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PARTIAL-SUP LATTICES

TOBY KENNEY

Abstract. The study of sup lattices teaches us the important distinction between the
algebraic part of the structure (in this case suprema) and the coincidental part of the
structure (in this case infima). While a sup lattice happens to have all infima, only the
suprema are part of the algebraic structure.

Extending this idea, we look at posets that happen to have all suprema (and therefore
all infima), but we will only declare some of them to be part of the algebraic structure
(which we will call joins). We find that a lot of the theory of complete distributivity
for sup lattices can be extended to this context. There are a lot of natural examples of
completely join-distributive partial lattice complete partial orders, including for example,
the lattice of all equivalence relations on a set X, and the lattice of all subgroups of a
group G. In both cases we define the join operation as union. This is a partial operation,
because for example, the union of subgroups of a group is not necessarily a subgroup.
However, sometimes it is, and keeping track of this can help with topics such as the
inclusion-exclusion principle.

Another motivation for the study of sup lattices is as a simplified model for the study of
presheaf categories. The construction of downsets is a form of the Yoneda embedding,
and the study of downset lattices can be a useful guide for the study of presheaf cate-
gories. In this context, partial lattices can be viewed as a simplified model for the study
of sheaf categories.

1. Introduction and Preliminaries

A large number of naturally-occurring complete lattices occur as meet sublattices of other
lattices. Examples include: the lattice of subalgebras of an algebra as a sublattice of the
lattice of all subsets of the algebra; and the lattice of closed sets of a topological space
as a sublattice of the lattice of all subsets of the space. In these examples, we have
two notions of joins — one from the original larger lattice, and one derived from the new
sublattice. This construction always produces a complete lattice with all suprema, because
the existence of arbitrary infima implies the existence of arbitrary suprema. However, the
newly created suprema may not be naturally occurring constructions, instead, they are
induced by the closure operation that results from the existence of arbitrary infima.

Sometimes, however, the new suprema happen to coincide with the original joins.
Often when this occurs we can say a lot more about the resulting joins — for example,
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we can apply the inclusion-exclusion principle to measure the size of the join from the
sizes of the elements. It is therefore desirable to keep track of these special joins as part
of the structure. For this purpose, we define a partial sup lattice as a partial order which
in addition has a partial join operation, representing these special joins.

It turns out that much of the theory for sup lattices, in particular the theory relating
to distributivity, applies to partial sup lattices. We can view sup lattices as a subcategory
in partial sup lattices, and show how to extend much of the theory to partial sup lattices.

In Section 2, we provide a definition of what it means to be a partial sup lattice,
and what the appropriate definition is for homomorphisms between partial sup lattices.
Finally, we will look into the relationship between partial sup lattices and total sup lattices,
showing how we can freely extend any partial sup lattice to a total sup lattice by adjoining
the necessary joins.

In Section 3, we look at alternative ways in which we can describe partial sup lattices.
We start by extending the totally below relation to partial sup lattices. Recall that the
totally below relation (defined by [3], first called “totally below” in [1]) on a complete
lattice is defined by a ! b if and only if for any set X with

�
X ¥ b, we have some

x P X with a ¤ x. The totally below relation is crucial for our understanding of com-
plete distributivity for sup lattices, and we see that it has the same relation to complete
distributivity in partial sup lattices, with many of the results for sup lattices extending
directly to partial sup lattices. In addition, the partial join structure of a given partial
sup lattice is entirely determined by its totally below relation. That is, if we know the
partial order on L, and its totally below relation, then we can reconstruct the partial join
structure on L. Therefore, we can use the totally below relation as a means to describe
a partial lattice structure. We use this to show that on a given finite lattice L, there is
a largest partial lattice structure which makes L completely join-distributive. We then
look at other ways to describe the partial sup lattice structure — one through a closure
operation, and another in a purely algebraic way, without any reference to the partial or-
der (in the same way that lattices can be described by just the join and meet operations,
without any reference to the underlying partial order).

Another invaluable tool in the study of sup lattices is the downset construction. This
has been systematically studied in the series of papers [1], [5], [6], [7], [4], for its advantages
of defining complete distributivity in a constructive context without any requirement for
the axiom of choice. In Section 3.20, we find the correct way to extend this downset
construction to partial sup lattices, and recover most of the results of the above papers
in this context.

Finally in Section 4 we look at the interplay between several different categories of
partial sup lattices, with the relevant functors and adjoints.

At this point, we fix notation for the rest of the paper: For a poset X, and an element
x P X, we will write Ópxq to denote the principal downset generated by x, that is, the
set Ópxq � ta P X|a ¤ xu. Similarly, we will write ópxq � ta P X|a ! xu. Downsets are
important for understanding sup lattices, and we will write A �ÓX to mean that A is a
downset of X. We will write DX to represent the complete lattice of all downsets of X,
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ordered by set inclusion.

2. Basic Definition

2.1. Partial Sup Lattices. We start by defining partial sup structure on a partial
order.

2.2. Definition. A pre-partial-sup partial order is a poset X with a partial operation�
: DX /X, which is the supremum whenever it is defined, and satisfies the sandwich

condition: if A � B � Óp
�

Aq then
�

B �
�

A.

2.3. Remark. We have defined joins only for downsets here. We will however sometimes
refer to joins for general subsets of X. When we do this, we will mean the join of the
downset generated by this subset.

2.4. Definition. For a pre-partial-sup partial order X, the collection JX of unioned
downsets of X is the collection of downsets D of X with the property that for any x P X,
if x �

�
Ópxq XD, then x �

�
Ópxq XD.

This definition may at first seem a little strange. If the underlying partial order X
has all suprema, we would like JX to be the collection of downsets which have joins.
As we will show below, in the case when X is a partial sup lattice, the definition above
makes JX into the collection of sets for which join is defined. However, this is the right
generalisation for the case where X does not have all suprema. Whenever we equip the
Dedekind-MacNeille completion DX�� of X with a partial sup lattice structure, where
we will let JDX�� be the set of downsets for which

�
is defined in DX��, we can

restrict this structure back to X. This restriction map from partial sup structures on
DX�� to partial sup structures on X has a right adjoint. A unioned downset of X is the
intersection of a unioned downset in DX�� with this adjoint structure, with X.

2.5. Definition. A pre-partial-sup partial order X is a partial sup partial order if the
collection JX of unioned downsets of X has the following properties:

• If
�

A is defined, then A P JX.

• JX contains all principal downsets.

• JX is closed under arbitrary intersections.

• if A �ÓJX,
�

Y � x and for any a P Y , there is some A P A with
�

A ¥ a, then
there is some B �

�
A with

�
B ¥ x.

If L is a partial sup poset in which every subset has a supremum, then we say L is a
partial sup lattice.

2.6. Lemma. For a partial sup lattice L, JL is the set of downsets for which join is
defined.
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Proof. Clearly, for X P JL, let x �
�

X. We have that x �
�
pÓpxq X Xq �

�
X.

Therefore, join is defined for X. Conversely, if
�

X is defined, then part of the definition
gives that X P JL.

2.7. Proposition. A poset L equipped with a partial operation
�

: PL /L is a partial
sup lattice if and only if every subset X � L has a least upper bound (denoted

�
X) such

that
�

X �
�

X whenever it is defined and the following properties hold.

• If A � B,
�

A is defined, and B � Ó
�

A then
�

B is also defined (and equal to�
A).

• The set JL of downsets on which join is defined, satisfies the following properties:

– All principal downsets are in JL.

– JL is closed under arbitrary intersections.

– If A � JL, and X � Ót
�

A|A P Au P JL, then there is some Y �
�
A with�

Y ¥
�

X.

Proof. The conditions are clearly the same conditions as for a poset. We showed in
Lemma 2.6 that JL is the collection of unioned downsets as defined in Definition 2.4.

The idea is that a partial sup lattice can represent a meet-sublattice of a chosen lattice.
The partial join operation

�
represents the joins in the original larger lattice.

2.8. Examples.

• For any complete lattice L, we can form a partial sup lattice by taking all joins to
be defined.

• For any complete lattice L, we can form a partial sup lattice where only joins of
principal downsets are defined.

• The lattice of subgroups of a group G, with joins being unions.

• The lattice of convex sets in a metric space, with joins being unions.

2.9. Theorem. Let L be a completely distributive complete lattice, and let M be a com-
plete meet sublattice of L. If we equip M with the partial order acquired from L, and the
partial joins from L, whenever the join is in M , then M is a partial sup lattice.
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Proof. We clearly have that
�

is the supremum whenever it is defined. Furthermore, if
X is a subset of Y , and

�
X � x, and

�
Y � x in M , then we have that in L,

�
X � x,

and since Y contains X, we have
�

Y ¥
�

X � x in L, and since
�

Y � x in M , we
have that x is an upper bound for Y in L, so

�
Y ¤ x in L. Thus

�
Y � x in L, and�

Y � x in M .
Clearly

�
Ópxq � x in L, so

�
Ópxq � x in M .

