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A C-SYSTEM DEFINED BY A UNIVERSE CATEGORY

VLADIMIR VOEVODSKY

Abstract. This is the third paper in a series started in [9]. In it we construct a

C-system CC(C, p) starting from a category C together with a morphism p : Ũ →
U , a choice of pull-back squares based on p for all morphisms to U and a choice of
a final object of C. Such a quadruple is called a universe category. We then define
universe category functors and construct homomorphisms of C-systems CC(C, p) defined
by universe category functors.

In the sections before the last section we give, for any C-system CC, three different
constructions of pairs ((C, p), H) where (C, p) is a universe category and H : CC →
CC(C, p) is an isomorphism.

In the last section we construct for any (set) category C with a choice of a final object and
fiber products a C-system and an equivalence between C and the precategory underlying
CC.

1. Introduction

The concept of a C-system in its present form was introduced in [9]. The type of C-systems
is constructively equivalent to the type of contextual categories defined by Cartmell in [4]
and [3] but the definition of a C-system is slightly different from Cartmell’s foundational
definition.

In [8] we constructed for any pair (R,LM) where R is a monad on Sets and LM
a left R-module with values in Sets a C-system CC(R,LM). In the particular case of
pairs (R,LM) corresponding to binding signatures (cf. [1], [5], [6, p.228]) the regular
sub-quotients of CC(R,LM) are the C-systems corresponding to dependent type theories
of Martin-Löf genus.

In this paper we describe another construction that generates C-systems. This time
the input data is a quadruple that consists of a category C, a morphism p : Ũ → U in this
category, a choice of pull-back squares based on p for all morphisms to U and a choice
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of a final object in C. Such a quadruple is called a universe category. For any universe
category we construct a C-system that we denote by CC(C, p).

We then define the notion of a universe category functor and construct homomor-
phisms of C-systems of the form CC(C, p) corresponding to universe category functors.
For universe category functors satisfying certain conditions these homomorphisms are
isomorphisms. In particular, any equivalence F : C → C ′ together with an isomorphism
F (p) ∼= p′ (in the category of morphisms) defines a universe category functor whose asso-
ciated homomorphism of C-systems is an isomorphism. This implies the C-systems that
correspond to two different choices of final objects and pull-backs for the same C and p
are connected by a given isomorphism which justifies our simplified notation CC(C, p).

To the best of our knowledge it is the only known construction of a C-system (or, equiv-
alently, a contextual category) from category level data that transforms equivalences into
isomorphisms. Because of this fact we find it important to present both the construction
of the C-system and the construction of the homomorphisms defined by universe functors
in detail.

This construction is also important as the starting point in the construction of the
model of the inference rules of Martin-Löf type theory that satisfies the univalence ax-
iom. The underlying C-system of the univalent model is obtained by application of our
Construction 2.12 to the universal Kan fibration of well-ordered simplicial sets (in a given
Grothendieck universe).

Next we explore the question of how to construct, for a given C-system CC, a universe
category (C, p) together with an isomorphism CC → CC(C, p). It is clear from Lemma
4.8 that if this problem has a solution then it has many solutions. We construct three
such solutions each having certain advantages and disadvantages.

The set of universe categories in a given Grothendieck universe has a structure of a
2-category suggested by Definition 4.1. It seems likely that our main construction extends
to a construction of a functor from this 2-category to the 1-category of C-systems. We
leave the investigations of the properties of this 2-category and of this functor for the
future.

To avoid the abuse of language inherent in the use of the Theorem-Proof style of pre-
senting mathematics when dealing with constructions we use the pair of names Problem-
Construction for the specification of the goal of a construction and the description of the
particular solution.

In the case of a Theorem-Proof pair one usually refers (by name or number) to the
statement when using both the statement and the proof. This is acceptable in the case
of theorems because the future use of their proofs is such that only the fact that there is
a proof but not the particulars of the proof matter.

In the case of a Problem-Construction pair the content of the construction often mat-
ters in the future use. Because of this we often have to refer to the construction and
not to the problem and we assign in this paper numbers both to Problems and to the
Constructions.

Following the approach used in [9] we write the composition of morphisms in categories
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in the diagrammatic order, i.e., for f : X → Y and g : Y → Z their composition is written
as f ◦g. This makes it much easier to translate between diagrams and equations involving
morphisms.

The methods of this paper are fully constructive and the style we write in is the
“formalization ready” style where the proofs are spelled out in detail even when the
assertion may appear obvious to the practitioners of a particular tradition in mathematics.
This particular paper is written having in mind the possibility of formalization both in the
Zermelo-Fraenkel set theory (without the axiom of choice) and its constructive versions
and in any type theory including Church’s type theory or HOL.

Following the distinction that becomes essential in the univalent formalization (cf. [2])
we use the word “category” in the contexts where the corresponding object is used in a
way that is functorial for equivalences of categories and the word “precategory” otherwise.

The main construction of this paper was introduced in [7]. I am grateful to the Centre
for Quantum Mathematics and Computation (QMAC) and the Mathematical Institute of
the University of Oxford for their hospitality during my work on the previous version of
the paper and to the Department of Computer Science and Engineering of the University
of Gothenburg and Chalmers University of Technology for its the hospitality during my
work on the present version.

2. Construction of CC(C, p).

2.1. Definition. Let C be a category. A universe structure on a morphism p : Ũ → U
in C is a mapping that assigns to any morphism f : X → U in C a pull-back square

(X; f)
Q(f)−−−→ Ũ

pX,f

y yp
X

f−−−→ U

A universe in C is a morphism p together with a universe structure on it.

In what follows we will write (X; f1, . . . , fn) for (. . . ((X; f1); f2) . . . ; fn).

2.2. Example. Let G be a group. Consider the category BG with one object pt whose
monoid of endomorphisms is G. Recall that any commutative square where all four
arrows are isomorphisms is a pull-back square. Let p : pt→ pt be the unit element of G.
Then a universe structure on p can be defined by specifying, for every g : pt→ pt, of the
horizontal morphismQ(g) in the corresponding canonical square. There are no restrictions
on the choice of Q(g) since for any such choice one can take the vertical morphism to be
Q(g)g−1 obtaining a pull-back square. Therefore, the set of universe structures on p is
GG. The automorphisms of BG are given by Aut(G) (with two automorphisms being
isomorphic as functors if they differ by an inner automorphisms of G). Therefore, there
are (GG)/Aut(G) isomorphism classes of categories with universes with the underlying



1184 VLADIMIR VOEVODSKY

category BG and the underlying universe morphism being Id : pt→ pt. Note that in this
case all auto-equivalences of the category are automorphisms and so simply saying that
we will consider universes up to an equivalence of the underlying category does not change
the answer. To have, as is suggested by category-theoretic intuition, no more than one
universe structure on a morphism one needs to consider categories with universes up to
equivalences of categories with universes and then one has the obligation to prove that the
constructions that are supposed to produce objects such as C-systems map equivalences
of categories with universes to isomorphisms. In the case of the main construction of this
paper it is achieved in Lemma 4.8.

Suppose that we are given a morphism F : X → U . Then for f : W → X and
g : W → Ũ such that f ◦ F = g ◦ p we will denote by f ∗ g the unique morphism
W → (X;F ) such that

(f ∗ g) ◦ pX,F = f

(f ∗ g) ◦Q(F ) = g

For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

(pX′,f◦F ◦ f) ∗Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F )

such that in particular
Q(f, F ) ◦Q(F ) = Q(f ◦ F ) (1)

2.3. Lemma. The square

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

pX′,f◦F

y ypX,F
X ′

f−−−→ X

(2)

is a pull-back square.

Proof. Consider the diagram

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

Q(F )−−−→ Ũ

pX′,f◦F

y ypX,F yp
X ′

f−−−→ X
F−−−→ U

The composition of two squares of this diagram equals the square with the sides pX′,f◦F ,
f ◦ F , Q(f ◦ F ) and p, which is a pull-back square. The right hand side square in this
diagram is a pull-back square. This implies that the left hand side square is a pull-back
square.
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2.4. Lemma. If f : X ′ → X is an isomorphism then Q(f, F ) is an isomorphism.

Proof. It follows from Lemma 2.3 by general properties of pull-back squares.

2.5. Lemma. For f ′ : X ′′ → X ′, f : X ′ → X and F : X → U one has

Q(f ′, f ◦ F ) ◦Q(f, F ) = Q(f ′ ◦ f, F )

Proof. Both sides of the equality are morphisms to (X;F ), therefore it is sufficient to
verify that

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦Q(F ) = Q(f ′ ◦ f, F ) ◦Q(F )

and
Q(f ′, f ◦ F ) ◦Q(f, F ) ◦ pX,F = Q(f ′ ◦ f, F ) ◦ pX,F

For the first one we have

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦Q(F ) = Q(f ′, f ◦ F ) ◦Q(f ◦ F ) = Q(f ′ ◦ f ◦ F )

and
Q(f ′ ◦ f, F ) ◦Q(F ) = Q(f ′ ◦ f ◦ F )

and for the second one we have

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦ pX,F = Q(f ′, f ◦ F ) ◦ pX′,f◦F ◦ f = pX′′,f ′◦f◦F ◦ f ′ ◦ f

and
Q(f ′ ◦ f, F ) ◦ pX,F = pX′′,f ′◦f◦F ◦ f ′ ◦ f.

