Proposition 13.3.9 of [Hir03],
we conclude that Fb and Fb′ are weakly equivalent.

3.13. Definition. Let V be a right proper monoidal model category with cofibrant unit.
We say that a measure |−| : W → k of V preserves fibrations if W consists of fibrant
objects, and for any fibration p : E → B such that E, B, and any fiber belong to W and
the base B is decomposed as a finite coproduct

∐
iBi of connected objects Bi, we have

|E| =
∑
i

|Bi| · |Fi|,

where Fi is the fiber of p over any morphism 1 → Bi (by Lemma 3.12, |Fi| does not
depend on the choice of a morphism 1→ Bi).

Unfortunately, the fibers of a naive fibration are not DK-equivalent to each other in
general even if the base V-category is connected. For example, a finite left G-set A for
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a finite non-trivial group G gives an ordinary category AG with two objects 0, 1, and
hom-sets AG(0, 0) = G, AG(0, 1) = A, AG(1, 0) = ∅, and AG(1, 1) = ∗. The projection
from AG to the category 0→ 1 is an isofibration. However, the fibers F0 = G and F1 = ∗
are not DK-equivalent. Thus, we consider the following condition on objects introduced
in [BM13].

Let us first introduce the notion of V-interval objects according to [BM13]. A natural
model of intervals in V-Cat can be considered as I consisting of ob(I) = {0, 1} and
I(i, j) = 1 for 0 5 i, j 5 1. A V-interval object is defined as a cofibrant V-category that
has two objects {0, 1} and is weakly equivalent to I in V-Cat{0,1}. Here, V-Cat{0,1} is the
category of V-categories which have two objects {0, 1}, and V-functors whose maps on
objects are identities. More generally, for a set S, we can define V-CatS as the category of
V-categories which have the set of objects S. The transferred model structure on V-CatS
consists of local weak equivalences and local fibrations.

3.14. Definition. [Definition 1.11 of [BM13]] Let V be a monoidal model category such
that V-Cat{0,1} admits the transferred model structure. A V-interval object is a cofibrant
object in the transferred model structure on V-Cat{0,1} which is weakly equivalent to I.

3.15. Assumption. Assume that our monoidal model category V satisfies the following
conditions:

1. V is adequate (Definition 1.1 in [BM13]), and right proper.

2. There exists a generating set of V-intervals (Definition 1.11 in [BM13]).

3. V is cartesian with cofibrant unit.

4. The set of connected components π0(X) is empty if and only if X is the initial object
∅ in V.

By Proposition 2.5 in [BM13], the first condition guarantees that V-Cat{0,1} admits
the transferred model structure. Regarding the third condition, a cartesian monoidal
category is a monoidal category whose tensor product ⊗ coincides with the categorical
product ×. Hence, the unit object 1 is a terminal object. In particular, V is symmetric.

3.16. Definition. [Section 2.2 in [BM13]] A V-functor is said to be path-lifting if it has
the right lifting property with respect to {i} → H, i = 0, 1, for any V-interval object.

3.17. Lemma. Let V be an adequate monoidal model category with cofibrant unit. For a
path-lifting V-functor p : E → B between locally fibrant V-categories E and B, the induced
functor π0(p) : π0(E)→ π0(B) is an isofibration.
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Proof. Suppose that e is an object of E and an object b of B is homotopy equivalent
to p(e). Let J denote the V-category on {0, 1} representing a single directed morphism,
i.e. J (0, 0) = J (0, 1) = J (1, 1) = 1, and J (1, 0) = ∅. For an isomorphism ϕ : p(e) → b
in π0(B), a corresponding morphism 1 → B(p(e), b) yields the representing functor r :
J → B. Proposition 2.24 of [BM13] guarantees the coherence axiom (Definition 2.18 of
[BM13]), i.e. there exists a cofibration k : J → H into a V-interval object H and an
extension h : H → B such that h ◦ k = r. The path-lifting property extends h to a V-
functor h̃ : H → E satisfying p◦ h̃ = h, h̃(0) = e. The functor π0(h̃) yields an isomorphism
ϕ̃ : e→ h̃(1) in π0(E) such that π0(p)(ϕ̃) = ϕ.

3.18. Corollary. Let V be a right proper and adequate monoidal model category with
cofibrant unit and a generating set of V-intervals. Then, the canonical model structure on
V-Cat exists and is right proper.

Proof. Theorem 1.10 in [BM13] states that V-Cat admits a right proper model structure
whose weak equivalences are DK-equivalences, and fibrations are path-lifting local fibra-
tions. The fibrations between locally fibrant V-categories are naive fibrations by Lemma
3.17. This model structure is canonical in our sense.

3.19. Lemma. Let V be a monoidal model category satisfying Assumption 3.15. The unit
1 of V is connected.

Proof. Since 1 is a terminal object, this is fibrant and the set of morphisms V(1,1)
consists of a single point. Then we have π0(1) = Ho(V)(1,1) ∼= V(1,1)/' = ∗.

3.20. Lemma. Let V be a monoidal model category satisfying Assumption 3.15. Any
V-category can be decomposed as A =

∐
iAi for connected V-categories Ai.

