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BUILDING A MODEL CATEGORY OUT OF COFIBRATIONS AND
FIBRATIONS: THE TWO OUT OF THREE PROPERTY

FOR WEAK EQUIVALENCES

SEUNGHUN LEE

Abstract. The purpose of this note is to understand the two out of three property of
the model category in terms of the weak factorization systems. We will show that if a
category with classes of trivial cofibrations, cofibrations, trivial fibrations, and fibrations
is given a simplicial structure similar to that of the simplicial model category, then the
full subcategory of cofibrant and fibrant objects has the two out of three property,
and we will give a list of necessary and sufficient conditions in terms of the simplicial
structure for the associated canonical ”weak equivalence class” to have the two out of
three property.

1. Introduction

In [Qui67], Quillen introduced the model category as a general setting in which one can do
a homotopy theory. The following is the reformulation of Quillen’s closed model category
by Joyal and Tierney. It is equivalent to Quillen’s definition. See, for example, [MP12].

Let M be a category closed under finite limits and finite colimits. A closed model
structure on M consists of three classes W, C, and F of morphisms in M such that the
following two properties hold:

• W satisfies the two out of three property.

• (C,F ∩W) and (C ∩W,F) are weak factorization systems.

We will not assume that weak factorization systems are functorial. This view on closed
model structures also appears in [PT02] where the orthogonal factorization systems are
used instead of the weak factorization systems. See Proposition 3.3 and Definition 3.9 in
[PT02].

The purpose of this note is to understand the two out of three property in terms of
the weak factorization systems. For this, we will define a Quillen structure on M as a pair
(C,Ft) and (Ct,F) of weak factorization systems satisfying Ct ⊆ C and Ft ⊆ F instead of
three classes (W,C,F) of morphisms. And we define the class WM of morphisms in M
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as the class of the compositions of elements in Ct followed by elements of Ft. Then by
Lemma 2.4, C ∩WM = Ct and F ∩WM = Ft hold. Thus, if WM satisfies the two out of
three property, then (WM,C,F) is indeed a closed model structure on M with Ct the class
of trivial cofibrations and Ft the class of trivial fibrations.

In general, it is easier to produce a Quillen structure than a full closed model structure.
One can use the Quillen’s small object argument to obtain weak factorization systems as
is done in cofibrantly generated model categories. But to see that WM has the two out
of three property could be difficult. For example, on chapter II.3 in [Qui67], the author,
when constructing the closed model structure on the category of simplicial sets, devotes
most of it to the proof of the two out of three property. Therefore a good understanding of
when WM has the two out of three property could be valuable for practical applications.

In this note, we will show that if M is given a simplicial structure similar to that of
the simplicial model category WM ∩Mor(Mcf ) has the two out of three property, and we
will give a list of necessary and sufficient conditions in terms of the simplicial structure
for WM to have the two out of three property. If every object of M is cofibrant, we will
show that a simple inclusion is equivalent to WM having the two out of three property.

1.1. Definition. Let M be a category closed under finite colimits and finite limits. A
Quillen structure on M is a pair of weak factorization systems

(C,Ft) and (Ct,F)

such that
Ct ⊆ C and Ft ⊆ F

hold. A category is called a Quillen category if it has a Quillen structure.

Every model category is a Quillen category. If M is a Quillen category, then its
opposite is also a Quillen category with the obvious opposite Quillen structure.

1.2. Remark. Since one of our aims is to show that Quillen categories are the model
categories under some conditions, it is natural and inevitable to adopt the notations and
the definitions used in the model category theory. Instead of defining them as they are
needed, we will use the notations and the definitions in [Qui67] in the context of Quillen
categories systematically. (See the remark at the end of this section for some exceptions).
For example, if M is a Quillen category, we call an element of Ct a trivial cofibration and
Mc will denote the full subcategory of ”cofibrant” objects of M. We hope that it does
not cause any confusion.

Once we have a Quillen category M, it is natural to define the class WM of weak
equivalences in M as follows.

1.3. Definition. Let M be a Quillen category with its Quillen structure (C,Ft) and
(Ct,F). We define

WM = {p · i | i ∈ Ct, p ∈ Ft}.
We call the elements of WM the weak equivalences of M.

We want to know when WM has the two out of three property.
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1.4. Definition. Let M be a category. Let W be a nonempty class of morphisms in M.
We say that W satisfies two out of three property if the following three properties hold:
For every g, h ∈ Mor(M) with dom(h) = cod(g),

(M) g ∈W and h ∈W imply hg ∈W.

(L) hg ∈W and h ∈W imply g ∈W.

(R) hg ∈W and g ∈W imply h ∈W.

Following the definition of the closed simplicial model category of Quillen, we will
define the simplicial Quillen category below. First, we recall that the category sSet of
simplicial sets is a closed symmetric monoidal category. So it has two functors − ⊗ − :
sSet× sSet→ sSet and sSet(−,−) : sSetop × sSet→ sSet, and for every x, y, z ∈ sSet, we
have an isomorphism

π : sSet(x⊗ y, z)→ sSet(x, sSet(y, z))

natural in x, y, z. For a simplicial category S, there is a functor S(−,−) : Sop × S→ sSet
providing the hom-space of S in sSet and, for every a, b, c ∈ S, there is a morphism
• : S(b, c) × S(a, b) → S(a, c) in sSet providing the simplicial composition. sSet is an
example of simplicial category with sSet(−,−) the hom-space.

1.5. Definition. Let M be a category closed under finite colimits and finite limits. We
say that M has a simplicial Quillen structure if the following three conditions hold.