2.6. Definition. A universe category is a triple (C, p, pt) where C is a category, p : Ũ →
U is a morphism in C with a universe structure on it and pt is a final object in C.

We will often denote a universe category by a pair (C, p).
Let (C, p) be a universe category. Define by induction on n pairs (Obn(C, p), intn)

where Obn = Obn(C, p) are sets and intn : Obn → Ob(C) are functions, as follows:

1. Ob0 = unit where unit is the distinguished set with only one point tt and int0 maps
this point to pt.

2. Obn+1 = qA∈ObnHomC(intn(A), U) and intn+1(A,F ) = (intn(A);F ).

In what follows we will write int instead of intn since n can usually be inferred.
Define for each n the function ftn+1 : Obn+1 → Obn by the formula ftn+1(A,F ) = A

and define ft0 as the identity function of Ob0.
For each B = (ft(B), F ) ∈ Obn+1 define pB : int(B)→ int(ft(B)) as pint(ft(B)),F . For

B ∈ Ob0 define pB as Idint(B).
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For each A ∈ Obm, B = (ft(B), F ) ∈ Obn+1 and f : int(A) → int(ft(B)) define
f ∗(B) ∈ Obm+1 as

f ∗(B) = (A, f ◦ F ) (3)

and q(f,B) : int(f ∗(B))→ int(B) as

q(f,B) = Q(f, F ) (4)

Recall the concept of a C0-system defined in [9, Definition 2.1].

2.7. Problem. For each universe category (C, p, pt) to define a C0-system CC0(C, p).

2.8. Construction. We set

Ob(CC0(C, p)) = qn≥0Obn(C, p)

where Obn = Obn(C, p) are the sets introduced above. Let

intOb : Ob(CC0(C, p))→ C

be the sum of the functions intn. Let

Mor(CC0(C, p)) = qΓ,Γ′∈Ob(CC0(C,p))HomC(intOb(Γ), intOb(Γ
′))

Define the function
intMor : Mor(CC0(C, p))→Mor(C)

by the formula
intMor(Γ, (Γ

′, a)) = a

We will often write simply int for intOb and intMor.
The identity morphisms and the composition of morphisms are defined as in C. The

proofs of the axioms of a category are straightforward.
The definition of the length function is obvious.
We define pt as the unique element (0, tt) of Ob(CC0(C, p)) of length zero.
The function ft : Ob(CC0)→ Ob(CC0) is defined as the sum of functions ftn defined

above.
The p-morphisms p(n,A) are defined such that int(p(n,A)) = pA where pA where defined

above.
Similarly one defines the morphisms q(f, (n+ 1, B)) such that int(q(f, (n+ 1, B))) =

q(f,B).
Lemma 2.5 shows that the structure that we have defined satisfies the axioms of a

C0-system given in [9, Definition 2.1].

Let us also note the following formulas. For ∆ = (n + 1, (B,F )) and Γ = (n,B) one
has

p∆ = (∆, (Γ, pint(B),F )) (5)
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For Γ′ = (m,A), Γ = (n,B) and f : Γ′ → Γ one has

f ∗(n+ 1, (B,F )) = (m+ 1, (A, int(f) ◦ F )) (6)

q(f, (n+ 1, (B,F ))) = (f ∗(∆), (∆, Q(int(f), F ))) (7)

2.9. Lemma. The functions intOb and intMor defined above form a fully faithful functor
from the category underlying the C0-system CC0(C, p) to C.

Proof. Easy from the construction.

2.10. remark. The image of int on objects consists of those objects for which the unique
morphism to pt can be represented as a composition of morphisms of the form pX,F . Note
that int need not be an injection on the sets of objects. For example, if C is the one
point category with its unique structure of a universe category then Ob(CC(C, p)) will be
isomorphic to the set of natural numbers.

2.11. Problem. For each universe category (C, p, pt) to define a C-system CC(C, p).

2.12. Construction. We will define CC(C, p) as an extension of CC0(C, p) using [9,
Proposition 2.4]. In particular Ob(CC) = Ob(CC0), Mor(CC) = Mor(CC0) and simi-
larly for the length function, ft, p-morphisms and q-morphisms.

The canonical squares of CC0(C, p) are of the form

f ∗(Γ)
q(f,Γ)−−−→ Γ

pf∗(Γ)

y ypΓ

Γ′
f−−−→ ft(Γ)

(8)

For Γ = (n + 1, (B,F )) where B ∈ Obn(C, p) and F : int(A) → U , Γ′ = (m,A) where
A ∈ Obm(C, p), and f = (Γ′, (Γ, a)) the image of this square under the functor int is of
the form

(int(A); a ◦ F )
Q(a,F )−−−−→ (int(B);F )

pint(A),a◦F

y pint(B),F

y
int(A)

F−−−→ int(B)

This is one of the squares of the form (2) and therefore by Lemma 2.3 it is a pull-back
square. Since int is fully faithful by Lemma 2.9, the squares (8) are pull-back squares in
the codomain of a fully faithful functor and therefore they are also pull-back squares in
the domain of this functor, i.e., in CC0(C, p). In view of [9, Proposition 2.4] this implies
that the C0-system CC0(C, p) has a unique structure of a C-system and we denote this
C-system by CC(C, p).
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2.13. remark. Recall that in [9] we suggested the notation Obn(CC) for the set of
objects of length n of a C-system CC. We will avoid using this notation here because the
sets Obn(C, p) are not equal to the subsets of elements of length n in CC(C, p). Indeed,
the elements of {Γ ∈ Ob(CC(C, p)) | l(Γ) = n} are not the elements of Obn(C, p) but pairs
of the form (n,A) where A ∈ Obn(C, p).

2.14. Example. An important example of a C-system of the form CC(C, p) is “the”
C-system Fam of families of sets considered in [3] and [4]. The definition of Fam in [4,
p.238] as well as the preceding it discussion in [4, p.232] is somewhat incomplete in that
the notion of “a set” and moreover the notion of “a family of sets” are taken as being
uniquely determined by some previous agreement that is never explicitly referred to.

To define Fam as a C-system of the form CC(C, p) let us choose two Grothendieck
universes U and U1 in our set theory such that U1 is an element of U . One then defines
the category Sets(U) of sets as the category whose set of objects is U and such that for
X, Y ∈ U the set of morphisms from X to Y in Sets(U) is the set of functions from X to
Y in the ambient set theory (which automatically is an element of U). This category will
contain U1 as an object and also, because of the closure conditions that U satisfies, it will
contain as an object the set Ũ1 of pairs (X, x) where X ∈ U1 and x ∈ X. Since morphisms

in Sets are the same as functions in the ambient set theory we also get pU1 : Ũ1 → U1

that takes (X, x) to X. Using the standard construction of pull-backs in sets we obtain a
universe structure on p. Now we can define:

Fam(U,U1) := CC(Sets(U), pU1)

The explicit definition given in [4] avoids the use of the second universe (universe U in
our notations) by constructing the same C-system “by hand”. In our approach we have
to use U but the resulting C-system does not depend on U . Indeed, if our set theory
assumes two Grothendieck universes U and U ′ such that both contain U1 as an element
then one can show that

CC(Sets(U), pU1) = CC(Sets(U ′), pU1) (9)

where the equality means in particular that the sets of objects of these two C-systems
are equal as sets. Because of this one can denote this C-system as Fam(U1).

3. On homomorphisms of C-systems

We will need below the concept of a homomorphism of C-systems. Homomorphisms of
C-systems were defined in [9, Remark 2.8]. Let us recall it here in a more detailed form.

3.1. Definition. Let CC1, CC2 be C-systems. A homomorphism F from CC1 to CC2

is a pair of functions FOb : Ob(CC1) → Ob(CC2), FMor : Mor(CC1) → Mor(CC2) such
that:
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1. F commutes with the length functions, i.e., for all X ∈ Ob(CC1) one has

l(FOb(X)) = l(X)

2. F commutes with the ft function, i.e., for all X ∈ Ob(CC1) one has

ft(FOb(X)) = FOb(ft(X))

3. F is a functor, i.e., one has:

(a) FMor and FOb commute with the domain and codomain functions,

(b) for all X ∈ Ob(CC1) one has

FMor(IdX) = IdFMor(X)

(c) for all f, g ∈Mor(CC1) of the form f : X → Y , g : Y → Z one has

FMor(f ◦ g) = FMor(f) ◦ FMor(g)

4. F takes canonical projections to canonical projections, i.e., for all X ∈ Ob(CC1)
one has

pFOb(X) = FMor(pX)

5. F takes q-morphisms to q-morphisms, i.e., for all X, Y ∈ Ob(CC1) such that l(Y ) >
0 and all f : X → ft(Y ) one has

FMor(q(f, Y )) = q(FMor(f), FOb(Y ))

6. F takes s-morphisms to s-morphisms, i.e., for all X, Y ∈ Ob(CC1) such that l(Y ) >
0 and f : X → Y one has

sFMor(f) = FMor(sf )

In what follows we will write F for both FOb and FMor since the choice of which one
is meant is determined by the type of the argument. Note that the condition that F
commutes with the domain function together with the q-morphism condition implies that
for all X, Y ∈ Ob(CC1) such that l(Y ) > 0 and all f : X → ft(Y ) one has

F (f ∗(Y )) = F (f)∗(F (Y )) (10)

3.2. Lemma. Let F : CC1 → CC2 and G : CC2 → CC3 be homomorphisms of C-systems.
Then the compositions of functions FOb ◦ GOb and FMor ◦ GMor is a homomorphism of
C-systems.