Proof. The category of connected components π0A can be decomposed as π0A =
∐

i Bi
for connected subcategories Bi of π0A. Consider the full subcategory Ai of A having the
same objects as Bi. Then Ai is connected and A =

∐
iAi since A(a, b) = ∅ if and only if

π0A(a, b) = ∅ by Assumption 3.15.

3.21. Definition. Let V be a monoidal model category satisfying Assumption 3.15, and
let a and b be two objects in a V-category A. We say that a and b are;

1. disjoint if both A(a, b) and A(b, a) are initial objects in V,

2. equivalent if there exists a V-interval object H and a V-functor h : H → A such
that h(0) = a and h(1) = b,

3. homotopy equivalent if a and b are isomorphic in π0(A).

If two objects a and b of A are equivalent, then these are homotopy equivalent by applying
π0 to the functor h : H → A. Furthermore, we call that A has (homotopy) coherent
objects if any two objects of A are disjoint or (homotopy) equivalent.
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3.22. Lemma. Let V be a monoidal model category satisfying Assumption 3.15. Suppose
that p : E → B is a naive fibration between fibrant V-categories, and B is connected and
has coherent objects. Then, any two fibers Fb and Fb′ are DK-equivalent.

Proof. Since B is connected and has coherent objects, for any two objects b and b′ in
B, there exist a V-interval object H and h : H → B such that h(0) = b and h(1) = b′.
Note that every V-interval object is DK-equivalent to the unit V-category K. We have
the following commutative diagram:

K b //

��

B Epoo

H h // B Epoo

K b′ //

OO

B Epoo

in which each vertical functor is a DK-equivalence. By Proposition 13.3.9 of [Hir03], we
conclude that Fb and Fb′ are DK-equivalent.

The following lemma is shown as Lemma 2.12 of [BM13].

3.23. Lemma. Let V be a monoidal model category. For two homotopy equivalent objects
a and b, and any object c of a V-category A, the two hom-objects A(a, c) and A(b, c) (resp.
A(c, a) and A(c, b)) are weakly equivalent to each other in V.

In the rest of this section, we assume that a rig k of the range of a measure has a
multiplicative inverse for every non-zero element.

3.24. Lemma. Let V be a monoidal model category with a measure satisfying Assumption
3.15. Suppose that B is a non-empty V-category having Euler characteristic, connected,
and has homotopy coherent objects. Then, we have χ(B) = |B(b, b)|−1 for any object b of
B.

Proof. Fix an object b of B. Lemma 3.23 shows that |B(x, y)| = |B(b, b)| for any objects
x and y of B since any two objects are homotopy equivalent. The similarity matrix ξB
is ξB(x, y) = |B(b, b)| for any objects x and y of B. A weighting w on B can be defined
as w(x) = (ob(B)] · |B(b, b)|)−1, where ob(B)] is the cardinality of ob(B). We obtain the
Euler characteristic χ(B) =

∑
x∈ob(B) w(x) = |B(b, b)|−1.

3.25. Theorem. Suppose that V is a monoidal model category satisfying Assumption
3.15, and it is equipped with a measure that preserves fibrations. Moreover, suppose that
p : E → B is a naive fibration between fibrant V-categories, and E, B, and any fiber have
Euler characteristics. If both E and B have coherent objects, and B is strongly connected,
we have

χ(E) = χ(B)χ(F),

where F is the fiber of p over an object of B.
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Proof. The V-category E can be decomposed as the finite coproduct E =
∐

i Ei for
connected subcategories Ei. Consider the following two pullback diagrams for an arbitrary
object b in B:

Fi //

��

Fb //

��

K
b
��

Ei // E p
// B,

where the V-category Fi is the full subcategory of Fb having p−1(b) ∩ ob(Ei) as objects.
We can choose an object xi of Fi for all i since π0(p) is an isofibration, and B is connected
and has coherent objects. We have the coproduct decomposition of Fb by Fb =

∐
iFi

since F(x, y) = ∅ if E(x, y) = ∅. Since E has coherent objects, Ei also does. Moreover, Fi
also does by the pullback diagram. The Euler characteristic of Fb is

χ(Fb) =
∑
i

χ(Fi) =
∑
i

(|Fi(xi, xi)|)−1

from Lemma 3.24. Since p is a naive fibration, the morphism

p : E(xi, xi) −→ B(p(xi), p(xi))

is a fibration in V , and we have

|E(xi, xi)| = |B(p(xi), p(xi))| · |Fi(xi, xi)|

since B(p(xi), p(xi)) is connected. The following calculation shows the result:

χ(E) =
∑
i

χ(Ei)

=
∑
i

(|E(xi, xi)|)−1

=
∑
i

(|B(p(xi), p(xi))| · |Fi(xi, xi)|)−1

= |B(b, b)|−1
∑
i

(|Fi(xi, xi)|)−1

= χ(B)χ(F).

Let us consider the case in which B is not strongly connected. Since there is no
guarantee that an object X in V can be decomposed by connected objects, we need the
following assumption.
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3.26. Assumption. We assume that our monoidal model category V with a measure
|−| :W → k satisfies Assumption 3.15 and the following properties:

1. The product × is compatible with the coproducts; i.e., the canonical comparison map∐
i,j (Xi × Yj)→ (

∐
iX)×

(∐
j Yj

)
is invertible.