Let A be a family of downsets of M for which join is defined. That is, for any A P A,�
A P M . Now since M is a meet-sublattice of L,

��
A �

�
t
�

A|A P Au P M (by
complete distributivity of L) so the intersection does have a join.

Finally, let A be a family of subsets of M for which join is defined, and let
�

X � y,
and for any x P X, we have x ¤

�
A for some A P A. By complete distributivity of L,

we have x �
�
pÓpxq X Aqq in L, and since M is closed under meets, we have Ópxq X A

is the downset generated by Ópxq X A X M , so x �
�
pÓpxq X Aq in M . This means�

X �
�
t
�
pÓpxq X Aq|x P Xu �

�
pÓpxq X

�
Aq.

2.10. Proposition. If L is a frame, and M is a complete meet sublattice of L, then
there is a partial sup lattice whose underlying poset is L, and whose joins are defined by�

A exists (and is equal to
�

A) if and only if A contains all elements of M below
�

A.

Proof. By definition,
�

agrees with sup whenever it is defined, and the sandwich condi-
tion clearly holds. We need to show that the necessary conditions on JL hold. Obviously
Ópxq contains all elements of M below x, so its join is defined. Suppose A � JL, and
let A �

�
A. Let a �

��
A. Now let x ¤ a, and x P M . For any A P A, we know

x ¤
�

A and x P M , so by definition, we have x P A. Therefore, x P
�
A. This means

that
��

A � a.
Finally suppose A � JL, X P JL with

�
X � y, and for any x P X, there is some

A P A with
�

A ¥ x. Since L is a frame, we have x �
�
pÓpxqXAq. Let a PM with a ¤ y.

Since
�

X � y, we know that a P X. Therefore, there is some A P A with
�

A � a. Since
a ¤ a and a PM , this means that a P A, so we must have a P

�
A. Therefore, ÓpxqX

�
A

contains all elements of M below x, and has supremum x, so x �
�
pÓpxq X

�
Aq as

required.

2.11. Definition. A partial sup lattice is completely join-distributive if for any collection
tDi|i P Iu of downsets in L, such that every

�
Di is defined, we have

�
t
�

Di|i P Iu ���
tDi|i P Iu

2.12. Example. A complete meet sublattice of a completely distributive complete lattice,
with joins given by suprema in the larger lattice is completely join-distributive.

2.13. Homomorphisms. There are three plausible notions of homomorphisms of partial
sup lattices based on the three notions of when partial functions f and g should be
considered the same:

1. f and g are the same if whenever fpxq and gpxq are both defined, we have fpxq �
gpxq.
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2. f and g are the same if whenever fpxq is defined, so is gpxq, and fpxq � gpxq.

3. f and g are the same if fpxq is defined if and only if gpxq is defined, and in that
case fpxq � gpxq.

Based on these we get the following three notions of homomorphism:

2.14. Definition. A function f : pL,¤,
�
q // pM,¤,

�
q is:

1. a weak homomorphism if f is order-preserving, and whenever A P JL and DfpAq P
JM , we have fp

�
Aq �

�
pDfpAqq.

2. a homomorphism if whenever A P JL we have DfpAq P JM , and fp
�

Aq ��
pDfpAqq.

3. a strict homomorphism if whenever A P JL we have DfpAq P JM , and fp
�

Aq ��
pDfpAqq, and conversely, whenever DfpAq P JM , we have A P JL.

With this definition of homomorphism, the collection of partial sup lattices and homo-
morphisms forms a category, which we denote PartSup.

2.15. Remark. Since joins of principal downsets are always defined, the last two defini-
tions imply that f is an order-preserving function.

2.16. Examples. The lattice of subgroups of a group has an embedding into the lattice
of equivalence relations on the underlying set. This is a strict homomorphism.

For any meet homomorphism f : L //M to a partial sup lattice, there is a partial
sup lattice structure on L that makes this a strict homomorphism.

2.17. Example. Let pX,Oq be a topological space. Let PX be the collection of subsets
of X ordered by inclusion, where we define

�
A � A if A �

�
A and A contains all

closed subsets of A. (So the totally below relation is the smallest possible totally below
relation which makes closed subsets totally compact.) This is a partial sup lattice by
Proposition 2.10.

For another topological space Y and a function f : X //Y , we can define Pf :
PX //PY by PfpAq � tfpaq|a P Au. Pf is a partial sup homomorphism if and only
if f is continuous. (This will follow easily from Proposition 2.28 in the next subsection.)

2.17.1. Monos, Epis and Factorisation. We can look at which homomorphisms of
partial sup lattices are monomorphisms and epimorphisms in the category PartSup of
partial sup lattices and homomorphisms.

2.18. Proposition. A partial sup lattice homomorphism f is a monomorphism if and
only if it is injective (as a function).

Proof. Since composition is function composition, the if part is obvious. Conversely, let
f be a monomorphism. If fpxq � fpyq, then we consider the homomorphisms from the
1-element partial sup lattice that send the unique element to x and y respectively. These
have the same composite with f , so they must be equal, i.e. x � y, so f is injective.
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2.19. Proposition. A partial sup homomorphism f : L //M is an epimorphism if
and only if every element of M is the join of elements in the image of f .

Proof. Clearly, if every element of M is the join of elements in the image of f , then any

two homomorphisms M
g
//

h
//N with gf � hf must agree on all elements in the image of

f . Since g and h are partial sup homomorphisms, whenever x �
�

X, if gpXq � hpXq,
then we must have gpxq � hpxq. For any x, we can choose an X with gpXq � hpXq
and x �

�
X, by choosing X to be generated by a subset of the image of f , so we get

gpxq � hpxq, i.e. g � h as required.
Conversely, suppose that f is an epimorphism. Suppose that x P M is not the join

of elements in the image of f . Let I be the ideal generated by elements in the image
of f below x (that is, the smallest downset closed under joins that contains all elements
in the image of f below x). We define homomorphisms g : M // 2 and h : M // 2
by gpaq � 0 if and only if a P I and hpaq � 0 if and only if a ¤ x. Clearly gfpyq � 0
and hfpyq � 0 both occur if and only if fpyq ¤ x. Therefore, gf � hf , so g � h, so
x P I, contradicting our assumption that x is not the join of elements in the image of f .
Therefore, x must be a join of elements in the image of f .

2.20. Proposition. A partial sup homomorphism f : A //C is a strong epimorphism
if and only if f is surjective and creates joins — that is if we have

�
X � x in C, we

have Y � A with fpY q � X and
�

Y � y for some y P A.

Proof. Suppose f is surjective and creates joins. Suppose we have a commutative square

A a //

f_��

B
��

g
��

C
b
// D

where g is injective. We want to construct C h //B that makes both triangles commute.
Clearly, h is uniquely defined because g is injective, so hpxq must be the unique y P B
with gpyq � bpxq, we need to show that this exists. However, since f is surjective, there
is some z P A with fpzq � x, so we have gpapzqq � bpfpzqq � bpxq, so y � apzq is an
element of B satisfying gpyq � bpxq as required. We now need to show that h is a partial
sup homomorphism. Suppose that

�
X � x in C. We want to show that

�
hpXq � hpxq

in B. However, since f creates joins, we have some Y � A with
�

Y � y, fpY q � X
and fpyq � x. Applying the above definition of h, we see that hpXq � hfpY q � apY q
and hpxq � apyq, so since a is a partial sup homomorphism, we have

�
hpXq �

�
apY q �

ap
�

Y q � apyq � hpxq.
Conversely, suppose that f is a strong epimorphism (orthogonal to all monomorph-

isms). Suppose x P C is not in the image of f . We can form B //
g
//C by saying B has the

same elements as C, but that x is totally compact in B (and all other joins in B are as
in C) and g is the identity function on elements. The function f clearly factors through
g, but g is not the identity, so the identity on C cannot factor through g. Therefore f is
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surjective. Suppose that f does not create the join
�

X � x, then we can form a new
partial sup lattice with the same elements as C, but with this join excluded. f will factor
through this new partial sup structure, but this is not an isomorphism.

2.21. Theorem. Any partial sup homomorphism f : L //M factors as a strong epi-
morphism followed by a monomorphism.

Proof. We form the factorisation N as the subposet of M consisting of elements in the
image of f , with joins exactly the joins created by f . It is now clear that this factorisation
consists of a strong epimorphism followed by a monomorphism.