Proof. The proof is relatively straightforward but long and we leave it for the formal
version(s) of the paper.
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3.3. remark. Since homomorphisms of C-systems are pairs of functions between sets sat-
isfying certain conditions and the composition is given by composition of these functions,
the associativity and unitality of this composition follows easily from the associativity
and unitality of the composition of functions between sets. Therefore, if we restrict our
attention to the C-systems whose sets Ob and Mor are elements of a chosen set (“uni-
verse”) U that contains natural numbers and is closed under the power-set operation,
then such C-systems, their homomorphisms, compositions of these homomorphisms and
the identity homomorphisms form a category of C-systems in U .

3.4. Lemma. Let CC1, CC2, Fob and FMor be as above. Assume further that these data
satisfy all of the conditions of the definition except, possibly, the s-morphisms condition.
Then (FOb, FMor) satisfies the s-morphisms condition and forms a homomorphism of C-
systems.

Proof. Let f : X → Y be as in the s-morphism condition. We need to show that F (sf ) =
sF (f). Observe first that the right hand side is well defined since l(F (Y )) = l(Y ) > 0.
We have F (sf ) : F (X) → F ((f ◦ pY )∗(Y )) and sF (f) : F (X) → (F (f) ◦ pF (Y ))

∗(F (Y )).
One proves that codomains of both morphisms are equal using that F is a functor, the
p-morphisms condition and (10).

Since the canonical squares of CC2 are pull-back squares the object

(F (f) ◦ pF (Y ))
∗(F (Y ))

is a fiber product with the projections q(F (f) ◦ pF (Y ), F (Y )) and pF (f)∗(F (Y ). Therefore it
is sufficient to check that one has

F (sf ) ◦ q(F (f) ◦ pF (Y ), F (Y )) = sF (f) ◦ q(F (f) ◦ pF (Y ), F (Y )) (11)

and
F (sf ) ◦ pF (f)∗(F (Y ) = sF (f) ◦ pF (f)∗(F (Y ) (12)

We have

F (sf ) ◦ q(F (f) ◦ pF (Y ), F (Y )) = F (sf ) ◦ q(F (f) ◦ F (pY ), F (Y )) =

F (sf ) ◦ q(F (f ◦ pY ), F (Y )) = F (sf ) ◦ F (q(f ◦ pY , Y )) = F (sf ◦ q(f ◦ pY , Y )) = F (f)

where the first equality holds by condition (4) of Definition 3.1, the second and the fourth
equalities by condition (3), the third equality by condition (5) and the fifth equality by
axiom [9, Definition 2.3(3)] of the operation s for CC1.

On the other hand

sF (f) ◦ q(F (f) ◦ pF (Y ), F (Y )) = F (f)

directly by the axiom [9, Definition 2.3(3)] of the operation s for CC2. This proves (11).
For the equation (12) we have

F (sf ) ◦ pF (f)∗(F (Y ) = F (sf ) ◦ pF (f∗(Y )) = F (sf ) ◦ F (pf∗(Y )) = F (sf ◦ pf∗(Y )) =
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F (IdX) = IdF (X)

where the first equation holds by (10), the second one by condition (4), the third one by
condition (3), the fourth one by the axiom [9, Definition 2.3(2)] of the operation s for
CC1 and the fifth one by condition (3).

On the other hand
sF (f) ◦ pF (f)∗(F (Y ) = IdF (X)

directly by the axiom [9, Definition 2.3(2)] of the operation s for CC2. This completes
the proof of Lemma 3.4.

3.5. remark. As defined in [9], a C-system without operation s is called a C0-system.
The pairs FOb, FMor that satisfy all of the conditions of Definition 3.1 other than, possibly,
the s-morphism condition are homomorphisms of C0-systems. Therefore, if one defines a
categories of C-systems and C0-systems based on a particular universe of sets as outlined
in Remark 3.3 then Lemma 3.4 implies that the forgetting functor from the category of
C-systems in U to C0-systems in U is a full embedding.

4. Functoriality of CC(C, p)
4.1. Definition. Let (C, p, pt) and (C ′, p′, pt′) be universe categories. A functor of uni-

verse categories from (C, p, pt) to (C ′, p′, pt′) is a triple (Φ, φ, φ̃) where Φ : C → C ′ is a

functor and φ : Φ(U)→ U ′, φ̃ : Φ(Ũ)→ Ũ ′ are morphisms such that:

1. Φ takes the canonical pull-back squares based on p to pull-back squares,

2. Φ takes pt to a final object of C ′,

3. the square

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

is a pull-back square.

Let
(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. Let Obn = Obn(C, p) and Ob′n = Obn(C ′, p′). Let int
and int′ be the corresponding functions to C and C ′.

Denote by ψ the isomorphism ψ : pt′ → Φ(pt). Define, by induction on n, pairs
(Hn, ψn) where Hn : Obn → Ob′n and ψn is a family of isomorphisms of the form

ψn(A) : int′(Hn(A))→ Φ(int(A))

given for all A ∈ Obn. We set:
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1. for n = 0, H0 is the unique map from a one point set to a one point set and
ψ0(A) = ψ,

2. for the successor of n we set

Hn+1(A,F ) = (Hn(A), ψn(A) ◦ Φ(F ) ◦ φ) (13)

and define

ψn+1(A,F ) : (int(Hn(A));ψn(A) ◦ Φ(F ) ◦ φ)→ Φ(int(A,F ))

as the unique morphism such that the left hand side square of the diagram

int′(Hn+1(A,F ))
ψn+1(A,F )−−−−−−→ Φ(int(A,F ))

Φ(Q(F ))−−−−→ Φ(Ũ)
φ̃−−−→ Ũ ′

pHn+1(A,F )

y yΦ(p(A,F ))

yΦ(p)

yp′
int′(Hn(A))

ψn(A)−−−→ Φ(int(A))
Φ(F )−−−→ Φ(U)

φ−−−→ U ′

(14)

commutes, i.e.,
ψ(A,F ) ◦ Φ(p(A,F )) = pH(A,F ) ◦ ψ(A) (15)

and
ψn+1(A,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q(ψn(A) ◦ Φ(F ) ◦ φ) (16)

Note that the existence and uniqueness of ψn+1(A,F ) follows from the fact that the right
hand side squares of (14) are pull-back squares as a corollary of the definition of a universe
category functor and the fact that the canonical square for the morphism ψn(A)◦Φ(F )◦φ
commutes.

Moreover since the outer square of (14) is a pull-back square, the left-most square
commutes and the two right hand side squares are pull-back squares we conclude that the
left hand side square is a pull-back square. In combination with the inductive assumption
that ψn(A) is an isomorphism this implies that ψn+1(A,F ) is an isomorphism.

In what follows we will write ψ(A) instead of ψn(A) since n can often be inferred.

4.2. Lemma. The functions H commute with the functions ft, i.e., for A ∈ Obn one has

ft(H(A)) = H(ft(A))

Proof. Immediate from the construction.
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Let A ∈ Obm, A′ ∈ Obm′ and a : int(A)→ int(A′). Define a morphism

H(a) : int′(H(A))→ int′(H(A′))

as
H(a) = ψ(A) ◦ Φ(a) ◦ ψ(A′)−1 (17)

4.3. Lemma. For Φ as above one has:

1. for A ∈ Obn one has H(Idint(A)) = Idint(H(A)),

2. for a′ : int(A′′)→ int(A′) and a : int(A′)→ int(A) one has H(a′◦a) = H(a′)◦H(a).

Proof. Immediate from the construction.

4.4. Lemma. For A ∈ Obn one has H(pA) = pH(A).

Proof. If n = 0 the statement is obvious. For (A,F ) ∈ Obn+1 we have

H(p(A,F )) = ψ(A,F ) ◦ Φ(p(A,F )) ◦ ψ(A)−1

Therefore we need to show that

ψ(A,F ) ◦ Φ(p(A,F )) = pH(A,F ) ◦ ψ(A)

which is (15).