2. Any object X in W is fibrant, and has finitely many connected components.

3. Any object X inW is decomposed as a finite coproduct X =
∐

i∈π0X Xi for connected
objects Xi, and the following is a pullback diagram:

Xi
//

��

X =
∐

iXi

��
1

i
//
∐

i 1.

By the pullback diagram above, these connected objects Xi are determined uniquely
up to isomorphism for an object X. A morphism µ : X × Y → Z in V induces a map on
connected components

π0X × π0Y −→ π0Z, (i, j) 7→ ij.

When the three objects X, Y , and Z are decomposed as X =
∐

i∈π0X Xi, Y =
∐

j∈π0Y Yj,
and Z =

∐
k∈π0Z Zk respectively, we have the following diagram:

Zij //

��

Z

��

Xi × Yj //

��

µij
;;

X × Y ∼=
∐

i,j (Xi × Yj)

��

µ

66

1
ij

//
∐

k 1

1
(i,j)

//
∐

i,j 1,

66

where the front and the back diagrams are pullbacks. The diagram induces a morphism
µij : Xi × Yj → Zij that makes the diagram above commute.

3.27. Lemma. Let V be a monoidal model category with a measure satisfying Assumption
3.26. A monoid object X in W induces a monoid structure on π0X. Let X be decomposed
as the coproduct of the connected objects

X =
∐
i∈π0X

Xi

from Assumption 3.26. If π0X is a group, all connected objects Xi are weakly equivalent
to each other.
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Proof. Denote the unit of π0X by e. For an element i of π0X, the connected objects
π0(Xi−1) = Ho(V)(1, Xi−1) consists of a single point. Consider the following composition:

Xi
∼= Xi × 1

1×i−1

−→ Xi ×Xi−1

µii−1−→ Xe.

The inverse map in Ho(V) is

Xe
∼= Xe × 1

1×i−→ Xe ×Xi
µei−→ Xi

since the multiplication µ on X satisfies the associativity and unitality conditions. Thus,
any connected objects Xi is weakly equivalent to Xe.

3.28. Theorem. Suppose that V is a monoidal model category satisfying Assumption
3.26, and it is equipped with a measure that preserves fibrations. Moreover, suppose that
p : E → B is a naive fibration between V-categories, and E, B, and any fiber have Euler
characteristics. If both E and B have coherent objects, and B is connected, we have

χ(E) = χ(B)χ(F),

where F is the fiber of p over an object of B.

Proof. This is shown similarly to Theorem 3.25. Note that both E and B are fibrant
V-categories since the hom-objects of them belong toW , andW consists of fibrant objects
by Assumption 3.26. We have the finite coproduct decomposition E =

∐
i Ei for connected

V-categories Ei and B(b, b) =
∐

j B(b, b)j for connected objects B(b, b)j for an arbitrary
object b in B. Choose an object xi in Ei such that p(xi) = b for each i. Since the measure
preserves fibrations, we have

|E(xi, xi)| =
∑
j

|B(p(xi), p(xi))j| · |Fj|,

where Fj is the fiber of p : E(xi, xi)→ B(p(xi), p(xi)) over the morphism

1 −→ B(p(xi), p(xi))

picking out a point in the connected component indexed by j. If e of π0B(p(xi), p(xi))
denotes the unit, then Fe is weakly equivalent to F(xi, xi). Consider the following pullback
diagram:

Fj //

��

E(xi, xi)j //

��

E(xi, xi)

p

��
1 // B(p(xi), p(xi))j // B(p(xi), p(xi)).

Similarly to Lemma 3.12 and Lemma 3.22, Fj is weakly equivalent to Fe and F(xi, xi)
since B(p(xi), p(xi))j and B(p(xi), p(xi))e are weakly equivalent to each other by Lemma
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3.27. By Lemma 3.24, we have

χ(E) =
∑
i

χ(Ei)

=
∑
i

(|E(xi, xi)|)−1

=
∑
i

∑
j

(|B(p(xi), p(xi))j| · |Fj|)−1

=
∑
i

(
π0B(p(xi), p(xi))

] · |B(p(xi), p(xi))e| · |F(xi, xi)|
)−1

=
∑
i

(|B(p(xi), p(xi))| · |F(xi, xi)|)−1

= χ(B)χ(F).

Hence, the result follows.

3.29. Corollary. Suppose that V is a monoidal model category satisfying Assumption
3.26, and it is equipped with a measure that preserves fibrations. Moreover, suppose that
p : E → B is a naive fibration between V-categories, and E, B, and any fiber have Euler
characteristics. If both E and B have coherent objects, and B is a finite coproduct

∐
i Bi

for connected V-categories Bi, we have

χ(E) =
∑
i

χ(Bi)χ(Fi),

where Fi is the fiber of p over an object of Bi.

Proof. Let Ei be the full subcategory of E whose set of objects is the inverse image
p−1(ob(Bi)). Then E is decomposed as the coproduct

∐
i Ei and

Ei //

��

E
p

��
Bi // B

is a pullback diagram. The left vertical morphism Ei → Bi is a fibration over the connected
base Bi with the fiber Fi. Theorem 3.28 shows χ(Ei) = χ(Bi)χ(Fi), and Proposition 3.8
completes this proof.