2.22. Theorem. The collection of completely join-distributive partial sup lattices is closed
under inf-preserving subobjects and inf-preserving strong epimorphic images

Proof. Let L
f
//M be an inf-preserving partial sup monomorphism, and let M be com-

pletely join-distributive. Let X be a family of downsets in L such that for each X P X ,�
X is defined. Since f is a partial sup homomorphism, we have that

�
fpXq is also

defined, and is equal to fp
�

Xq. Since the collection of downsets whose join is defined
is closed under intersection, we have that

��
X is defined. Let x �

��
X . We want

to show that x �
�

XPX
�

X. Let y �
�

XPX
�

X. Since f is injective, we just need
to show that fpxq � fpyq. However, since f is inf-preserving, we have that fpyq ��

XPX fp
�

Xq. Since M is completely join-distributive, this gives
�

XPX fp
�

Xq ���
XPX fpXq. Clearly, since f is injective,

�
XPX fpXq � fp

�
X q, so since f preserves

joins, we have
��

XPX fpXq � fp
��

X q � fpxq. Therefore, since f is injective, we have
x � y as required. Therefore, L is completely join-distributive.

Now let L
f
//M be an inf-preserving strong epimorphic partial sup homomorphism,

and let L be completely join-distributive. Let X be a family of downsets in M such
that for each X P X ,

�
X is defined. Since f is strongly epimorphic, it creates each of

these joins. That is, we have a family tYX |X P X u, of downsets in L with fpYXq � X
and fp

�
YXq �

�
X. Since L is completely join-distributive, we have

�
XPX

�
YX ���

XPX YX . Applying f to both sides gives©
XPX

§
X �

§
fp
£
XPX

YXq �
§ £

XPX
fpYXq �

§ £
XPX

X

so M is completely join-distributive.

2.23. Ideals and Total sup lattices. There is clearly a full subcategory of PartSup,
consisting of total sup lattices, where all joins are defined. It is clear that this is isomorphic
to the category Sup of sup lattices, since a partial sup lattice homomorphism between
sup lattices must preserve all joins that are defined, which in this case means all suprema.
We will show:

2.24. Theorem. The subcategory of total sup lattices is reflective in the category of par-
tial sup lattices.

To show this, we will need the concept of an ideal for a partial sup lattice.
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2.25. Definition. Let L be a partial sup lattice. An ideal in L is a downset of L, closed
under

�
.

2.26. Lemma. For a partial sup lattice L, the set IL of ideals in L is a complete lattice
(as an order) under set inclusion.

Proof. Let I be a set of ideals in L. We want to show that
�
I is an ideal. It is clearly

a downset. Furthermore, for any X �
�
I, for any I P I, we have X � I, so since I is an

ideal, we have
�

X P I. Since this holds for all I P I, this gives
�

X P
�
I. Therefore,�

I is closed under
�

, so it is an ideal.

2.27. Lemma. For any element x P L, the principal downset Ópxq of all elements below x,

is an ideal. Furthermore, the inclusion L
Ó
// IL sending every element to the principal

downset it generates is a partial lattice homomorphism

Proof. It is easy to check that Ópxq is an ideal. Suppose we have
�

X � x in L.
Then we want to show that Ópxq is the ideal generated by

�
yPX Ópyq. We know that

X �
�

yPX Ópyq, so the ideal generated by this set must contain
�

X � x. It must
therefore contain Ópxq, and since x is an upper bound for

�
yPX Ópyq, Ópxq must be the

ideal generated by
�

yPX Ópyq. Therefore Ó is a partial sup lattice homomorphism.

Proof of Theorem. We have shown that the set IL of ideals in L is a complete lattice.
We need to show that for any total lattice M , morphisms from L to M correspond to
morphisms from IL to M .

Given a partial sup lattice homomorphism L
f
//M , where M is a total sup lattice,

we want to show that f factors uniquely through Ó. Uniqueness is obvious, since any

I P IL must satisfy I �
�

xPI Ópxq. Therefore, we are forced to define IL
f̂
//M by

f̂pIq �
�

xPI fpxq. It just remains to check that this is a sup homomorphism. Suppose�
I � I in IL. We need to show that f̂pIq �

�
JPI f̂pJq. Since f̂ is obviously order-

preserving, we just need to show f̂pIq ¤
�

JPI f̂pJq. That is
�

xPI fpxq ¤
�

JPI
�

xPJ fpxq.
We can rewrite the right-hand side as

�
xP
�

I fpxq. Furthermore, we know that I is the

ideal generated by
�
I, so for any x P I, there is some X �

�
I with x ¤

�
X. Since f is

a partial sup homomorphism, we have that fpxq ¤
�

yPX fpyq ¤
�

yP
�

I fpyq. Therefore,

we get f̂pIq �
�

xPI fpxq ¤
�

yP
�

I fpyq as required.

2.28. Proposition. A function L
f
//M between partial sup lattices, is a homomorph-

ism if and only if its inverse image preserves ideals.

Proof. If f is a partial sup homomorphism and I is an ideal in M , then let X � f�1pIq.
We want to show that

�
X P f�1pIq if it is defined. If

�
X is defined, then since f is a

partial sup homomorphism, we must have
�

DfpXq � fp
�

Xq, and Dfpxq � I, so since
I is an ideal, fp

�
Xq P I. Therefore,

�
X P f�1pIq, so f�1pIq is an ideal.

Conversely, suppose that f�1 preserves ideals. We first need to show that f is order
preserving. However, principal downsets are ideals, so f�1pÓpfpxqqq is an ideal, and in
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particular a downset. Therefore, if a ¤ x, then a P f�1pÓpfpxqqq, since x P f�1pÓpfpxqqq.
This means fpaq P Ópfpxqq, i.e. fpaq ¤ fpxq, so f is order-preserving. Now suppose�

X is defined for some downset X � L. We want to show that fp
�

Xq �
�

DfpXq.
Certainly fp

�
Xq is an upper bound for DfpXq. Also for any ideal I containing DfpXq,

we must have fp
�

Xq P I, since otherwise f�1pIq would be an ideal in L containing X
but not

�
X, which cannot happen. Therefore, Ópfp

�
Xqq is the smallest ideal containing

DfpXq, so fp
�

Xq �
�

DfpXq as required.

We see easily that PartSup has products, given by L�M is the product of L and M as
posets, with

�
tpai, biq|i P Iu � p

�
tai|i P Iu,

�
tbi|i P Iuq, i.e., the join is defined whenever

the joins of both projections are defined. However, there is an interesting tensor product,
L bM , given by also taking the poset L �M , but only defining joins for rectangular
families — that is, families of the form A � B, where

�
A and

�
B both exist (and any

other joins required to satisfy the sandwich condition). It is easy to see that this is a
partial sup lattice.

This clearly has the following “universal property”: partial sup lattice homomorphisms
from LbM to N are functions which preserve all joins of the form A� tyu and txu �B.
When L and M are sup lattices, these are bi-sup homomorphisms, so we see that IpLbMq
is the tensor product of sup lattices.

Furthermore, we can extend this:

2.29. Theorem. I is a monoidal functor from PartSup with this tensor product to Sup
with the usual tensor product of sup lattices.

Proof. We need to show that for any X, Y P PartSup, we have an isomorphism IpX b

Y q � // IXbIY . This isomorphism is given by the homomorphism IpXbY q R // IXbIY
given by RpJq � tpA,Bq P IX � IY |A � B � Ju. (Here we interpret elements of the
tensor product in Sup as downsets of the product where every rectangle is contained in a
principal rectangle, as in [2].) We need to show that this actually defines a homomorphism.
Since joins are unions in this context, it is easy to see that they are preserved. On the
other hand, we need to show that R defines a function at all. That is, we need to show
that RpJq has the property that any rectangle in RpJq P DpIX � IY q is contained in a
principal rectangle. Let A�B be a rectangle in RpJq. We want to show that the element
p
�
A,
�
Bq is also in RpJq, i.e. that

�
A�

�
B is a subset of J . Let px, yq P

�
A�

�
B.