4.5. Lemma. Let A ∈ Obm, B = (ft(B), F ) ∈ Obn+1 and a : int(A) → int(ft(B)) is a
morphism. Then one has

H(a∗(B)) = H(a)∗(H(B)) (18)

and
H(q(a,B)) = q(H(a), H(B)) (19)

Proof. We have

H(a∗(ft(B), F )) = H(A, a ◦ F ) = (H(A), ψ(A) ◦ Φ(a ◦ F ) ◦ φ)

and
H(a)∗(H(ft(B), F )) = H(a)∗(H(ft(B)), ψ(ft(B)) ◦ Φ(F ) ◦ φ) =

(H(A), H(a) ◦ ψ(ft(B)) ◦ Φ(F ) ◦ φ)

Therefore we need to check that

ψ(A) ◦ Φ(a) = H(a) ◦ ψ(ft(B))
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which follows from the definition of H(a).
To prove (19) it is sufficient, since ψ(B) is an isomorphism, to show that

H(q(a,B)) ◦ ψ(B) = q(H(a), H(B)) ◦ ψ(B)

In view of (18) both sides are morphisms from int(H(a∗(B))) to

Φ(int(B)) = Φ((int(ft(B));F ))

Since the two right squares of (14) for (ft(B), F ) are pull-back squares, Φ((int(ft(B));F ))

is a fiber product with projections Φ(Q(F )) ◦ φ̃ and Φ(pB). Therefore it is sufficient to
check two equalities

H(q(a,B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ = q(H(a), H(B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ (20)

and
H(q(a,B)) ◦ ψ(B) ◦ Φ(pB) = q(H(a), H(B)) ◦ ψ(B) ◦ Φ(pB) (21)

Note first that

H(q(a,B)) ◦ ψ(B) = ψ(a∗(B)) ◦ Φ(q(a, (ft(B), F ))) = ψ(A, a ◦ F ) ◦ Φ(Q(a, F )) (22)

where the first equality is by (17) and the second by (4), and

q(H(a), H(B)) ◦ ψ(B) = q(H(a), (H(ft(B)), ψ(ft(B)) ◦ Φ(F ) ◦ φ)) ◦ ψ(B) =

Q(H(a), ψ(ft(B)) ◦ Φ(F ) ◦ φ) ◦ ψ(ft(B), F ) (23)

where the first equality is by (13) and the second equality is by (4).
For (20) we have

H(q(a,B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ = ψ(A, a ◦ F ) ◦ Φ(Q(a, F )) ◦ Φ(Q(F )) ◦ φ̃ =

ψ(A, a ◦ F ) ◦ Φ(Q(a ◦ F )) ◦ φ̃ = Q(ψ(A) ◦ Φ(a ◦ F ) ◦ φ)

where the first equality is by (22), the second equality is by (1) and the third one by (16),
and

q(H(a), H(B)) ◦ ψ(B) ◦ Φ(Q(F )) ◦ φ̃ =

Q(H(a), ψ(ft(B)) ◦ Φ(F ) ◦ φ) ◦ ψ(ft(B), F ) ◦ Φ(Q(F )) ◦ φ̃ =

Q(H(a), ψ(ft(B)) ◦ Φ(F ) ◦ φ) ◦Q(ψ(ft(B)) ◦ Φ(F ) ◦ φ) =

Q(H(a) ◦ ψ(ft(B)) ◦ Φ(F ) ◦ φ) =

Q(ψ(A) ◦ Φ(a) ◦ ψ(ft(B))−1 ◦ ψ(ft(B)) ◦ Φ(F ) ◦ φ) = Q(ψ(A) ◦ Φ(a ◦ F ) ◦ φ)

where the first equality is by (23), the second equality is by (16), the third one by (1),
and the fourth one by (17). For (20) we have:

H(q(a,B))◦ψ(B)◦Φ(pB) = ψ(A, a◦F )◦Φ(Q(a, F ))◦Φ(pB) = ψ(a∗(B))◦Φ(Q(a, F )◦pB) =
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ψ(a∗(B)) ◦ Φ(q(a,B) ◦ pB) = ψ(a∗(B)) ◦ Φ(pa∗(B)) ◦ Φ(a)

where the first equality is by (22), the second by (3) and the assumption that Φ is a
functor, the third one by (4) and the fourth one by the commutativity of the canonical
squares and the assumption that Φ is a functor.

For the other side we have:

q(H(a), H(B)) ◦ ψ(B) ◦ Φ(pB) = q(H(a), H(B)) ◦ pH(B) ◦ ψ(ft(B)) =

pH(a∗(B)) ◦H(a) ◦ ψ(ft(B)) = pH(a∗(B)) ◦ ψ(A) ◦ Φ(a) = ψ(a∗(B)) ◦ Φ(pa∗(B)) ◦ Φ(a)

Where the first equality is by (15), the second by the commutativity of the canonical
squares, the third by (17) and the fourth again by (15). This completes the proof of
Lemma 4.5.

4.6. Problem. Let
(Φ, φ, φ̃) : (C, p, pt)→ (C ′, p′, pt′)

be a functor of universes categories. To define a homomorphism H = H(Φ, φ, φ̃) from
CC(C, p) to CC(C ′, p′).

4.7. Construction. We define HOb as the sum of functions Hn constructed above and
for

(Γ, (Γ′, a)) ∈Mor(CC(C, p))

we set
HMor(Γ, (Γ

′, a)) = (HOb(Γ), (HOb(Γ
′), H(a)))

where H(a) was constructed above.
The fact that HOb commutes with the length functions is immediate from the construc-

tion. The fact that it commutes with the ft functions follows from Lemma 4.2, the fact
that HOb and HMor form a functor follows from Lemma 4.3. The fact that HMor satisfies
the p-condition follows from Lemma 4.4. The fact that HMor satisfies the q-condition
follows from Lemma 4.5.

Applying Lemma 3.4 we conclude that H = (HOb, HMor) is a homomorphism of C-
systems.

4.8. Lemma. Let (Φ, φ, φ̃) be as in Problem 4.6 and let H be the solution given by Con-
struction 4.7. Then one has:

1. If Φ is a faithful functor and φ is a monomorphism then H is an injection of C-
systems.

2. If Φ is a fully faithful functor and φ is an isomorphism then H is an isomorphism.

Proof. Both statements in relation to objects have straightforward proofs by induction
on the length. In relation to morphisms the statements follow from the ones about the
objects and the fact that int is fully faithful.
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Lemma 4.8 can be further specialized into the following example.

4.9. Example. Let C be a category and p : Ũ → U a morphism in C. Let now
(pX,F , Q(F )) and (p′X,F , Q

′(F )) be two universe structures on p and pt and pt′ be two
final objects in C. These data give us two universe categories. Let us denote them by
UC and UC ′. The identity functor Φ = IdC on C together with the identity morphisms
φ = IdU and φ̃ = IdŨ define a universe category functor Φ : UC → UC ′. The correspond-
ing homomorphism of C-systems HΦ : CC(UC) → CC(UC ′) is an isomorphism with the
inverse isomorphism given by the same triple considered as a universe functor from UC to
UC ′. This example shows that, up to a “canonical” isomorphism, the C-system defined
by a universe category depends only on the category C and the morphism p.

4.10. Problem. Let (C, p) be a universe category. Let CC be a C-system. Given the
following collection of data:

1. A functor I : CC → C from the underlying category of CC to C,

2. For each Γ ∈ CC a function

uΓ : Ob1(Γ)→ HomC(I(Γ), U)

3. For each Γ ∈ CC, ∆ ∈ Ob1(Γ) an isomorphism

γ∆ : (I(Γ);u(∆))→ I(∆)

such that

1. the morphism πI(pt) : I(pt)→ pt is an isomorphism

2. for each f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has uΓ′(f
∗(∆)) = I(f) ◦ uΓ(∆),

3. for each f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has pI(Γ),u(∆) = γ∆ ◦ I(p∆),

4. for each f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has γf∗(∆)◦I(q(f,∆)) = Q(I(f), u(∆))◦γ∆

to construct a C-system homomorphism

H(I, u, γ) : CC → CC(C, p)

In what follows we will often write u instead of uΓ.
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4.11. Construction. First we construct by induction on n pairs (Hn, ψn) where

Hn : Obn(CC)→ Obn(C, p)

is a function and ψn is a family of isomorphisms of the form

ψn(Γ) : int(H(Γ))→ I(Γ)

given for all Γ ∈ Obn(CC) as follows (we will sometimes write ψ instead of ψn and H
instead of Hn):

1. For n = 0 we set
H(pt) = pt

ψ(pt) = (πI(pt))
−1 : pt→ I(pt)

2. For the successor of n, Γ such that Hn(Γ) = B and ∆ ∈ Ob1(Γ) we set

Hn+1(∆) = (B,ψ(Γ) ◦ u(∆)) (24)

and
ψ(∆) = Q(ψ(Γ), u(∆)) ◦ γ∆ (25)

The fact that ψ(∆) is an isomorphism follows from the inductive assumption, the
assumption that γ∆ is an isomorphism and Lemma 2.4.

The functions Hn define a function

HOb : Ob(CC)→ Ob(CC(C, p))

where HOb(Γ) = (l(Γ), Hl(Γ)) that commutes with the length functions and functions ft.
For f : Γ′ → Γ define

HMor(f) = (HOb(Γ
′), (HOb(Γ), ψ(Γ′) ◦ I(f) ◦ ψ(Γ)−1))

This gives us a function

HMor : Mor(CC)→Mor(CC(C, p))

Note that we can also define HMor(f) as the unique morphism such that

int(HMor(f)) = ψ(Γ′) ◦ I(f) ◦ ψ(Γ)−1 (26)

Without using any more assumptions on I, γ and u one verifies easily that the pair
H = (HOb, HMor) is a functor from the underlying category of CC to the underlying
category of CC(C, p).