3.30. Examples.

1. Let (Set,×, ∗) be the category of sets equipped with the trivial model structure.
Denote the full subcategory of finite sets by set, and define a measure ] : set→ Z ⊂
Q by the cardinality of sets. A category enriched in Set is a small category. It gives
the Euler characteristic of finite categories that coincides with the one defined in



THE EULER CHARACTERISTIC OF AN ENRICHED CATEGORY 17

[Lei08]. The category of small categories admits the canonical model structure that
coincides with the folk model structure. Corollary 3.29 implies that an isofibration
between finite groupoids satisfies the product formula.

2. Let (Cat,×, ∗) be the category of small categories equipped with the folk model
structure. Denote the full subcategory of finite categories having Leinster’s Euler
characteristic [Lei08] by cat, and define a measure χ : cat→ Q as the Euler charac-
teristic of finite categories. This gives the Euler characteristic of 2-categories. Corol-
lary 3.29 implies that a fibration of 2-categories [Lac02] between finite 2-groupoids
satisfies the product formula. A 2-groupoid G is a 2-category whose 1-morphisms
and 2-morphisms are invertible. For an object x of G, define π1(G, x) as π0G(x, x)
and π2(G, f) as the set of 2-morphisms from a 1-morphism f to itself. Lemma 3.24
implies

χ(G) =
∑

[x]∈π0G

 ∑
[f ]∈π1(G,x)

(π2(G, f)])−1

−1

.

Furthermore, Lemma 3.27 shows that π2(G, f)] = π2(G, 1x)
] for any element [f ] of

π1(G, x). Hence,

χ(G) =
∑

[x]∈π0G

π2(G, 1x)
]

π1(G, x)]
.

3. Let (CGWH,×, ∗) be the category of compactly generated weak Hausdorff spaces
equipped with the classical model structure. Denote the full subcategory of spaces
having the homotopy type of a finite CW-complex by cw, and define a measure
χ : cw → Z ⊂ Q by the topological Euler characteristic. This gives the Euler
characteristic of categories enriched in cw. We will investigate this case deeply in
the next section.

4. The classifying spaces of topological categories

4.1. The geometric realization of simplicial spaces. The classifying space of a
topological category was introduced in [Seg68]. It is defined as the geometric realization
of a simplicial space called the nerve.

4.2. Definition. The category ∆ consists of totally ordered sets

[n] = {0 < 1 < 2 < · · · < n}

for n = 0 as objects and order preserving maps between them as morphisms. A simplicial
space is a functor from the opposite category ∆op of ∆ to the category Top of spaces

∆op −→ Top.
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For a simplicial space X and an order preserving map ϕ : [n] → [m], let ϕ∗ denote
X(ϕ) : Xm → Xn. The category Top∆op

of simplicial spaces is defined as the functor
category from ∆op to Top. Let ∆+ denote the subcategory of ∆ having the same objects
as ∆ and injective order preserving maps as morphisms. If n > m, there is no morphism
[n]→ [m] in ∆+. A ∆-space is a functor

∆op
+ −→ Top.

Let Top∆op
+ denote the category of ∆-spaces. The canonical inclusion functor ∆+ → ∆

induces the forgetful functor

[ : Top∆op −→ Top∆op
+ .

A simplicial space can be described as a sequence of spaces Xn equipped with face
maps dj : Xn → Xn−1 and degeneracy maps si : Xn−1 → Xn satisfying the simplicial
identities (see [May92]). Similarly, a ∆-space is a sequence of spaces equipped with only
face maps. The above functor [ makes simplicial spaces forget their degeneracy maps.

4.3. Definition. A cosimplicial space is a functor ∆→ Top. The standard cosimplicial
space is a functor taking [n] to

∆n =

{
(t0, · · · , tn) ∈ Rn+1

∣∣∣∣∣ ti = 0,
n∑
i=0

ti = 1

}

and taking a map ϕ : [n] → [m] to ϕ∗ : ∆n → ∆m which is the linear extension of the
map vi 7→ vϕ(i) on vertices of standard simplices.

4.4. Definition. Let X be a simplicial space. The geometric realization |X| of X is the
space defined by

|X| =

∐
n=0

∆n ×Xn

 /(t, ϕ∗(x)) ∼ (ϕ∗(t), x)

for all order preserving maps ϕ : [n] → [m] and points x in Xm and t in ∆n. Similarly,
the geometric realization of a ∆-space Y is defined by

||Y || =

∐
n=0

∆n × Yn

 /(t, ϕ∗(y)) ∼ (ϕ∗(t), y)

for all injective order preserving maps ϕ : [n]→ [m] and points y in Ym and t in ∆n. The
fat realization ||X|| of a simplicial space X is defined as the geometric realization ||X[||
of the ∆-space X[. We obtain the canonical projection ||X|| → |X| by taking the quotient
of the degenerate part.
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4.5. Definition. A characteristic map of a space X is a map ϕ : Dn → X from the
closed n-disk Dn whose restriction ϕ|Int(Dn) : Int(Dn) → X to the interior of Dn is an
embedding. The image ϕ(Int(Dn)) is denoted by e, and called an n-cell of X. We say
that n is the dimension of e, and denote it dim e. A Hausdorff space X is a cell complex
if there exists a family of characteristic maps {ϕλ}λ∈Λ of X, and it satisfies the following
conditions:

1. The space X is the disjoint union of {eλ}λ∈Λ as a set, i.e. X =
⋃
λ∈Λ eλ and

eλ ∩ eµ = ∅ whenever λ 6= µ.