Then we have x P A P A and y P B P B. Therefore, we have px, yq P A � B � J ,
so px, yq P J . Since px, yq was arbitrary, this gives that

�
A �

�
B is a subset of J as

required.
The inverse to this homomorphism is the homomorphism U : IX b IY // IpX b Y q

given by UpW q �
�
tA � B|pA,Bq P W u. Since joins are unions, it is clear that U is a

homomorphism. We want to show that U is a function, that is that any UpW q is an ideal
in X b Y . Suppose we have Z � UpW q, and

�
Z � x. By definition of X b Y , we have

that Z � A � B,
�

A � a,
�

B � b, and x � pa, bq. We want to show that x P UpW q.
For any y P A and z P B, we have py, zq P UpW q, so there is some pAyz, Byzq P W
with py, zq P Ayz � Byz. We now consider Ay �

�
zPB Ayz. This is an intersection of
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ideals, so is an ideal itself. On the other hand, we know that for any z P B, we have
pAy, Byzq ¤ pAyz, Byzq P W , so we have the rectangle ÓpAyq � tByz|z P Bu in W . Since
W is in the tensor product, this rectangle is contained in a principal rectangle. That is,
there is some pBy such that

�
zPB Byz � pBy, and pAy, pByq P W . Since W is a downset

and B � pBy, pBy must contain the ideal pB, generated by B in Y . We therefore have

pAy, pBq P W for every y P Y . This means the rectangle tAy|y P Y u � t pBu � W , so this

rectangle is contained in a principal rectangle, which must contain p pA, pBq. Since pA andpB are ideals containing A and B respectively, they must contain
�

A � a and
�

B � b

respectively. Since we have p pA, pBq P W , we have x � pa, bq P pA� pB � UpW q. Therefore,
UpW q is indeed an ideal.

Finally, we need to show that U and R are inverse to one-another. We easily have
URpJq � J and RUpW q � W . Conversely, let x � pa, bq P J . Then Ópaq � Ópbq � J , and
so pÓpaq, Ópbqq P RpJq, so pa, bq P Ópaq � Ópbq � URpJq.

Now let pA,Bq P RUpW q. We have that A � B � UpW q. This means that A � B ��
tP � Q|pP,Qq P W u. Let a P A. Consider the set tQ P IY |pÓpaq, Qq P W u. Since

tau�B � UpW q, we see that B �
�
tQ P IY |pÓpaq, Qq P W u, so since rectangles in W are

all contained in principal rectangles, we see that pÓpaq,
�
tQ P IY |pÓpaq, Qq P W uq P W ,

and therefore, pÓpaq, Bq P W . Since this holds for any a P A, we have that tpÓpaq, Bq|a P
Au � W . This is a rectangle, so it is contained in a principal rectangle in W , which must
contain pA,Bq. Therefore, pA,Bq P W , so RUpW q � W .

2.30. Theorem. L is completely join-distributive if and only if IL is completely distribu-
tive.

We will prove this in Section 3.1.

3. Alternative Ways to Describe Partial Sup Lattices

3.1. The totally below relation. For sup lattices, a very useful relation is the
totally below relation !, defined by a ! b if whenever

�
X ¥ b, we have a ¤ x for some

x P X. This definition lifts directly to our partially defined join case:

3.2. Definition. For a partial sup lattice L, we say a ! b if for any downset X � L
with b ¤

�
X, we have a P X. We denote the set ta P L|a ! bu by ópbq.

3.3. Lemma.

(i) !�¤

(ii) ! is an order-ideal — that is, whenever a ! b ¤ c, then a ! c, and whenever
a ¤ b ! c, we have a ! c.

(iii) If every x P L satisfies x �
�
ópxq, then ! is idempotent.

(iv) (Assuming AC) If some x P L satisfies x �
�
ópxq, then for any a ! x, there is

some b P L with a ! b ! x.
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Proof. (i) Let a ! x. We know that
�
Ópxq � x, so we must have a P Ópxq, so a ¤ x.

(ii) Suppose a ! b ¤ c. Then if
�

C ¥ c, then
�

C ¥ b, so a P C. Therefore we have
a ! c. Suppose instead that a ¤ b ! c. Now if

�
C ¥ c, we have b P C. Since a ¤ b, we

have a P C. Therefore a ! c.
(iii) Recall [7] that a relation is idempotent if and only if it is both transitive and

interpolative, where ! is called interpolative if and only if whenever a ! b, there is some
c such that a ! c ! b.

Transitivity obviously holds from (i) and (ii), so we just need to show interpolation.
Consider

�
tópaq|a ! bu. We have that a �

�
ópaq, so by the third condition for the

joins that must exist, we get that
��

tópaq|a ! bu exists, and is equal to b. Thus, for
any x ! b, we have x P

�
tópaq|a ! bu, so x ! a ! b, and therefore x ! a ! b.

(iv) Let a ! x. Since x �
�
ópxq, suppose for every b ! x, we have a �! b. Then we

have some downset Xb with a R Xb and
�

Xb ¥ b. Now there is some B �
�

bPópxqXb

with
�

B ¥ x, but a R
�

bPópxqXb, so a R B, contradicting a ! x.

Recall [3] that a complete lattice is completely distributive if and only if every element
is the join of the elements totally below it. We can extend this condition to the partial
lattice case:

3.4. Theorem. A partial sup lattice, L is completely join-distributive if and only if for
every x P L we have x �

�
ópxq.

Proof. Suppose that we have for every x P L, x �
�
ópxq, and suppose we have a family

tDi|i P Iu of downsets, such that every
�

Di exists. Let x �
�
t
�

Di|i P Iu. We want to
show that x �

��
Di. This will be the case if ópxq �

�
Di. However, let a ! x, then we

also have a !
�

Di for every i. Therefore, for every i we have a P Di, so a P
�
tDi|i P Iu

as required.
Conversely, suppose that L is completely join-distributive, and let x P L. Consider

the set Px � tA P DL|
�

A ¥ xu. By definition, we have that x �
�
t
�

A|A P Pxu
(Px contains Ópxq so there are joins that equal x exactly) so by complete distributivity,
x �

��
Px. Now,

�
Px � ópxq, so we have shown x �

�
ópxq.

3.5. Theorem. For a partial sup lattice, L, the following are equivalent:

(i) L is completely join-distributive.

(ii) ! is interpolative (the definition of this was recalled in the proof of Lemma 3.3) and
ó is an injective function L //DL.

(iii) ! is interpolative, and ó is an order-reflecting function L //DL.

(iv) For every x P L, we have x �
�
ópxq.

(v) For every x P L, we have x �
�
ópxq
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Proof. We have already shown the equivalence of (i) and (v). It is clear that (v) implies
(iv). For the converse, note that ópxq �

�
tA P DL|

�
A ¥ xu is an intersection of

downsets whose join is defined, so its join is defined.
We have shown that (v) implies that ! is interpolative, and since we have x �

�
ópxq,

if ópzq � ópxq, then we have z �
�
ópzq ¤

�
ópxq � x. It is obvious that (iii) implies

(ii).
To show (ii) implies (iii), suppose that ópxq � ópzq. Now let y � x^ z. If a ! x, then

a ! z, and by interpolation, we have some b such that a ! b ! x. Since ópxq � ópzq, we
have b ! z. Therefore, b ¤ y. Thus we have a ! b ¤ y, so a ! y. Since y ¤ x, this gives
ópxq � ópyq, so by injectivity, x � y and x ¤ z.

If (iii) holds, then for any x P L, let ópxq � Ópzq, so z is an upper bound for ópxq. We
need to show that x ¤ z. However, this will follow from (iii) if we have ópxq � ópzq. Let
a ! x. Then we have a ! y ! x for some y P L. Therefore, a ! y ¤ z, so since ! is an
order ideal, this gives that a ! z as required.

Proof of Theorem 2.30. If IL is completely distributive, then since the inclusion
L // IL preserves infima and all joins that exist, L must also be completely join-
distributive.

Now suppose that L is completely join-distributive. The totally below relation on IL
is given by X � Y if and only if X � Ópxq for some x in the intersection of all sets whose
join-closure contains Y . This can only happen if we have x ! y for some y P Y . We want
to show that Y is the join of all ideals totally below it. For any x P Y , we have that
x �

�
ópxq, so Ópxq �

�
tÓpaq|a ! xu, and for a ! x, we have Ópaq � Y . Therefore, the

join of all ideals totally below Y contains x. Since this holds for all x P Y , we have that
this join is equal to Y . Therefore any Y P IL is the join of ideals totally below it, i.e. IL
is completely distributive.

3.5.1. Different partial sup structures on a fixed sup lattice. When we
consider a fixed complete partial order, there are many possible partial sup lattice struc-
tures on it, and they can be ordered by inclusion of the sets for which join is defined.
On the other hand, we have the set of possible totally below relations on it, ordered by
inclusion. We will denote the poset of partial lattice structures on L by PartLatpLq and
the poset of totally below relations (that is, order ideals contained in ¤ and containing the
totally below relation for the total sup lattice, that occur as the totally below relation for
some partial sup lattice structure on L) TBelowpLq. We will characterise these relations
in Theorem 3.8. In the following discussion, we will consider both these possible totally
below relations on L, and the totally below relation from the total sup lattice structure
on L. To minimise confusion, in the rest of this section (up to Subsection 3.12), we will
refer to these possible totally below relations as “entirely below”, and denote them by  .
We will also denote the set of elements entirely below x as Ûpxq.