In view of Lemma 3.4 it remains to verify that H satisfies the p-morphism and the
q-morphism conditions of Definition 3.1.
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For the p-condition we need to verify that H(pΓ) = pH(Γ) for all Γ. Since both sides
have the same domain and codomain and int is bijective on morphisms with the a given
domain and codomain it is sufficient to verify that

int(H(pΓ)) = int(pH(Γ))

We proceed by induction on n = l(Γ):

1. for n = 0
int(H(Idpt)) = int(Idpt) = int(ppt) = int(pH(pt))

2. for the successor of n let ∆ ∈ Obn+1(CC) and Γ = ft(∆). Then ∆ ∈ Ob1(Γ) and

int(H(p∆)) = ψ(∆) ◦ I(p∆) ◦ ψ(Γ)−1 = Q(ψ(Γ), u(∆)) ◦ γ∆ ◦ I(p∆) ◦ ψ(Γ)−1 =

Q(ψ(Γ), u(∆)) ◦ pI(Γ),u(∆) ◦ ψ(Γ)−1

where the first equality is by (26), the second one by (25) and the third one by
condition (3) of the problem. On the other hand we have

int(pH(∆)) = int(p(n+1,(Hn(Γ),ψ(Γ)◦u(∆)))) = pint(H(Γ)),ψ(Γ)◦u(∆)

where the first equality is by (24) and the second by (5). Composing with ψ(Γ) we
get

int(H(p∆)) ◦ ψ(Γ) = Q(ψ(Γ), u(∆)) ◦ pI(Γ),u(∆)

int(pH(∆)) ◦ ψ(Γ) = pint(H(Γ)),ψ(Γ)◦u(∆) ◦ ψ(Γ)

and these expressions are equal by commutativity of the squares (2).

To prove the q-condition let us verify first that for f : Γ′ → Γ and ∆ ∈ Ob1(Γ) one has

H(f ∗(∆)) = H(f)∗(H(∆)) (27)

Let H(Γ′) = (m,A) and H(Γ) = (n,B). Then

H(f ∗(∆)) = (m+ 1, (A,ψ(Γ′) ◦ u(f ∗(∆))))

by (24) and

H(f)∗(H(∆)) = H(f)∗(n+ 1, (B,ψ(Γ) ◦ u(∆))) = (m+ 1, (A, int(H(f)) ◦ ψ(Γ) ◦ u(∆)))

where the first equality holds by (24) and the second by (6). Next one has

ψ(Γ′) ◦ u(f ∗(∆)) = ψ(Γ′) ◦ I(f) ◦ u(∆)

by condition (2) of the problem and

int(H(f)) ◦ ψ(Γ) ◦ u(∆) = ψ(Γ′) ◦ I(f) ◦ ψ(Γ)−1 ◦ ψ(Γ) ◦ u(∆) = ψ(Γ′) ◦ I(f) ◦ u(∆)
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by (26).
The equality (27) implies that the morphisms H(q(f,∆)) and q(H(f), H(∆)) have

the same domain and codomain. Therefore to prove that they are equal it is sufficient
to prove that they become equal after application of int. We further compose both sides
with ψ(∆). Then we have

int(H(q(f,∆))) ◦ ψ(∆) = ψ(f ∗(∆)) ◦ I(q(f,∆)) =

Q(ψ(Γ′), I(f) ◦ u(∆)) ◦ γf∗(∆) ◦ I(q(f,∆)) =

Q(ψ(Γ′), I(f) ◦ u(∆)) ◦Q(I(f), u(∆)) ◦ γ∆ = Q(ψ(Γ′) ◦ I(f), u(∆)) ◦ γ∆

where the first equality is by (26), the second by (25), the third by condition (4) of the
problem and the fourth by Lemma 2.5. On the other hand

int(q(H(f), H(∆))) ◦ ψ(∆) = int(q(H(f), (n+ 1, (B,ψ(Γ) ◦ u(∆))))) ◦ ψ(∆) =

Q(int(H(f)), ψ(Γ) ◦ u(∆)) ◦ ψ(∆) = Q(int(H(f)), ψ(Γ) ◦ u(∆)) ◦Q(ψ(Γ′), u(∆)) ◦ γ∆ =

Q(int(H(f)) ◦ ψ(Γ), u(∆)) ◦ γ∆ = Q(ψ(Γ′) ◦ I(f), u(∆)) ◦ γ∆

where the first equality is by (24), the second by (7), the third by (25), the fourth by
Lemma 2.5 and the fifth by (26). This completes Construction 4.11.

4.12. remark. The homomorphisms H(Φ, φ, φ̃) can be obtained as particular cases of
the homomorphisms H(I, u, γ). More precisely, we can state without a proof that

H(Φ, φ, φ̃) = H(I, u, γ)

where:

1. I(Γ) = Φ(int(Γ)) and I(f) = Φ(int(f)),

2. for Γ = (n,B) and ∆ = (n+ 1, (B,F )),

uΓ(∆) = Φ(F ) ◦ φ

3. for Γ = (n,B) and ∆ = (n + 1, (B,F )), γ∆ is the “natural” isomorphism from
(Φ(int(B)); Φ(F ) ◦ φ) to Φ(int(B);F ). More precisely

γ∆ = ((pΦ(int(B)),Φ(F )◦φ) ∗ (Q(Φ(F ) ◦ φ̃)))−1

4.13. Lemma. Let I, u and γ be as in Problem 4.10 and let H be the corresponding
homomorphism of Construction 4.11. Then one has:

1. If I is a faithful functor and uΓ are injective then H is an injection of C-systems.

2. If I is a fully faithful functor and uΓ are bijective then H is an isomorphism of
C-systems.

Proof. Both statements in relation to objects have straightforward proofs by induction
on the length. In relation to morphisms the statements follow from the ones about the
objects and the fact that int is fully faithful and formula (26).
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5. Every C-system is isomorphic to a C-system of the form CC(C, p)
5.1. Problem. Let CC be a C-system. Construct a universe category (C, p) and an
isomorphism CC ∼= CC(C, p).

We will provide three different constructions for this problem - Constructions 5.2, 5.6
and 5.7 with the two latter constructions using the first one.

It is customary in the modern mathematics to use “the” category of sets Sets. In fact,
every set X in the Zermelo-Fraenkel theory defines a category S(X) where:

Ob(S(X)) = X

Mor(S(X)) = qx1,x2∈XFun(x1, x2)

where Fun(x1, x2) is the set of functions from x1 to x2. This definition makes sense since
elements of Zermelo-Fraenkel sets are themselves Zermelo-Fraenkel sets.

Taking X to be sets satisfying particular conditions, e.g. Grothendieck universes, one
obtains categories that can be equipped with various familiar structures such as fiber
products, internal Hom-objects etc. When one says consider “the” category of sets one
presumably means the category S(GU) for a chosen Grothendieck universe GU .

The first construction that we provide assumes that we are working in set theory with
a chosen Grothendieck universe (or in type theory with a chosen type theoretic universe)
that contains the sets of objects and morphisms of our C-system. In the case of a type
theory we will actually need two universes in order to have a type of which the first
universe is an object.

In what follows we use the notations

Õb(CC) = {s ∈Mor(CC) | s : ft(X)→ X, l(X) > 0, s ◦ pX = IdX}

and ∂ : Õb(CC) → Ob(CC), ∂(s) = codom(s) that were introduced in [9]. We may
sometimes abbreviate Ob(CC) to CC.

We will write Õb1(Γ) for the subset of Õb that consists of s such that ft(∂(s)) = Γ.
For f : Γ′ → Γ we have the function s 7→ f ∗(s, 1) (see [9]) that maps s to the element of

Õb1(Γ) that is the pull-back of the section s relative to f . We will denote this function
by f ∗. It is easy to verify from the definitions that

(IdΓ)∗(s) = s (28)

and for g : Γ′′ → Γ′, f : Γ′ → Γ and s ∈ Õb1(Γ) one has

g∗(f ∗(s)) = (g ◦ f)∗(s). (29)

i.e., that the maps f ∗ define on the family of sets Õb1 the structure of a presheaf. We
continue using the notation Õb1 for this presheaf.
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5.2. Construction. Denote by PreShv(CC) the category of presheaves on the precat-
egory underlying CC, i.e., the category of contravariant functors from the precategory
underlying CC to Sets.

Let Ob1 be the presheaf that takes an object Γ ∈ CC to the set Ob1(Γ) and a morphism
f : Γ′ → Γ to the map ∆ 7→ f ∗(∆). It is a functor due to the composition and unity
axioms for f ∗.

Let Õb1 be the presheaf that takes Γ to Õb1(Γ) described above.

Let further ∂ : Õb1 → Ob1 be the morphism that takes s to ∂(s). It is well defined
as a morphisms of families of sets and forms a morphism of presheaves since ∂(f ∗(s)) =
f ∗(∂(s)).

The morphism ∂ carries a universe structure that is defined by the standard pull-back
squares in the category of presheaves.

We are going to construct a homomorphism CC → CC(PreShv(CC), ∂) using Con-
struction 4.11 and to show that it is an isomorphism using Lemma 4.13.