2. Let X(n) denote the subspace
⋃

dim eλ5n
eλ of X. Each characteristic map ϕλ : Dn →

X satisfies ϕλ(∂D
n) ⊂ X(n−1).

A subspace A of a cell complex X =
⋃
λ∈Λ eλ is called a subcomplex of X if there exists

Λ′ ⊂ Λ such that A =
⋃
µ∈Λ′ eµ, and eα ⊂ A for each α in Λ′. A cell complex is called

a CW-complex when it satisfies the two conditions; closure-finiteness and weak topology
conditions (see [Hat02]).

The fat realization was introduced by Segal in [Seg74]. Compared with the normal
geometric realization, the fat realization is easy to treat in homotopy theory. The following
two properties do not hold in general for the ordinary geometric realization.

4.6. Proposition. [Proposition A.1 of [Seg74]]

1. For a simplicial space X, if each Xn has the homotopy type of a CW-complex, then
so does ||X||.

2. If X → Y is a map of simplicial spaces such that Xn → Yn is a homotopy equivalence
for each n, then the induced map ||X|| → ||Y || is a homotopy equivalence.

For a simplicial space X and a non-negative integer m, denote

||X||(m) =

 ∐
05n5m

∆n ×Xn

 /(t, ϕ∗(x)) ∼ (ϕ∗(t), x).

We have the following pushout diagram:

∂∆n ×Xn
//

��

||X||(n−1)

��
∆n ×Xn

// ||X||(n),

and the fat realization ||X|| is the following sequential colimit:

||X||(0) ⊂ ||X||(1) ⊂ · · · ⊂ ||X||(n) ⊂ · · · .

This construction is a key point of the proof of the above proposition in [Seg74]. Since the
geometric realization of a ∆-space has the same construction, it has the same properties
as the fat realization.
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4.7. Corollary.

1. For a ∆-space X, if each Xn has the homotopy type of a CW-complex, then so does
||X||.

2. If X → Y is a map of ∆-spaces such that Xn → Yn is a homotopy equivalence for
each n, then the induced map ||X|| → ||Y || is a homotopy equivalence.

Regarding the second property above, we observe more explicit cell structure of ||X||.
We regard the standard simplex ∆n as a natural CW-complex, and denote the n-face
Int(∆n) by τn.

4.8. Definition. Let X be a cell complex. The set of cells of X is denoted by P (X).
We give a partial order on P (X) defined by eλ 5 eµ if eλ ⊂ eµ for any eλ and eµ of P (X).
We call P (X) the face poset of X.

4.9. Proposition. Let X be a ∆-space which is degreewise of the homotopy type of a
CW-complex. Then, ||X|| has the homotopy type of a CW-complex consisting of cells
τn × σ for σ in P (Xn) and n = 0.

Proof. We prove the claim by induction on m for ||X||(m). When m = 0, the space
||X||(0) = ∆0 × X0 is a CW-complex consisting of τ 0 × σ for σ in P (X0). Assume that
||X||(m−1) is a CW-complex consisting of τn × σ for σ in P (Xn) and 0 5 n 5 m − 1.
Consider the following pushout diagram:

∂∆m ×Xm
f //

��

||X||(m−1)

��
∆m ×Xm

// ||X||(m).

We may assume f to be a cellular map by the cellular approximation theorem. Since
∆m×Xm is the product CW-complex and ∂∆m×Xm is a subcomplex, the above pushout
diagram implies that ||X||m is a CW-complex consisting of τn × σ for an element σ of
P (Xn) and 0 5 n 5 m.

4.10. The Euler characteristic of acyclic categories. In this subsection, we
show that the Euler characteristic of an acyclic topological category A coincides with
that of the classifying space BA of A. Recall that the category of topological spaces is
equipped with the monoidal model structure and the measure χ : cw → Z of Example
3.30. We use this measure in the rest of this paper.

4.11. Definition. A topological category T is acyclic if it satisfies the following two
properties:

1. The space T (x, x) consists of a single point for any object x of T .

2. For objects y and z of T , if y 6= z and T (y, z) is not empty, then T (z, y) is empty.
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4.12. Definition. Let T be a topological category. The nerve NT is a simplicial space
defined by

NnT =
∐

xi∈ob(T )

T (xn−1, xn)× T (xn−2, xn−1)× · · · × T (x0, x1).

The face map dj : NnT → Nn−1T is given by composing or removing morphisms; that is,

dj(fn, . . . , f1) =


(fn, . . . , f2) if j = 0,

(fn, . . . , fj+1 ◦ fj, . . . , f1) if 0 < j < n,

(fn−1, . . . , f1) if j = n,

and the degeneracy map si : NnT → Nn+1T is given by inserting an identity morphism;
that is,

si(fn, . . . , f1) = (fn, . . . , fi, 1, fi−1, . . . f1).