Given a partial sup lattice structure
�

on L, we can define the entirely below relation
by a   b if for any X P DL with b ¤

�
X, we have a P X. Given an entirely below
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relation   on L, we can define a partial sup lattice structure on L by defining
�

X �
�

X
whenever Û p

�
Xq � X. These constructions are order-reversing. Furthermore, they are

inverses.

3.6. Theorem. The functions PartLatpLq t // TBelowpLq defined by a tp
�
q b if and

only if for any X with b ¤
�

X, we have a ¤ x P X, and TBelowpLq c // PartLatpLq
defined by X P Jcp!qX if and only if X contains Û p

�
Xq, are inverse, in that the composite

ct is the identity function. (We defined TBelowpLq as the image of c, so we must also
have tc is the identity.)

Proof. Let
�

P PartLatpLq. Let  � t p
�
q, and let Z � ct p

�
q. Suppose x �

�
X.

Then Ûpxq � X, so ZX � x. Conversely, suppose ZX � x. Then we have Ûpxq � X
and

�
X � x. Suppose a ¤ x but a R X, so a ¢ x. Then we have

�
Ópxqz Òpaq � x

since there is some Y with a R Y and
�

Y � y ¥ x, so by the sandwich condition�
pY Y pÓpxqz Òpaqqq � y, and therefore Ópxqz Òpaq � pY Y pÓpxqz Òpaqqq X Ópxq P JL. Let

Xa � Ópxqz Òpaq for each a P Ópxq. Now X �
�

aPÓpxqzX Xa. Since we have
�

Xa � x for

all a P ÓpxqzX, and sets with defined join are closed under intersection, this gives that�
X � x as required.

We have shown that there is a duality between partial sup lattice structures on L and
entirely below relations on L, but we have not yet identified which relations are valid
entirely below relations on L. We will now give a characterisation.

3.7. Lemma. For a partial sup lattice L, a downset I is an ideal if and only if, for any
x P L with Ûpxq � I and

�
Ópxq X I � x, we have x P I.

Proof. Suppose that for any x P L with Ûpxq � I and
�
Ópxq X I � x, we have x P I.

Now suppose x �
�

A for some A � I. By definition, we have x �
�

A, so x �
�
ÓpxqXI,

and we have Ûpxq � A � I, so x P I. This means I is an ideal.
Conversely, suppose I is an ideal, and x �

�
Ópxq X I, and Ûpxq � I. Then certainly,

Ópxq X I is a downset whose supremum is x and which contains Ûpxq. It must therefore
have join x, so x P I.

For a relation  , which is contained in ¤, contains ! on the underlying lattice, and is
an order ideal, we can define the associated ideals by a downset I is an ideal if and only
if any x P L with Ûpxq � I and x �

�
Ópxq X I satisfies x P I.

3.8. Theorem. A relation   on a sup lattice L (with partial order ¤ and totally below
relation !) is the entirely below relation for a partial sup lattice structure if and only if it
satisfies the following conditions:

• a   b implies a ¤ b.

•   is an order ideal.

• For a ¤ b, let Ua,b � tx ¥ b|x �
�
pÓpxqz Òpaqqu. We have a   b if and only if for

any x P Ua,b, we have a   x.
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• For any downset A, if y is in every ideal that contains A, then there is some z ¥ y
with Ûpzq � A and z �

�
Ópzq X A.

Proof. Let   satisfy the above conditions. We will show that cp q is a partial sup lattice
structure on L, and that  � tcp q.

First we want to show that  � tcp q. Clearly, if a   b, then we have whenever�
X ¥ b in cp q, we must have that Ûpbq � X, so in particular, a P X. Therefore a ! b.

Conversely, suppose a ! b in tcp q. For any c P Ua,b, by definition, c �
�
pÓpcqz Òpaqq.

Now, if Ûpcq � Ópcqz Òpaq, then c �
�
Ópcqz Òpaq. This would be a family that does not

contain a, whose join is greater than or equal to b, contradicting a ! b. Therefore, we
cannot have Ûpcq � Ópcqz Òpaq, so since Ûpcq � Ópcq, we must have some x P Ûpcq X Òpaq.
Since   is an order ideal, this gives a   c. Since this holds for all c P Ua,b, we have a   b.

Next, we show that cp q is a partial sup lattice. The sandwich condition is clear.
Since   is contained in ¤, all principal downsets have joins. Let X � JL. Let A �

�
X .

Now suppose a  
�

A. Then we have a  
�

X for all X P X , so we have a P X, and
therefore a P A. Therefore A contains Ûp

�
Aq, so

�
A is defined. Now suppose that�

X � y, and that for all x P X, we have some A P A with
�

A ¥ x. Now if I is an ideal
containing

�
A, then for any A P A, we have

�
A P I. Since I is a downset, we have

X � I, so y P I. Therefore, y is in every ideal that contains
�
A, so there is some z ¥ y

with Ûpzq �
�
A and z �

�
pÓpzq X

�
Aq. This means that z �

�
pÓpzq X

�
Aq, so cp q

is a partial sup lattice.
Conversely, to show that these conditions hold for the entirely below relation on a

partial lattice, let   be the entirely below relation on a partial lattice L, and let ! be
the totally below relation on the corresponding total sup lattice. We have proven the first
two in Lemma 3.3.

If we have a   c for every c P Ua,b, we want to show that a   b. Suppose we have�
X ¥ b. This means that

�
X ¥ b, so either a P X, or c �

�
X P Ua,b. Since c P Ua,b,

this means a   c, so a P X. Therefore, we have that a ! b. Conversely, since   is an
order ideal, if a   b, then we must have a   c for every c P Ua,b.

Finally, for a partial sup lattice, ideal completion is idempotent, so the last condition
clearly holds.

3.9. Remark. The condition regarding Ua,b ensures that the totally below relation on
the underlying sup lattice L is contained in all valid entirely below relations, since if a ! b
in the sup lattice L, then Ua,b is empty, so the condition implies a   b.

Given that the entirely below relation can be used to describe partial lattice structures
on a given underlying lattice, we can use this to describe certain partial lattice structures.

3.10. Lemma. Let   be an order ideal contained in ¤, with the property that for any
downset A, if y is in every ideal that contains A, then there is some z ¥ y with Ûpzq � A
and z �

�
Ópzq X A. The structure cp q is a partial lattice structure, and is the largest

partial lattice structure whose entirely below relation contains  .
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Proof. By definition,
�

X �
�

X whenever it is defined. The sandwich condition is
obvious, and since   is contained in ¤, it is clear that principal downsets are unioned.
Suppose A is a collection of unioned downsets. Let x �

��
A, and suppose a   x. Now

for any A P A, we have a   x ¤
�

A, so a  
�

A. Since A is a unioned downset, this
means a P A. Therefore, we have a P

�
A, so Ûp

��
Aq �

�
A, and therefore

�
A is a

unioned downset. Finally, suppose A is a collection of unioned downsets, X is a unioned
downset, and for any x P X, there is some A P A with

�
A ¥ x. We need to find some

y ¥
�

X, so that Ûpyq � Ópyq X
�
A and y �

�
pÓpyq X

�
Aq. This will follow if

�
X

is in every ideal that contains
�
A. Let I be an ideal containing

�
A. By definition, we

know that for any A P A, we have
�

A P I. Since I is a downset, this gives X � I, so�
X P I as required.
Finally, it is clear that this is the largest partial sup structure for which   is contained

in the entirely below relation, since if a   b, then for any X with
�

X � x ¥ b in cp q,
we have a P Ûpbq � Ûpxq � X, so a ! b in cp q. On the other hand, if Z is another
partial sup lattice structure on L, such that   is contained in the entirely below relation,
and ZX � x, then for any a   x, we certainly have a ! x, so a P X. This means that
Ûpxq � X and

�
X � x, so

�
X � x in cp q. Therefore, Z �

�
as required.

3.11. Proposition. For a finite lattice L, there is a largest partial lattice structure which
makes L completely join-distributive.

Proof. A largest total lattice structure corresponds to a smallest entirely below relation.
For a finite lattice, this entirely below relation is generated by the entirely compact el-
ements (elements that are entirely below themselves). We are looking for the smallest
set of such elements, such that L is completely join-distributive, i.e. every element is the
join of the elements entirely below it. We certainly need an element which is not the
supremum of the elements strictly less than it to be entirely compact. If we define x to
be entirely compact if and only if it is sup indecomposable, then we need to show that
this defines a completely join-distributive partial lattice.