We set Y o to be the Yoneda embedding.
We set

vΓ : Ob1(Γ)→ HomPreShv(Y o(Γ), Ob1)

to be the standard bijections between sections of the presheaf Ob1 on an object Γ and
morphisms from the corresponding representable presheaf Y o(Γ) to Ob1 in the category
of presheaves. It follows easily from the definitions that for f : Γ′ → Γ and ∆ ∈ Ob1(Γ)
one has

vΓ′(f
∗(∆)) = Y o(f) ◦ vΓ(∆) (30)

We also set
ṽΓ : Õb1(Γ)→ HomPreShv(Y o(Γ), Õb1)

to be the bijections of the same form for Õb1. Again, it follows easily from the definitions
that for f : Γ′ → Γ and s ∈ Õb1(Γ) one has

ṽΓ′(f
∗(s)) = Y o(f) ◦ ṽΓ(s) (31)

To construct γ we first need to prove a lemma. Recall that for ∆ ∈ CC such that
l(∆) > 0 we let δ(∆) : ∆ → p∗∆(∆) denote the section of pp∗∆(∆) given by the diagonal.
We have

δ(∆) ∈ Õb1(∆)

5.3. Lemma. Let Γ ∈ Ob(CC) and ∆ ∈ Ob1(Γ). Then the square

Y o(∆)
ṽ(δ(∆))−−−−→ Õb1

Y o(p∆)

y y∂
Y o(Γ)

v(∆)−−−→ Ob1

(32)

is a pull-back square.
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Proof. We have to show that for any Γ′ ∈ CC the function

Hom(Γ′,∆)→ Hom(Γ′,Γ)×Ob1(Γ′) Õb1(Γ′) (33)

defined by the square (32) is a bijection. Unfolding the definitions we see that this
function sends g : Γ′ → ∆ to the pair (g ◦ p∆, g

∗(δ(∆))) and that the fiber product is
relative to the function from Hom(Γ′,Γ) to Ob1(Γ′) that sends f to f ∗(∆) and the function

from Õb1(Γ′) to Ob1(Γ′) that sends s to ∂(s).
Note that g∗(δ(∆)) = sg where s is the s-operation of C-systems (see [9, Definition

2.3]) and g ◦ p∆ is the morphism that we denoted in [9] by ft(g).
Let f1, f2 : Γ′ → ∆ be two morphisms such that their images under (33) coincide, i.e.,

such that ft(f1) = ft(f2) and sf1 = sf2 . This implies that f1 = f2 in view of [9, Definition
2.3(3)]. Therefore the function (33) is injective.

Let f : Γ′ → Γ be a morphism and s ∈ Õb1(Γ′) a section such that ∂(s) = f ∗(∆).
Then the composition s ◦ q(f,∆) is a morphism f ′ : Γ′ → ∆ such that f ′ ◦ p∆ = f . We
also have

sf ′ = ss◦q(f,∆) = ss = s

which proves that (32) is surjective. This completes the proof of Lemma 5.3.

Let Γ ∈ Ob(CC) and ∆ ∈ Ob1(Γ). By construction, (Y o(Γ); v(∆)) is the standard
fiber product of the morphisms v(∆) and ∂ in the category of presheaves. On the other
hand Y o(∆) is a fiber product of the same two morphisms by Lemma 5.3. Therefore there
exists a unique isomorphism

γ∆ : (Y o(Γ); v(∆))→ Y o(∆)

such that
γ∆ ◦ ṽ(δ(∆)) = Q(v(∆)) (34)

and
γ∆ ◦ Y o(p∆) = pY o(Γ),v(∆) (35)

It remains to verify the four conditions of Problem 4.10 since the conditions of Lemma
4.13(2) are obviously satisfied.

We have that Y o(pt)→ pt is an isomorphism.
The second condition is (30).
The third condition is (35).
It remains to verify the fourth condition. Let f : Γ′ → Γ and ∆ ∈ Ob1(Γ). We need

to show that
γf∗(∆) ◦ Y o(q(f,∆)) = Q(Y o(f), v(∆)) ◦ γ∆ (36)

Two of the morphisms that are involved in the condition can be seen on the diagram

(Y o(Γ′); v(f ∗(∆)))
γf∗(∆)−−−→ Y o(f ∗(∆))

Y o(q(f,∆))−−−−−−→ Y o(∆)
ṽ(δ(∆))−−−−→ Õb1

pY o(Γ′),v(f∗(∆))

y Y o(pf∗(∆))

y yY o(p∆)

yp
Y o(Γ′) Y o(Γ′)

Y o(f)−−−→ Y o(Γ)
v(∆)−−−→ Ob1
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By Lemma 5.3, Y o(∆) is a fiber product with the projections Y o(p∆) and ṽ(δ(∆)). There-
fore it is sufficient to verify that the compositions of the two sides of (36) with the pro-
jections are equal, i.e., we have to prove two equalities:

γf∗(∆) ◦ Y o(q(f,∆)) ◦ Y o(p∆) = Q(Y o(f), v(∆)) ◦ γ∆ ◦ Y o(p∆) (37)

and
γf∗(∆) ◦ Y o(q(f,∆)) ◦ ṽ(δ(∆)) = Q(Y o(f), v(∆)) ◦ γ∆ ◦ ṽ(δ(∆)) (38)

For (37) we have

γf∗(∆) ◦ Y o(q(f,∆)) ◦ Y o(p∆) = γf∗(∆) ◦ Y o(pf∗(∆)) ◦ Y o(f) =

pY o(Γ′),v(f∗(∆)) ◦ Y o(f) = pY o(Γ′),Y o(f)◦v(∆) ◦ Y o(f)

where the first equality is by the commutativity of the canonical squares in CC and the
fact that Y o is a functor, the second by (34) and the third one by (30). On the other
hand

Q(Y o(f), v(∆)) ◦ γ∆ ◦ Y o(p∆) = Q(Y o(f), v(∆)) ◦ pY o(Γ),v(∆) = pY o(Γ′),Y o(f)◦v(∆) ◦ Y o(f)

where the first equality is by (34) and the second by the commutativity of the squares
(2).

For (38) we have

γf∗(∆) ◦ Y o(q(f,∆)) ◦ ṽ(δ(∆)) = γf∗(∆) ◦ ṽ(q(f,∆)∗(δ(∆))) =

γf∗(∆) ◦ ṽ(δ(f ∗(∆))) = Q(v(f ∗(∆)))

where the first equality is by (31), the second follows from a simple computation in CC
and the third one is by (34). On the other hand one has

Q(Y o(f), v(∆))◦γ∆◦ṽ(δ(∆)) = Q(Y o(f), v(∆))◦Q(v(∆)) = Q(Y o(f)◦v(∆)) = Q(f ∗(∆))

where the first equality is by (34), the second one by Lemma 2.5 and the third one by
(30).

This completes Construction 5.2.

The second construction that we provide for Problem 5.1 is as follows. For a set M
let Rpn(M) be the set of subsets of (. . . (M × M) × . . .) × M where M occurs in the
expression n+ 1 times. Let Rp(M) be the category with

Ob(Rp(M)) = qn≥0Rpn(M)

Mor(Rp(M)) = q(m,X),(n,Y )Fun(X, Y )

where Fun(X, Y ) is the set of functions from X to Y and the identity morphisms and
compositions of morphisms are given in the obvious way.
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If our theory has a universe then the category Sets is defined and there is a functor
FF : Rp(M)→ Sets that sends (n,X) to X and acts on morphisms in the obvious way.
This functor is fully faithful. (Note that it is not an inclusion of categories since, for
example, the empty subset is an element of each of Rpn(M) so that there are objects
(n, ∅) for all n which are all mapped by FF to the one empty set of Sets).

Let CC be a C-system. Consider C = Funct(CCop, Rp(Mor(CC))). Define a universe

(p : Õ → O, p ,Q(−)) in C as follows.
For Γ ∈ CC let

Ob′1(Γ) = {f ∈Mor(CC)| f = Idcodom(f))

and let ιΓ : Ob′1(Γ) → Ob1(Γ) be the bijection defined by the codomain function codom.
These bijections together with the structure of a presheaf on the family of sets Ob1(Γ)
define a structure of a presheaf on the family of sets Ob′1(Γ). Let

O(Γ) = (0, Ob′1(Γ)) ∈ Rp(Mor(CC))

The structure of a presheaf of sets on Ob′1 defines a structure of an element of C on O.
Next let

Õ(Γ) = (0, Õb1(Γ)) ∈ Rp(Mor(C))

The structure of a presheaf on Õb1 provide Õ with a structure of an object of C. The
morphism of presheaves ∂ defines in an obvious way a morphism p : Õ → O in C. Let us
construct a universe structure on p.

Let X ∈ C and F : X → O. For Γ ∈ CC let X(Γ) = (n,X0(Γ)) where X0(Γ) is an
element of Rpn(Mor(CC)). Then

(X;F )0(Γ) = {(x0, s) ∈ X0(Γ)× Õb1(Γ) |F (x0) = Idcodom(s)} ∈ Rpn+1(Mor(CC))

is an element of Rpn+1(Mor(CC)) and (X;F )(Γ) = (n + 1, (X;F )0(Γ)) is an element of
Rp(Mor(CC)).

It is easy to equip the family (X;F )(Γ) of elements of Rp(Mor(CC)) with a structure
of an object of C and equally easy to define morphisms pX,F : (X;F ) → X and Q(F ) :

(X;F )→ Õ.
We have also a functor I : CC → C that extends the family of sets

X 7→ (Y 7→ (0,Mor(X, Y )))

The image of the final object of CC under this functor is a final object in C which
completes the description of a universe category structure on C.