The classifying space BT of T is defined as the geometric realization |NT | of the nerve
NT .

4.13. Definition. Let A be an acyclic topological category. The non-degenerate nerve
NA is a ∆-space defined by

NnA =
∐

xi 6=xi−1

A(xn−1, xn)×A(xn−2, xn−1)× · · · × A(x0, x1).

The face map dj : NnA → Nn−1A is given as for the ordinary nerve NA. Since A is
acyclic, the composition of non-identity morphisms in A is also non-identity; therefore,
the maps are well-defined.

4.14. Theorem. [Lemma B.13 in [Tama]] If A is a finite acyclic topological category,
then the classifying space BA is homeomorphic to ||NA||.

Let A be a finite measurable acyclic category. We give a partial order on the set of
objects ob(A) such that a 5 b if A(a, b) is not empty. For simplicity, let χ(a, b) denote
the Euler characteristic of A(a, b). If a 65 b, we have χ(a, b) = 0 since A(a, b) is empty.

The following lemma is a generalization of Corollary 1.5 of [Lei08] and Hall’s theorem
for posets (Proposition 3.8.5 of [Sta12]). Leinster deals with finite skeletal categories (iso-
morphic objects must be equal) in which the only endomorphisms are identities, however
as he mentioned in the part before Proposition 2.11 in [Lei08], this condition is equivalent
to acyclicity in Definition 4.11.

4.15. Proposition. The similarity matrix of a finite measurable acyclic category A has
an inverse matrix µ, and it is given by

µ(a, b) =
∞∑
j=0

∑
a=a0<···<aj−1<aj=b

(−1)jχ(aj−1, b) · · ·χ(a, a1),

where we regard the inner sum as one if j = 0.
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Proof. Consider the product of µ and ξA;

∑
b∈ob(A)

µ(a, b)ξA(b, c) =
∑

b∈ob(A)

∞∑
j=0

∑
a=a0<···<aj−1<aj=b

(−1)jχ(b, c)χ(aj−1, b) · · ·χ(a, a1)

=
∞∑
j=0

∑
a=a0<···<aj−1<aj5c

(−1)jχ(aj, c)χ(aj−1, aj) · · ·χ(a, a1).

When a = c, any object ak in a sequence a = a0 < · · · < aj−1 < aj 5 c must be a since A
is acyclic. Then, the right-hand side is equal to one. If a 6= c, then the right-hand side is

χ(a, c) + (−1)
∑

a<a05c

χ(a1, c)χ(a, a1) + (−1)2
∑

a<a1<a25c

χ(a2, c)χ(a1, a2)χ(a, a1) + · · · .

The i-th term with ai−1 6= c and the (i + 1)-th term with ai = c are canceled; therefore,
the alternating sum collapses to zero. Hence, µ is an inverse matrix.

4.16. Corollary. The Euler characteristic of a finite measurable acyclic category A is

χ(A) =
∞∑
j=0

∑
a0<···<aj

(−1)jχ(aj−1, aj) · · ·χ(a0, a1).

Proof. By Remark 3.4, the Euler characteristic is

χ(A) =
∑

a,b∈ob(A)

µ(a, b) =
∞∑
j=0

∑
a0<···<aj

(−1)jχ(aj−1, aj) · · ·χ(a0, a1).

4.17. Theorem. The Euler characteristic χ(A) of a finite measurable acyclic category
A coincides with the Euler characteristic χ(BA) of the classifying space BA.

Proof. By Theorem 4.14 and Proposition 4.9, the classifying space BA has the homotopy
type of a finite CW-complex whose n-cell corresponds to τ j×σkj×· · ·×σk1 for τ j = Int(∆j)

and a ki-cell σki of A(ai, ai+1) such that n = j+
∑j

i=1 ki and ai 6= ai+1 for any i. Let A(k)
a,b

denote the number of k-cells of A(a, b). The Euler characteristic χ(BA) can be computed
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as the alternating sum of the numbers of cells as follows:

χ(BA) =
∞∑
n=0

(−1)n (the number of n-cells of BA )

=
∞∑
n=0

(−1)n
∞∑
j=0

∑
j+k1+···+kj=n

∑
a0<···<aj

A(kj)
aj−1,aj

· · · A(k1)
a0,a1

=
∞∑
n=0

∞∑
j=0

∑
j+k1+···+kj=n

∑
a0<···<aj

(−1)j(−1)kjA(kj)
aj−1,aj

· · · (−1)k1A(k1)
a0,a1

=
∞∑
j=0

∑
1≤`≤j

∞∑
k`=0

∑
a0<···<aj

(−1)j(−1)kjA(kj)
aj−1,aj

· · · (−1)k1A(k1)
a0,a1

=
∞∑
j=0

∑
a0<···<aj

(−1)jχ(aj−1, aj) · · ·χ(a0, a1).

Consequently we have χ(BA) = χ(A) by Corollary 4.16.