Clearly, for a finite lattice, any element is the sup of all sup irreducible elements below
it. Therefore, each element is the join of all elements entirely below it, so L is completely
join-distributive with this partial lattice structure.

Clearly, any other partial lattice structure for which L is completely join-distributive
must set all join irreducible elements to be entirely compact, so this is the smallest entirely
below relation that makes L completely join-distributive.

3.12. Totally Below on Upsets. The totally below relation is defined on elements
of L. However, the definition naturally extends to upsets on L.

3.13. Definition. For upsets U and V of L, we say U ! V (U is totally below V ) if
for any downset X with

�
X P V , we have Dx P X X U .

It is easy to see that when we restrict this to principal upsets, we get the usual
definition of totally below on L.
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3.14. Lemma. For a lattice, this is the totally below relation on the collection of upsets
ordered by reverse inclusion.

Proof. Suppose U is totally below V in this order. We will show that U is totally below
V in the collection of upsets. Suppose that

�
U � V . We want to show that some A P U

is a subset of U . Suppose not. Then for any A P U , we can find some xA P AzU . Now
consider

�
APU ÒpxAq. Clearly, this is a subset of

�
APU A � V . Therefore,

�
APU xA P V ,

but txA|A P Uu has empty intersection with U , contradicting U ! V . Therefore, we have
shown that U is totally below V in the reverse inclusion order on upsets.

Conversely, suppose that U is totally below V in the reverse inclusion order. Suppose�
A P V . We want to show that A X U � H. However, we have

�
aPA Òpaq � V , so we

have some a P A with Òpaq � U , i.e. a P U , so U ! V .

3.15. Proposition. A downset I is an ideal in L if and only if its complement is a
totally compact upset on L.

Proof. Let I be an ideal, and let Ic be its complement. We want to show Ic ! Ic, that
is if

�
A P Ic, then A � I, but the definition of ideal states that if A � I, then

�
A P I,

so this is obvious.
Suppose conversely, that Ic is totally compact. Then if A � I, and

�
A is defined,

then since AX Ic � H, we must have
�

A R Ic, so
�

A P I. Therefore, I is an ideal.

3.16. The Join-Closure Operation. Another way to represent a partial lattice is by

the function DL
²

//DL which sends a downset to the downset generated by the set of
joins of subsets of it. That is

º
pDq �

!
x P L

���pDE � Dqpx ¤
§

Eq
)

It is easy to calculate
�

from this function by
�

X � x whenever
²
pXq � Ópxq. We

translate the conditions for a partial lattice into conditions about this function. Firstly,
we are given that

²
is generated by a partial function

�
: DL /L. This means that

whenever x P
²
pAq, we must have x ¤

�
B for some B � A. We can rephrase this as

the diagram

JL // //

��

��

¤

DL
Ó
�

//
² // DL

DL

²

44iiiiiiiiiiiiiiiiiiiiii

is a Kan extension, where JL is the equaliser of
²

and Ó
�

.
Another way to express the condition that

²
is generated by a partial join operation

is that the diagram:

DDL XJL // DJL
D
²

// DDL

Y
��

DL

Ó

OO

² // DL
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commutes.
Next we have the condition that

�
agrees with

�
whenever it is defined. We can

begin to express this condition with the assertion
²

¤ Ó
�

. The fact that all principal
downsets have joins is given by 1 ¤

²
. Finally, to see the assertion that JL is closed under

intersections, we define JL as the inverter (or equivalently the equaliser) of
²

¤ Ó
�

in
the category of partial functions between posets. Then the condition that JL is closed
under intersection means that the inclusion has a right adjoint. We can also define IL to
be the inverter of 1 ¤

²
, that is the set of downsets which are closed under joins. We

then have the diagram:

L // //

��

��

JL
��

��

K
vv

IL

%

GG

//

K
// DL

²
ii

$�

GG

²

//

Ó
�

¤
&&

1

¤ ::DL

3.17. Theorem.
²

is idempotent.

Proof. It is clear that
²
pAq �

²
p
²
pAqq, so we just need to show the converse inclusion.

Suppose x P
²
p
²
pAqq, then by definition, x ¤

�
B for some B �

²
A, and for each

b P B, we have b P
²

A, so b ¤ b̂ �
�

Ab for some Ab � A. Now by Condition (iii)
from the definition of a partial sup lattice, we let A � tAb|b P Bu � JL, and we have
B ¤ t

�
Ab|Ab P Au P JL, so we have that there is some Y �

�
bPB Ab P JL, such that

the join of Y is greater than or equal to x. Therefore, x P
²
pAq.

This means that join-closure sends every downset to an ideal. It can therefore also be
viewed as a kind of ideal completion.

3.18. Theorem. An endofunction DL
²

//DL is the join-closure operation for a partial
sup lattice structure on L if and only if

•
²

is order-preserving.

•
²

is inflationary.

•
²

is idempotent.

•
²

is contained in sup-closure (the principal downset generated by the supremum).

•
²

preserves principal downsets.

• The equaliser JL // //DL of
²

and Ó
�

has a left adjoint.

• The diagram

JL // //

��

��

¤

DL
Ó
�

//
² // DL

DL

²

44iiiiiiiiiiiiiiiiiiiiii



PARTIAL-SUP LATTICES 323

is a Kan extension.

Proof. We have already shown that the join-closure operation satisfies all these prop-
erties. Conversely, suppose that

²
is an endofunction of DL satisfying all these prop-

erties. We want to construct a partial lattice structure on L for which it is the join-
closure operation. We do this by defining

�
X � x if and only if

²
X � Ópxq. It is

clear that this agrees with the supremum whenever it is defined, since if
²

X � Ópxq
then X � Ópxq, so x is an upper bound for x, and if y is another upper bound, then
X � Ópyq, so Ópxq �

²
X �

²
Ópyq � Ópyq, so x ¤ y. The sandwich condition

follows because
²

is order-preserving. We already have that join is defined for prin-
cipal downsets. We need to show that

²
is the join-closure operation for this

�
. That

is x P
²

A if and only if there is some x1 ¥ x and A1 � A with
�

A1 � x1. Let
Â � tx P L|pDx1 P L,A1 � Aqpx ¤ x1,

²
A1 � Ópx1qqu. The function fpAq � Â clearly

satisfies fpAq � Óp
�

Aq for all A P JL, so by the Kan extension, we have that
²

¤ f ,
i.e. if x P

²
A, then x P Â, so x ¤ x1 for x1 �

�
A1 for some A1 ¤ A.

The equaliser of
²

and Ó
�

is the set of downsets whose join-closure is a principal
downset. If this equaliser has a left adjoint, then it preserves infima, which are inter-
sections, so the collection of downsets for which join is defined is closed under arbitrary
intersections. Now suppose we have

�
X � y and some family A such that for any x P X

there is an A P A with
�

A ¥ x. We need to show that there is some B �
�
A with�

B ¥ x. We know that X �
²�

A, so x P
²
p
²�

Aq �
²�

A. This means x ¤
�

B
for some B �

�
A.

3.19. Proposition. L is a partial frame (binary infima distribute over joins, i.e. a ^�
X �

�
ta^x|x P Xu) if and only if

²
: DL // IL is a fibration in the sense that for

any ideal I �
²

A, there is some downset B � A such that
²

B � I.

Proof. First suppose L is a partial frame. Then for I �
²

A, we will show I �
²
pIXAq.

Since I X A � I and I is an ideal, we have that
²
pI X Aq � I. On the other hand, for

x P I, we have x P
²

A, so x ¤
�

B for some B � A. Since L is a partial frame, we have�
pÓpxq XBq �

�
tx^ b|b P Bu � x^

�
B � x, so x P

²
pAX Iq, since Ópxq XB � AX I.

Therefore I �
²
pAX Iq.

Conversely, suppose
²

: DL // IL is a fibration. In particular, this means that
whenever x P

²
A, we have Ópxq �

²
A, so we must have Ópxq �

²
B for some B � A.

Since
²

B � Ópxq, this means B � Ópxq, so x �
�

C for some C � B, and so by the
sandwich condition, x �

�
B. Also, we have B � AXÓpxq, so by the sandwich condition,

x �
�
pAX Ópxqq. We therefore have that x �

�
tx^ a|a P Au, so L is a partial frame.

3.20. The Partial Lattice of Unioned Downsets. One of the most useful tools for
the study of sup lattices is the downset construction DX. This downset construction does
not retain the partial sublattice structure, so is not so useful in this context. Instead, the
object that plays the role of the downset in the theory of partial sup lattices is the partial
sup lattice of unioned downsets, which is the partial order JX defined in Definition 2.4.