5.4. Lemma. For any F : X → O the square

(X;F )
Q(F )−−−→ Õ

pX,F

y yp
X

F−−−→ O

(39)

is a pull-back square in C.
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Proof. One can either give a direct proof which would not require an extra universe or
one can argue that the functor FF defines a functor Φ : C → PreShv(CC) which is fully
faithful and which maps squares (39) to standard pull-back squares in the category of
presheaves of sets.

5.5. Problem. To construct an isomorphism H : CC → CC(C, p) where (C, p) is the
universe category constructed above.

There are two constructions for this problem. One we don’t describe here because
giving its detailed description would take a lot of space and add little understanding.
It is a direct construction based on Construction 4.11 and Lemma 4.13 that parallels
Construction 5.2. This direct construction would not use any extra universes and, in
combination with the construction of (C, p) based on the direct proof of Lemma 5.4 would
provide a construction for Problem 5.1 that does not require any additional universes.

The construction that we give below uses Construction 5.2 and therefore requires an
extra universe.

5.6. Construction. Let Φ : C → PreShv(CC) be the functor defined by FF . Since
FF is fully faithful so is Φ. We have, by definition

Φ(O) = Ob′1

Φ(Õ) = Õb1

The bijections ιΓ give us an isomorphism of presheaves

ι : Φ(O) = Ob′1 → Ob1

which commute with Φ(p) and ∂ and together with Φ form a universe category functor
(Φ, ι, IdÕb1). This universe category functor satisfies the conditions of Lemma 4.8(2) and
therefore the homomorphism H(Φ, ι, IdÕb1) is an isomorphism. Composing the isomor-
phism of Construction 5.2 the inverse to this isomorphism we obtain a solution to Problem
5.5.

The direct construction of the universe category (C, p) does not increase the universe
level but it uses the operation of taking the set of subsets that in type theory requires
the propositional resizing rule in order to be defined inside a given universe. Here is an
outline of a third construction that gives an even “tighter” universe category (C, p) with
an isomorphism CC → CC(C, p).

5.7. Construction. Define by induction on n pairs (Cn,Φn) where Cn is a set and
Φn : Cn → PreShc(CC) is a function as follows:

1. for n = 0 we set C0 = {pt, U, Ũ} and

Φ0(pt) = pt

Φ0(U) = Ob1
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Φ0(Ũ) = Õb1

where on the right hand side of the first equality is the final object of PreShv(CC),

2. for the successor of n we set

Cn+1 = qX∈CnHomPreShv(CC)(Φn(X), Ob1)

and
Φn+1(X,F ) = (Φn(X);F )

where (X;F ) is defined using standard fiber products in PreShv(CC).

We then define
Ob(C) = qn≥0Cn

Mor(C) = q(m,X),(n,Y )∈Ob(C)HomPreShv(CC)(Φm(X),Φn(Y ))

The composition and the identity morphisms are defined in such a way as to make the
pair of maps

ΦOb = qnΦn

ΦMor = q(m,X),(n,Y )∈Ob(C)i(Φm(X),Φn(Y ))

where i(F,G) is the inclusion of HomPreShv(CC)(F,G) into Mor(PreShv(CC)), into a
functor. This functor, which we denote by Φ, is then fully faithful.

One proves easily that pt is a final object of C. One defines the universe morphism in
C as the morphism p : Ũ → U that is mapped by Φ to ∂. Given (m,X) ∈ Ob(C) and a
morphism F : (m,X)→ U one defines ((m,X);F ) as (m+ 1, (X,Φ(F ))). This object is
a vertex of the square

((m,X);F )
Q(F )−−−→ Ũ

p(m,X),F

y yp
(m,X)

F−−−→ U

(40)

that is defined by the condition that it is mapped by Φ to the square

(Φm(X); Φ(F ))
Q(Φ(F ))−−−−→ Õb1

pΦm(X),Φ(F )

y yp
Φm(X)

Φ(F )−−−→ Õb1

(41)

Since Φ is fully faithful and the square (41) is a pull-back square, the square (40) is
a pull-back square. This provides us with a universe structure on p and completes the
construction of the universe category (C, p).
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The functor Φ together with two identity morphisms forms a universe category functor
Φ = (Φ, IdOb1 , IdÕb1) that satisfies the conditions of Lemma 4.13(2). Therefore Φ defines
an isomorphism

CC(C, p)→ CC(PreShv(CC), ∂)

composing the isomorphism of Construction 5.2 with the inverse to this isomorphism we
obtain a solution to Problem 5.1. This completes Construction 5.7.

5.8. remark. The category C of Construction 5.7 has all of the structures of a C-system
and these structures satisfy all of the required properties except for the property that
l−1(0) = {pt}. We would like to call such objects “generalized C-systems”. They seem to
appear also in other examples and may play an important role in the future.

6. A universe category defined by a precategory

The following problem was inspired by a question from an anonymous referee of [9]. Here
we have to use the word precategory as in the definition of a C-system since the con-
struction for this problem is not invariant under equivalences. Let us recall the following
definition that also introduces the notations to be used below.

6.1. Definition. A category with fiber products is a category together with, for all pairs
of morphisms of the form f : X → Z, g : Y → Z, fiber squares

(X, f)×Z (Y, g)
pr

(X,f),(Y,g)
2−−−−−−→ Y

pr
(X,f),(Y,g)
1

y yg
X

f−−−→ Z

We will often abbreviate these main notations in various ways. The morphism pr2 ◦ g =
pr1 ◦ f from (X, f)× (Y, g) to Z is denoted by f � g.

6.2. Problem. Let C be a precategory with a final object pt and fiber products. To
construct a C-system CC and an equivalence of categories J∗ : CC → C, J∗ : C → CC.

6.3. remark. In the univalent formalization an extra condition that C is a set-category,
i.e., that the type of objects of C is a set is required for the construction that we provide
to work.

6.4. remark. The construction that we provide increases the universe level. It might
be possible to provide another construction for Problem 6.2 that does not increase the
universe level.
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6.5. remark. Note that if we required an isomorphism CC → C then the problem would
have no solution since, for example, there is no C-system whose set of objects is the set
with two elements. Indeed, one of these elements, let us denote it by X, will have to have
length n > 0. Then l(p∗X(X)) = l(X) + 1. Therefore p∗X(X) 6= X and p∗X(X) 6= pt which
contradicts the assumption that CC has only two objects.

We start with a general construction that does not require C to have fiber products
or a final object. The parts of it that do not concern C-systems must certainly have been
known for a long time but we do not know where it was originally introduced.

For a precategory C let UC be the presheaf such that

UC(X) = {(f, g) where f : X → Y and g : Z → Y }

and for a : X ′ → X,
UC(a)(f, g) = (a ◦ f, g)

One proves easily that this presheaf data defines a presheaf.
Let ŨC be the presheaf such that

ŨC(X) = {(f ′, g) where f ′ : X → Z and g : Z → Y }

and for a : X ′ → X,
ŨC(a)(f ′, g) = (a ◦ f ′, g)

Again one proves easily that ŨC this presheaf data defines a presheaf.
Let pC : ŨC → UC be the morphism given by

(pC)X(f ′, g) = (f ′ ◦ g, g)

One proves easily that this family of maps of sets is a morphism of presheaves.
As in Construction 5.2 let Y o be the Yoneda embedding and let

vX : UC(X)→ HomPreShv(Y o(X), UC)

ṽX : ŨC(X)→ HomPreShv(Y o(X), ŨC)

be the standard bijections which we will often write as v and ṽ.

6.6. Lemma. For (f, g) ∈ UC(X), (f ′, g′) ∈ ŨC(X ′) and u : X ′ → X the square

Y o(X ′)
ṽ(f ′,g′)−−−−→ ŨC

Y o(u)

y ypC
Y o(X)

v(f,g)−−−→ UC

(42)
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commutes if and only if g′ = g and the square

X ′
f ′−−−→ Z

u

y yg
X

f−−−→ Y

(43)

commutes. The square (42) is a pull-back square if and only if g = g′ and the square
(43) is a pull-back square.

Proof. The assertion about commutativity is obvious. The proof of the assertion about
being a pull-back square is as follows. The square (6.6) is a pull-back square if and only of
for all X ′′ the corresponding square of sections on X ′′ is a pull-back square of sets. This
square of sections is of the form

Hom(X ′′, X ′)
r1−−−→ {(f ′0 : X ′′ → Z0, g0 : Z0 → Y0)}

s1

y yr2
Hom(X ′′, X)

s2−−−→ {(f0 : X ′′ → Y0, g0 : Z0 → Y0)}

(44)

where r1(a′) = (a′ ◦ f ′, g′), r2(f ′0, g
′
0) = (f ′0 ◦ g′0, g′0), s1(a) = a ◦ u, s2(a) = (a ◦ f, g).