5. The Euler characteristic of a cellular stratified space

A cellular stratified space is a generalization of a cell complex introduced by Tamaki in
[Tama]. He introduces many examples of cellular stratified spaces, for instance, regular
cell complexes, complements of complexified hyperplane arrangements, and configuration
spaces of graphs and spheres [Tama], [Tamb], [Tamc].

5.1. Definition. A stratification on a Hausdorff space X indexed by a poset Λ is a map
π : X → Λ satisfying the following properties:

1. For each λ in Λ, π−1(λ) is connected and open in π−1(λ).

2. For λ and µ in Λ, π−1(λ) ⊂ π−1(µ) if and only if λ 5 µ.

For simplicity, we denote eλ = π−1(λ) and call it a face. The indexing poset Λ is called
the face poset of X and denoted by P (X). A stratified space (X, π) is a pair of a space X
and its stratification π. Sometimes we denote it X for simplicity. When the face poset is
finite, we call the stratified space finite. We say a face eλ is normal if eµ ⊂ eλ whenever
eµ ∩ eλ 6= ∅. When all faces are normal, the stratification is said to be normal.

Let (X, πX) and (Y, πY ) be stratified spaces. A morphism of stratified spaces (f, f) is
a pair of a continuous map f : X −→ Y and a map of posets f : P (X) −→ P (Y ) making
the following diagram commutative:

X

πX
��

f // Y

πY
��

P (X)
f

// P (Y ).
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When f is a homeomorphism, the map (f, f) is called a subdivision.

5.2. Definition.

1. A globular n-cell is a subspace D of the disk Dn containing the interior Int(Dn) of
Dn.

2. For a space X and a subspace e of X, an n-cell structure on e, or simply an n-
cell e is a quotient map ϕ : D → e from a globular n-cell D whose restriction
ϕ|Int(Dn) : Int(Dn) → e is a homeomorphism. We say that n is the dimension of e,
and denote it dim e. We say that an n-cell is closed when D is the closed disk Dn.

3. A cellular stratified space is a stratified space whose faces are equipped with cell
structures such that

ϕ(∂Dλ) ⊂
⋃

dim eµ<dim eλ

eµ,

where ∂Dλ is the boundary of Dλ. When all cells are closed (called closed cellular
stratified space), this means a cell complex in Def 4.5. Furthermore, a cellular
stratified space is called a CW-stratified space if it satisfies the closure finite and
weak topology conditions (see Definition 2.19 in [Tama]).

Let (X, π) be a stratified space and A be a subspace of X. If the restriction π|A is a
stratification on A, the pair (A, π|A) is called a stratified subspace of (X, π).

5.3. Definition. [Definition 3.21 of [Tama]] A cylindrical structure on a normal cellular
stratified space X consists of

• a normal stratification on ∂Dn containing ∂Dλ as a stratified subspace for each
n-cell ϕλ : Dλ → eλ,

• a stratified space Pµ,λ called the parameter space, and a morphism of stratified spaces

bµ,λ : Pµ,λ ×Dµ −→ ∂Dλ

for each pair of cells eµ ⊂ ∂eλ, and

• a morphism of stratified spaces

cλ0,λ1,λ2 : Pλ1,λ2 × Pλ0,λ1 −→ Pλ0,λ2

for each sequence eλ0 ⊂ eλ1 ⊂ eλ2

satisfying the following conditions:

1. The restriction of bµ,λ to Pµ,λ × Int(Dµ) is a homeomorphism onto its image.
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2. The following three types of diagrams are commutative:

Dλ
ϕλ // X

Pµ,λ ×Dµ

bµ,λ

OO

pr2 // Dµ

ϕµ

OO

Pλ1,λ2 × Pλ0,λ1 ×Dλ0

1×bλ0,λ1//

cλ0,λ1,λ2×1

��

Pλ1,λ2 ×Dλ1

bλ1,λ2
��

Pλ0,λ2 ×Dλ0 bλ0,λ2

// Dλ2

Pλ2,λ3 × Pλ1,λ2 × Pλ0,λ1
c×1 //

1×c
��

Pλ1,λ3 × Pλ0,λ1
c

��
Pλ2,λ3 × Pλ0,λ2 c

// Pλ0,λ3 .

3. We have
∂Dλ =

⋃
eµ⊂∂eλ

bµ,λ(Pµ,λ × Int(Dµ))

as a stratified space.

A normal cellular stratified space equipped with a cylindrical structure is called a cylindri-
cally normal cellular stratified space.

5.4. Definition. For a cylindrically normal cellular stratified space X, define a topolog-
ical category C(X) as follows. The set of objects ob(C(X)) is the set P (X). The space
of morphisms is defined by

C(X)(µ, λ) = Pµ,λ

for each eµ ⊂ eλ in P (X), and the composition is defined by the map cλ0,λ1,λ2.

Note that C(X) is an acyclic topological category.
Tamaki constructs an embedding BC(X) ↪→ X from the classifying space of C(X) to

the original cylindrically normal cellular stratified space X. Note that he considers the
more general “stellar” stratified spaces rather than cellular stratified spaces in his paper
[Tama].

5.5. Theorem. [Theorem 4.15 in [Tama]] There exists an embedding BC(X) ↪→ X for
a cylindrically normal cellular stratified space X. Furthermore, when all cells are closed,
the above embedding is a homeomorphism.