324 TOBY KENNEY

We can equip JX with a partial sup lattice structure, with order given by inclusion
of sets, and joins given by unions, whenever they yield a set in JX. It is clear that JX is
a partial sup lattice because it is a meet-closed subset of the completely distributive sup
lattice DX.

3.21. Proposition. For a partial-sup partial order X, there is a poset morphism

X
Ó
// JX, sending x to its principal downset. This morphism has a left adjoint if and

only if X is a partial sup lattice.

Proof. We know that Ó is a poset morphism from X to JX. If X is a partial sup lattice,
then any unioned downset in D P JX has a supremum x, which is therefore also the join
of D. Sending D to this join is clearly left adjoint to the downset construction.

Conversely, suppose JX
f
//X is left adjoint to Ó. This means that D � ÓpfpDqq,

so fpDq must be an upper bound for D, and if x is any other upper bound for D, then
D � Ópxq, so by the adjunction fpDq ¤ x. This means that fpDq is a least upper bound
for D. Therefore, any D P JX has a supremum (which must therefore be its join), and
f must be the function sending a unioned downset to its join. This does not yet prove
that X is a partial sup lattice, since that requires the existence of all suprema and infima,
not just those for elements of JX. We will show that X has infima. Let A � X. We
know that tÓpaq|a P Au � JX, so

�
tÓpaq|a P Au P JX. Therefore,

�
tÓpaq|a P Au has

a supremum x. Any lower bound for A is in
�
tÓpaq|a P Au, so is less than x, which is

therefore the supremum of the lower bounds for A, and therefore, and infimum for A.
Since A was arbitrary, this shows that the underlying poset of X is a lattice, so X is a
partial sup lattice.

3.22. Proposition. For a partial sup lattice L, the totally below relation defines an

order-preserving function L
ó
// JL.

Proof. We first need to show that for any x P L we have óx P JL, but by definition,
we have ópxq �

�
tX P JL|x ¤

�
Xu is an intersection of elements of JL, so it is in JL.

The function is order-preserving because ! is an order ideal.

3.23. Theorem. L is completely join-distributive if and only if ó is left adjoint to
�

.

Proof. The counit of the adjunction clearly always holds by definition, since óp
�

Xq is
the intersection of a family that contains X, and so must be smaller than X. The unit
of the adjunction is the assertion that for all x P L, we have x �

�
ópxq (technically,

we have shown x ¤
�
ópxq, but the reverse inclusion is obvious) which is equivalent to

complete distributivity from Theorem 3.5.

Recall [7] that a lattice is completely distributive if and only if it is the lattice of
downsets for an idempotent antisymmetric relation. We can extend this to deal with
partial sup lattices. We need to recall [7], the definition of a downset for an idempotent
relation.
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3.24. Definition. For an idempotent relation   on a set X a set D � X is a downset
if we have x P D if and only if there is some y P D with x   y.

We start by defining a partial sup idempotent relation.

3.25. Definition. For an idempotent relation   on a set X, we say that z is a supremum
for a downset A if:

• @a P A, a   z

• for any x P X, such that @a P A, a   x, we have for any y   z, also y   x.

3.26. Definition. For a set X with an idempotent relation   and a partial function�
: DX /X, a downset D � X is a unioned downset if for any x P X, if x is a

supremum of a subset A � D, then there is some B � D with
�

B � x.

3.27. Definition. A partial sup idempotent relation is a set X equipped with an idem-

potent antisymmetric relation  , and a partial function DX
�

/X which sends every
downset A of X to a supremum for A whenever

�
A is defined, and satisfies the sand-

wich condition. Furthermore, the set JX of unioned downsets of X satisfies the following
properties:

• All principal downsets are in JX

• JX is closed under infima of downsets (for idempotent relations, these infima are
not necessarily intersections).

• if A � JX, and X P JX, with for all x P X, we have some A P A with x  
�

A,
then there is some B �

�
A with x  

�
B.

3.28. Lemma. For a completely join-distributive partial sup lattice L, if
�

A � x then�
tb|pDa P Aqpb ! aqu � x.

Proof. We have that for any a P A, a �
�
ópaq, so there is some subset of

�
aPA ópaq

whose join is at least x. Since x is clearly an upper bound for
�

aPA ópaq, the sandwich
condition implies that

��
aPA ópaq � x.

3.29. Proposition. If pL,¤,
�
q is a completely join-distributive partial lattice, then

pL,!,
�
q is a partial sup idempotent relation (where the join here is restricted to downsets

for the totally below relation).
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Proof. From Theorem 3.5, Condition (iii), we know that ! is idempotent, and that
�

A
is a supremum for A whenever it is defined. We therefore just need to show that the
conditions on JL hold.

By Theorem 3.5, Condition (v), we have that
�

is defined for all principal downsets.
Let A � JL, be a collection of downsets for which

�
is defined. The infimum

�
A is

given by ta|a   b for some b P
�
Au. We want to show that this also has a join. We

know that in L,
�
A has a join x. We want to show that x is also the join of

�
A.

Since L is completely join-distributive, we have x �
�
ópxq, so we just need to show that

óx �
�
A, or for any a ! x, there is some b P

�
A with a ! b. Since ! is idempotent,

we have some b with a ! b ! x, and since
��

A � x, we must have b P
�
A, since A is

a downset for �. This gives that a ! b P
�
A, so a P

�
A as required.

Finally, suppose A � JL, and
�

X � y, and p@x P XqpDA P Aqpx !
�

Aq, then in
the the partial sup lattice L, there is B �

�
A with

�
B ¥ y. We then have

�
ta ! b|b P

Bu �
�

B ¥ y, by complete distributivity. This is a unioned downset in the partial sup
idempotent.

3.30. Theorem. A partial sup lattice pL,¤,
�
q is completely join-distributive if and only

if it is of the form DpX, ,Zq for some partial sup interpolative relation pX, ,Zq.

Proof. First let pX, ,Zq be a partial sup idempotent relation. We want to show that
DpX, ,Zq is a completely join-distributive partial sup lattice.

First we consider the partial order on Z. For an idempotent relation  , we have an
operation on subsets of X, given by ÛpAq � tx P X|x   a for some a P Au. Given a
collection A � JX of unioned downsets for  , we know that their infimum as downsets
is also unioned, so the partial order JX has arbitrary infima (and therefore arbitrary
suprema). We therefore just need to show that the partial join operation on JX satisfies
the required properties. This join is the union of sets whenever it is defined, so it must
also be the supremum in JX. Suppose for a downset A � JX we have another downset
B � A with

�
B � X and for every A P A, A � X, then since the join is union, we

have that
�
A � X also. Finally, let V be the collection JDX of unioned downsets in

DpX, ,Zq. That is, the collection of downsets of unioned downsets in X whose union is
also a unioned downset. It is obvious that V contains all principal downsets.

Let A � V . We want to show that
�
A P V . That is, we want to show that��

A P JX. We first show that
��

A �
�
t
�
A|A P Au. Let X P

�
A. This

means X P A for all A P A. This means X �
�
A for all A P A, so X �

�
t
�
A|A P Au,

and since X is a downset, this means X �
�
t
�
A|A P Au. The reverse inclusion is

obvious, so we have shown
��

A �
�
t
�
A|A P Au, and since JX is closed under

infima, this gives that
��

A P JX as required.
Finally, we need to show that if A � V , and X P V and for all Y P X , there is

some B P A with
�
B ¥ Y , then there is some C �

�
A such that

�
C ¥

�
X . This

holds because we can take C � ÓtÛpxq|x P
�
X u. For any x P X P X , there is some

B P A with
�
B ¥ X, so x P

�
B, so there is some B P B with x P B. Now we have
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Ûpxq � B P B �
�
A, and since

�
A is a downset, we have Ûpxq P

�
A. We have

therefore shown that for x P
�
X , we have some y P

�
X with x   y. Now Ûpyq P C by

definition, so x P
�
C, so

�
C �

�
X as required.