To check that (44) is a pull-back square it is sufficient to check that for every a ∈
Hom(X ′′, X) the map s−1

1 (a)→ r−1
2 (s2(a)) defined by r1 is a bijection. We have

s−1
1 (a) = {a′ : X ′′ → X ′ | a′ ◦ u = a}

and
r−1

2 (s2(a)) = {(v : X ′′ → Z, g) | v ◦ g = a ◦ f} (45)

and the map defined by r1 maps a′ to (a′ ◦ v, g).
Applying the same reasoning to the condition that the square is (43) is pull-back we

see that it is equivalent to the condition that for all X ′′ and all a : X ′′ → X the map from
the set

(− ◦ u)−1(a) = {a′ : X ′′ → X ′ | a′ ◦ u = a}

to the set
(− ◦ g)−1(a ◦ f) = {v : X ′′ → Z | v ◦ g = a ◦ f} (46)

given by a′ 7→ a′ ◦ f ′, is a bijection. Since g in (45) the sets on the right hand sides
of (45) and (46) are in the obvious bijection that is compatible with the functions from
{a′ : X ′′ → X ′ | a′ ◦ u = a} and therefore these two conditions are equivalent.
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Applying our main construction to (PreShv(CC), pC) we obtain, for any precategory
C, a C-system CC(C) = CC(PreShv(CC), pC).

6.7. Problem. Let C be a precategory with a final object pt. To construct a function J∗1 :
Ob(C)→ Ob1(PreShv(C), pC) and a family of isomorphisms jX : Y o(X)→ int(J∗(X)).

6.8. Construction. Let X ∈ Ob(C). The pull-back square

X
IdX−−−→ X

πX

y yπX
pt

Idpt−−−→ pt

defines by Lemma 6.6 a pull-back square

Y o(X)
ṽ(IdX ,πX)−−−−−−→ ŨC

Y o(πX)

y ypC
Y o(pt)

v(Idpt,πX)−−−−−−→ UC

(47)

Let ψ : pt→ Y o(pt) be the unique isomorphism. Set

J∗(X) = (pt, ψ ◦ v(Idpt, πX))

Then
πY o(X) ◦ ψ = Y o(πX)

and therefore πY o(X) ∗ ṽ(IdX , πX) is a well defined morphism from Y o(X) to J∗(X). It is
easy to prove now that since (47) is a pull-back square this morphism is an isomorphism.

6.9. remark. For C with a final object pt, the set Ob1(PreShv(CC), pC) is in a construc-
tive bijection with the set of pairs (f : pt→ Y, g : Z → Y ) which is given, in the notation
of Construction 6.8, by the map (f, g) 7→ ψ◦v(f, g). After composition with this bijection
the function J∗ takes X to (Id : pt → pt, πX : X → pt). The function (f, g) 7→ dom(g)
defines a one-sided inverse to J∗1 so that J∗1 is always a split monomorphism.

6.10. Problem. Suppose that C is a category with a final object pt and fiber products.
To construct a function J∗ : Ob(CC(C)) → Ob(C) and for every Γ ∈ Ob(CC(C)) an
isomorphism σΓ : Y o(J∗(Γ))→ int(Γ).

6.11. Construction. We first construct by induction on n, pairs (Jn, σn) where

Jn : Obn(PreShv, pC)→ Ob(C)

and σn is a family of isomorphisms

σn(A) : Y o(Jn(A))→ intn(A)

given for all A ∈ Obn(PreShv, pC) as follows (we write J instead of Jn and σ instead of
σn):



A C-SYSTEM DEFINED BY A UNIVERSE CATEGORY 1211

1. For n = 0 we set J(A) = pt and σ(A) : Y o(pt)→ pt is the unique isomorphism,

2. For the successor of n we proceed as follows. Let (B,F ) ∈ Obn+1 where B ∈ Obn
and F : int(B)→ UC . Then

v−1(σB ◦ F ) ∈ UC(J(B))

is of the form
v−1(σB ◦ F ) = (f : J(B)→ Z, g : Y → Z)

Let
J(B,F ) = (J(B), f)×Z (Y, g)

To define σ(B,F ) consider the diagram

Y o(J(B,F ))
ι−−−→ (Y o(J(B)), σ(B) ◦ F )

Q(σ(B),F )−−−−−−→ (int(B);F )
Q(F )−−−→ ŨC

Y o(pr1)

y pY o(J(B)),σ(B)◦F

y pint(B),F

y ypC
Y o(J(B)) Y o(J(B))

σ(B)−−−→ int(B)
F−−−→ UC

where ι is the morphism Y o(pr1) ∗ ṽ(pr2, g). This morphism is defined because

Y o(pr1) ◦ σ(B) ◦ F = Y o(pr1) ◦ v(f, g) = (pr1 ◦ f, g)

and
ṽ(pr2, g) ◦ pC = (pr2 ◦ g, g)

and pr1 ◦ f = pr2 ◦ g. By Lemma 6.6 the square

Y o(J(B,F ))
ṽ(pr2,g)−−−−→ ŨC

Y o(pr1)

y ypC
Y o(J(B))

v(f,g)−−−→ UC

is a pull-back square which implies that ι is an isomorphism. We define

σ(B,F ) = ι ◦Q(σB, F )

The morphism Q(σ(B), F ) is an isomorphism by Lemma 2.4 and therefore σ(B,F )
is an isomorphism.

We now define J∗ as the sum over n ∈ N of Jn. This completes Construction 6.11.

6.12. remark. Using the bijection of Remark 6.9 we can look at the function from pairs
(f : pt→ Z, g : Z → Y ) to Ob(C) corresponding to J1. This function is given by

(f, g) 7→ (pt, f)×Z (Y, g)

When we compose it with J∗ and consider J∗(J
∗(X)) we obtain (pt, Idpt) ×p t(X, πX).

Depending on the choice of the fiber product this element of Ob(C) may be equal to X
or not but in any case there is a natural in X isomorphism X → J∗(J

∗(X)).

We can now provide the following construction for Problem 6.2.
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6.13. Construction. Let J∗ : Ob(C)→ Ob(CC(C)) be the composition of the function
J∗1 of Construction 6.8 with the inclusion of Ob1(PreShv, pC) into Ob(CC(PreShv, pC)).
We can extend it to the data for a functor setting:

J∗Mor(f : X → Y ) = int−1
J∗(X),J∗(Y )(j

−1
X ◦ Y o(f) ◦ jY )

where intΓ,Γ′ is the bijection

HomCC(C)(Γ,Γ
′)→ Hom(int(Γ), int(Γ′))

defined by the functor int. It is easy to prove from definitions that it is a functor and,
using the fact that both Y o and int are fully faithful, that J∗ is fully faithful.

Similarly we can extend J∗ of Construction 6.11 to the data for a functor setting

(J∗)Mor(f : Γ′ → Γ) = Y o−1
J∗(Γ′),J∗(Γ)(σΓ′ ◦ int(f) ◦ σ−1

Γ )

where Y oX,Y is the bijection

HomC(X, Y )→ HomPreShv(Y o(X), Y o(Y ))

defined by the Yoneda embedding. Again it is easy to prove from definitions that this
functor data is a functor and using the fact that both int and Y o are fully faithful that
J∗ is fully faithful.

After J∗ and J∗ have been extended to morphisms it makes sense to ask whether the
families of isomorphisms jX and σΓ are natural in X and Γ respectively and one verifies
easily that they indeed are.

Let X ∈ Ob(C) then we have an isomorphism

Y o(J∗(J
∗(X)))

σJ∗(X)−−−−→ int(J∗(X))
j−1
X−−−→ Y o(X)

which is natural in X and applying to it Y o−1
J∗(J∗(X)),X we get an isomorphism

J∗(J
∗(X))→ X

which is again natural in X, i.e., we obtained a functor isomorphism J∗ ◦ J∗ → Id.
Similarly, starting with,

int(Γ)
σ−1

Γ−−−→ Y o(J∗(Γ))
jJ∗(Γ)−−−→ int(J∗(J∗(Γ)))

one obtains a functor isomorphism Id→ J∗ ◦ J∗. This completes the Construction 6.13.
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6.14. remark. The construction of the C-system CC(C) does not require a choice of a
final object or fiber products in C and in particular does not depend on such choices.

The functor J∗ : C → CC(C) requires a choice of a final object for its construction
and depends on this choice. Let B be the bijection

Ob1(PreShv(CC), pC)→ {(f : pt1 → Z, g : Y → Z)}

of Remark 6.9 defined by the choice of a final object pt1. Let J∗1,1 and J∗1,2 be the functions
Ob(C) → Ob1(PreShv, pC) of Construction 6.7 defined by the choice of the final object
pt1 and a final object pt2 respectively. Then one has

B(J∗1,1(X)) = (Id : pt1 → pt1, πX,1 : X → pt1)

and
B(J∗1,2(X)) = (a : pt1 → pt2, πX,2 : X → pt2)

where a : pt1 → pt2 is the unique morphism. This shows that J∗1,1 6= J∗1,2 if pt1 6= pt2 and
in particular that J∗ depends on the choice of the final object.

The fact that J∗ depends on the choice of fiber products is seen from the formula for
J∗(J

∗(X)) given in Remark 6.12.

6.15. Conjecture. Let C be a category, CC be a C-system and M : CC → C a functor
such that M(ptCC) is a final object of C and M maps distinguished squares of CC to

pull-back squares of C. Then there exists a universe pM : ŨM → UM in PreShv(C) and a
C-system homomorphism M ′ : CC → CC(PreShv(C), pM) such that the square

CC
M−−−→ CyM ′ y

CC(PreShv(C), pM)
int−−−→ PreShv(C)

where the right hand side vertical arrow is the Yoneda embedding, commutes up to a
functor isomorphism.
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