In order to show that the above embedding is a homotopy equivalence for a general
cylindrical cellular stratified space, Tamaki considers the following condition. See section
3.3 in [Tama] for details.
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5.6. Definition. A locally polyhedral cellular stratified space consists of

• a cylindrically normal CW-stratified space X,

• a family of Euclidean polyhedral complexes F̃λ indexed by λ in P (X) and

• a family of homeomorphisms αλ : F̃λ → Ddim eλ indexed by λ in P (X),

satisfying the following conditions:

1. For each cell eλ, the homeomorphism α : F̃λ → Ddim eλ is a subdivision of the strat-
ified space, where the stratification of Ddim eλ is defined by the cylindrical structure.

2. For each pair eµ < eλ, the parameter space Pµ,λ is a locally cone-like space and the
composition

Pµ,λ × Fµ
1×αµ−→ Pµ,λ ×Dµ

bµ,λ−→ Dλ

α−1
λ−→ Fλ

is a PL map, where Fλ = α−1(Dλ).

Each αλ is called a polyhedral replacement of the cell structure map of eλ.

5.7. Theorem. [Theorem 4.16 in [Tama]] If X is a locally polyhedral cellular stratified
space, then there exists an embedding BC(X) ↪→ X whose image is a deformation retract
of X.

5.8. Corollary. If X is a locally polyhedral cellular stratified space, then the classifying
space BC(X) of the cylindrical face category C(X) of X is homotopy equivalent to X.

Now, we obtain the following main theorem. This is a generalization of a result on
the Euler characteristic of ordinary cell complexes (Proposition 3.8.8 in [Sta12]).

5.9. Theorem. Let X be a finite locally polyhedral cellular stratified space. If each pa-
rameter space Pλ,µ belongs to cw for λ < µ in P (X), then the Euler characteristic χ(X)
of X is equal to χ(C(X)) of the cylindrical face category.

Proof. It follows from Theorem 4.17 and Corollary 5.8 that

χ(X) = χ(BC(X)) = χ(C(X)).
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5.10. Example. In Example 4.7 in [Tama], it is shown that the complex projective space
with the minimal decomposition CPn = e0 ∪ e2 ∪ · · · ∪ e2n is a closed cylindrical cellular
stratified space whose face category C(CPn) has the form

• S1
// • S1

// • S1
// · · · S1

// •.

Since χ(S1) = 0, the similarity matrix ξ of C(CPn) is the unit matrix of dimension
n + 1. We can take a weighting w as w(e2i) = 1 for all 0 5 i 5 n. Hence, χ(CPn) =
χ (C (CPn)) = n+ 1.

However, for obtaining χ(CPn), it is easier to calculate the alternating sum of the
numbers of cells than to proceed as above. The next example is of a non-closed cellular
stratified space, where it is difficult to calculate the Euler characteristic from the numbers
of cells.

5.11. Example. For the spheres Sn and Sm, let X = Sn × Sm − {∗}. This is a cellular
stratified space consisting of the cell structure

ϕj : Dj = Int(Dj) −→ Sj − {∗},

which is the restriction of the canonical projection Dj → Sj collapsing ∂Dj to a single
point for j = n,m, and

ϕn+m = ϕn × ϕm : Dn+m = (Dn ×Dm)− (∂Dn × ∂Dm) −→ Sn × Sm − {∗},

where we regard Dn ×Dm as Dn+m. The boundary of Dn+m is

∂Dn+m = ∂(Dn ×Dm)− (∂Dn × ∂Dm)

= (∂Dn ×Dm) ∪ (Dn × ∂Dm)− (∂Dn × ∂Dm)

= (∂Dn × Int(Dm))
∐

(Int(Dn)× ∂Dm) .

A normal stratification on ∂Dn+m is induced by the canonical cell decomposition on ∂In+m

and ∂In+m ∼= ∂Dn+m, where I is the interval [0, 1]. The cylindrical structure is given by
the inclusions

bij : Si−1 ×Dj = Si−1 × Int(Dj) ↪→ ∂Dn+m

for (i, j) = (n,m), (m,n). Then the cylindrical face category C(X) has the form:

• Sn−1
// • •.Sm−1
oo

By a family of polyhedral replacements {αj : Ij ∼= Dj}j=n,m,m+n, the space X is a locally
polyhedral cellular stratified space. The similarity matrix

ξ =

1 0 χ(Sn−1)
0 1 χ(Sm−1)
0 0 1


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of C(X) has an inverse matrix

ξ−1 =

1 0 −χ(Sn−1)
0 1 −χ(Sm−1)
0 0 1

 .

Theorem 5.9 shows that the Euler characteristic of X is

χ(X) = χ(C(X)) = 3− χ(Sn−1)− χ(Sm−1) =


−1 if both n and m are odd,

3 if both n and m are even,

1 otherwise.

Indeed, the space X = Sn× Sm−{∗} is homotopy equivalent to BC(X) = Sn−1 ∨ Sm−1.
The Euler characteristic χ(X) can also be obtained by calculating H∗(S

n−1 ∨ Sm−1).
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