Now, we have shown that DpX, ,Zq is a partial sup lattice. It just remains to show
that it is completely join-distributive. Let A be a unioned downset of X. We want to
show that A is the union of the unioned downsets of X that are totally below A. The
totally below relation on unioned downsets of X is given by A ! B if and only if A � Ûpxq
for x P B. Therefore, since A �

�
xPA Ûpxq, we have that A is the union of all sets totally

below it, so DpX, ,Zq is completely join-distributive.
Conversely, suppose pL,¤,

�
q is a completely join-distributive partial lattice. We know

that pL,!,
�
q is a partial sup idempotent relation. Furthermore, let D be a unioned

downset for this relation. We will show that D is a principal downset for pL,!q. By
definition, D has a join x. This is a join in L. We therefore have that óx � D. Since D is
a downset for !, we have for any a P D, there is some b P D with a ! b. Since x �

�
D,

we must have b ¤ x, and therefore a ! x. Thus we have shown D � óx, so D � ópxq
is a principal downset. Conversely, all principal downsets are unioned, and since L is
completely join-distributive, by Theorem 3.5(ii), principal downsets for different elements
of L are distinct, so unioned downsets are in bijection with elements of L. Furthermore,
by Theorem 3.5(iii), the inclusion partial order on these unioned downsets is the same as
the original partial order on L, so as a poset this is the original poset we started with.
We now just need to confirm that the joins agree with the joins of L.

Let U be a downset of L with join x. We need to show that
�

aPU ó a � óx. Clearly,
if y ! a P U , then since x is an upper bound for U , we have y ! x, so

�
aPU ó a � óx.

Since L is completely join-distributive, we know that for any a P U , a �
�
ópaq, so

tópaq|a P Uu is a subset of JL, the joins of whose elements form a set in JL, so the union
must also be in JL. That is

��
aPU ó a � x. Therefore, by definition, ópxq �

�
aPU ó a,

so
�

aPU ó a � óx.
Conversely, suppose that

�
aPA ópaq P JL. Let x �

��
aPA ópaq. Since for each a P A,

we have a �
�
ópaq, this gives a ¤ x. Therefore, x is an upper bound for A, and the

downset generated by A contains
�

aPA ópaq, so A must have join x as required.

3.31. Example. Let X be a partial order. We can define the Dedekind-MacNeille com-
pletion of X by taking joins only for principal downsets. The unioned downsets for the
resulting partial-sup partial order form the Dedekind-MacNeille completion of X (with
joins only defined for principal downsets).

3.32. Algebraic Definition. We know that the supremum operation is sufficient to
define a sup lattice — the underlying partial order can be deduced from it. We show here
that the same is true for a partial sup lattice — the partial order (and therefore also the
supremum) can be recovered from just the partial sup.
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3.33. Definition. A partial sup lattice is a set L with a partial operation PL
�

/L
satisfying:

• For any x P L, there is a largest X P PL, such that
�

X � x. This largest such X
is closed under

�
.

• If
�

X � x, and we have A � PL such that for every y P X, we have a set Xy P PL
with y P Xy and

�
Xy �

�
A for some A P A, then there is some B �

�
A and

Y P PL with x P Y and
�

B �
�

Y .

• The collection of sets A satisfying
�

A � x for some x P L is convex in the sense
that if A � B � C and

�
A �

�
C � x, then

�
B � x.

• The collection of subsets for which
�

is defined is closed under intersection.

We want to show that this corresponds to our usual definition. First we construct the
¤ relation by x ¤ y if and only if there is some A P PL such that x P A and

�
A � y.

3.34. Lemma. This ¤ is a partial order.

Proof. We need to show that it is reflexive, transitive and antisymmetric. We define
Ópxq to be the largest X P PL such that

�
X � x.

For reflexivity, we have that
�

X is closed under
�

, so in particular, it contains x.
Therefore, x ¤ x.

For transitivity, suppose x ¤ y ¤ z. By definition, we have some Z P PL with y P Z
and

�
Z � z, and we have some Y P PL with x P Y and

�
Y � y. In particular, x P Ópyq.

Now we know that
���

y1PZ Ópy
1q
	
� z, and this union contains x, so x ¤ z.

Finally, for antisymmetry, suppose x ¤ y and y ¤ x. We have x P Ópyq, y P Ópxq, and

x �
���

zPÓpxq Ópzq
	

. Clearly,
�

zPÓpxq Ópzq contains Ópyq, and since Ópxq is the largest

subset whose join is x, we get Ópyq � Ópxq. Similarly, Ópxq � Ópyq, so Ópxq � Ópyq.
Therefore, we have x �

�
Ópxq �

�
Ópyq � y.

3.35. Lemma. Whenever
�

X is defined, it is the least upper bound of X.

Proof. Let
�

X � x. By definition, for any y P X, we have y ¤ x, so x is an upper
bound for X. Suppose z is another upper bound for X. Then for any y P X, we have
y ¤ z, so y P Ópzq. Therefore X � Ópzq. Since Ópzq is closed under

�
, this means that�

X P Ópzq, i.e., x ¤ z. Therefore, x is the least upper bound for X.

The sandwich condition is clear from the conditions and the fact that joins are defined
for principal downsets. Closure under intersections is one of the conditions, so it just
remains to show the final condition that join-closure is transitive. This is also one of the
conditions given. By definition of ¤, the condition y P Xy and

�
Xy �

�
A is equivalent

to
�

A ¥ y (we can take Xy � Óp
�

Aq). We have therefore shown that this partial
operation defines a partial sup lattice.
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4. Relation Between Ideal and Unioned Downset Functors

4.1. Proposition. I is an endofunctor on the category of partial sup lattices.

Proof. It is clear that taking the inverse image of functions gives a contravariant functor
into the category of posets, since it is a restriction of the inverse image functor on the

power set. Let L
f
//M be a partial sup homomorphism. We define IL

If
// IM by

IfpAq is the ideal generated by tfpxq|x P Au. It is easy to see that If % f�1, so since
adjoints compose, this means that If is a sup homomorphism and I is a functor.

4.2. Proposition. J is an endofunctor on the category of partial sup lattices.

Proof. Let L
f
//M be a partial sup homomorphism. We define JL

Jf
// JM by JfpAq

is the downset generated by tfpxq|x P Au. This is a unioned downset by definition of
partial sup homomorphisms. Also, this is a restriction of the downset homomorphism, so
we know that it satisfies the functoriality condition. We still need to show that Jf is a
partial sup homomorphism, but this is obvious since Jf preserves unions.

4.3. Proposition. The inclusion L
Ó
// IL has a right adjoint.

Proof. The right adjoint is given by supremum. It is easy to see that this is an adjoint
because for any x P L, Óx is an ideal, and its join is X. On the other hand, we clearly
have X ¤ Óp

�
Xq.

4.4. Theorem. The natural transformations IJ
�

//D and D
|J
// IJ given by X ÞÑ

tY P JL|Y � Xu are inverse isomorphisms.

Proof. First, we need to show that these functions are well-defined. A union of downsets
is clearly a downset. We need to show that for any downset X, tY P JL|Y � Xu is an
ideal in JL. That is, it is closed under unions that lie in JL. This is clear since ÓpXq is
closed under unions.

Next we need to show that they are inverse. For X P DL, and for any x P X, we have
Ópxq P JL, so X �

�
xPX Ópxq shows that

�
|J is the identity. On the other hand, given

an ideal I in JL, let X �
�

I. We want to show that I � X|J . Suppose V P X|J , we
want to show that V P I. Since I is an ideal, it is sufficient to show that for any x P V ,
there is some A P I with x P A. Since x P X �

�
I, this will hold. Conversely, for any

V P I, we have V � X, so V P X|J .

4.5. Theorem. The square:

JL // //

�

��

DL
²

��

L //
Ó
// IL

is both a pullback and a pushout in the category PartSup of partial sup lattices and
homomorphisms.
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Proof. Firstly, it is straightforward to see that it is a commutative square, and that all
the morphisms are partial sup lattice homomorphisms.

For the pushout. Let

JL // //

�

��

DL

f
��

L g
// X

commute in PartSup (the category of partial sup lattices and partial sup homomorph-
isms). We want to show that if

²
A �

²
B, then fpAq � fpBq. It is sufficient to show

this for B �
²
pAq. This holds, because for any C � A with

�
C defined, we must have

C P JL, so fpCq � gp
�

Cq ¤ fpAq. That is for any x P
²

A, we have gpxq ¤ fpAq.
However,

²
A �

�
tÓpxq|x P

²
Au, so f preserves this union, so, fp

²
Aq �

�
xP
²

A gpxq.

On the other hand, we know that gpxq ¤ fpAq for any x P
²

A. Also since f is order
preserving, we know that fpAq ¤ fp

²
Aq, so they must be equal. Therefore, f must

factor through DL
²

// IL as required.
For the pullback, we need to show that for A P DL, we have

²
A is a principal downset

if and only if
�

A is defined. Clearly, if
�

A � x, then
²

A � Ópxq. On the other hand,
if
²

A � Ópxq, then x is certainly an upper bound for A, and x must be the join of some
subset of A, so it must be the join of the whole of A.
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