1. M is a simplicial category (See Definition 1 on chapter II.1 in [Qui67]).

2. M satisfies SM0 (cf. Definition 2 on chapter II.2 in [Qui67]):

(a) For every x ∈ M and k ∈ sSet, there exist an object k ⊗ x ∈ M, a morphism
αk,x : k →M(x, k ⊗ x) in sSet, and, for every y, an isomorphism

φk,x,y : M(k ⊗ x, y)→ sSet(k,M(x, y))

such that π−1(φk,x,y) is the map k ×M(k ⊗ x, y)
αk,x×1−−−−→M(x, k ⊗ x)×M(k ⊗

x, y)
•−→M(x, y).

(b) For every x ∈ M and k ∈ sSet, there exist an object xk ∈ M, a morphism
βk,x : k →M(xk, x) in sSet, and, for every y, an isomorphism

ψk,y,x : M(y, xk)→ sSet(k,M(y, x))

such that π−1(ψk,y,x) is the map k×M(y, xk)
(pr2,pr1·βk,x)−−−−−−−→M(y, xk)×M(xk, x)

•−→
M(y, x).
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3. M has a Quillen structure (C,Ft) and (Ct,F) satisfying SM7(cf. Definition 2 on
chapter II.2 in [Qui67]): For every (i : a→ b) ∈ C and (p : x→ y) ∈ F

(i∗, p∗) : M(b, x)→M(b, y)×M(a,y) M(a, x)

is a fibration of sSet and is a trivial fibration of sSet if i ∈ Ct or p ∈ Ft.

We call M a simplicial Quillen category if M has a simplicial Quillen structure. By an
abuse of notation we will call the pair (C,Ft) and (Ct,F) a simplicial Quillen structure of
M.

The category sSet of simplicial sets is fundamental in model category theory. For
example, Hovey showed in [Hov99] that the homotopy category of a closed functorial model
category M is a module over the homotopy category of sSet using the function complex
in [DK80] and this module structure coincides with the canonical module structure which
exists if M is a closed simplicial model category. From the results of Dugger [Dug01]
and Rezk, Schwede, and Shipley [RSS01], we know that a large class of closed model
categories are Quillen equivalent to closed simplicial model categories. These results seem
to tell us that the homotopy categories of closed model categories behave as if they are
the homotopy categories of closed simplicial model categories. So adding such a simplicial
structure on M may not be a serious restriction.

Our first result is that if M is a simplicial Quillen category, then WM ∩Mor(Mcf ) has
the two out of three property. To make the statement more precise, we need to introduce
the following notions, which played a role in the proof of the two out of three property of
WsSet in [Qui67].

1.6. Definition. Let M be a simplicial Quillen category with its Quillen structure (C,Ft)
and (Ct,F). We define

1. SC = {g ∈ Mor(M) | π0M(g, z) is bijective for all z ∈ obMf}

2. SF = {g ∈ Mor(M) | π0M(a, g) is bijective for all a ∈ obMc}

1.7. Theorem. Let M be a simplicial Quillen category.

1. SC∩Mor(Mc)f = WM∩Mor(Mc)f holds where Mor(Mc)f is the class of morphisms
in Mc whose codomains are fibrant.

2. SF∩Mor(Mf )
c = WM∩Mor(Mf )

c holds where Mor(Mf )
c is the class of morphisms

in Mf whose domains are cofibrant.

In particular, WM ∩Mor(Mcf ) satisfies two out of three property.

If M is indeed a model category, then we know by Theorem 1 in [Qui67] that its
homotopy category is equivalent πMcf .

Our second result is about a necessary and sufficient condition for two out of three
property. We need a definition. Please see Definition 3.7 for the definition of the
(co)fibrant replacements.
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1.8. Definition. Let M be a simplicial Quillen category with its simplicial Quillen struc-
ture (C,Ft) and (Ct,F). We define

1. SC = {g ∈ Mor(M) | Qg ∈ SC for some cofibrant replacement Qg of g}

2. SF = {g ∈ Mor(M) | Rg ∈ SF for some fibrant replacement Rg of g}
1.9. Theorem. Let M be a simplicial Quillen category with its simplicial Quillen struc-
ture (C,Ft) and (Ct,F). Then the following are equivalent.

1. (M), C ∩ SC ⊆ Ct, and F ∩ SF ⊆ Ft hold.

2. WM = SC holds.

3. C ∩ SC = Ct holds.

4. WM = SF holds.

5. F ∩ SF = Ft holds.

6. WM has two out of three property.

It would be interesting to know if (M) can be removed from (1) by, if necessary, adding
another sufficiently general structure to M or its simplicial Quillen structure. Perhaps
the first choice would be the cofibrant generation, but it is not symmetric. It would be
desirable to find a symmetric structure.

Finally, some interesting and important model categories satisfy M = Mc or M = Mf .
In these cases, the following proposition and its dual pinpoint why WM has two out of
three property.

1.10. Proposition. Let M be a simplicial Quillen category with its simplicial Quillen
structure (Ct,F) and (C,Ft). We assume that M = Mc. Then, the following are equiva-
lent.

1. C ∩ SC ⊆ Ct holds.

2. WM = SC holds.

3. WM has two out of three property.

Notations. As we remarked above, we adopt the notations and the definitions in [Qui67].
The following are exceptions.

1. We drop the adjective closed from the closed model category and the closed simpli-
cial model category.

2. We denote the category of simplicial sets by sSet.

3. We denote the boundary of ∆[n] with ∂∆[n] instead of
◦
∆[n].

Finally, the morphisms in Ct, C, Ft, and F in a Quillen category will be represented by
the arrows • // ∼ // • , • // // • , • ∼ // // • , and • // // • respectively.
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2. Quillen Category

In this section, we investigate the two out of three property of a Quillen category M

without extra structure. What we will do is to split (L) into two special cases (L2) and
(L3). And in the next section, we will show that, if M is a simplicial Quillen category,
(L2) is not necessary and (L3) has a simplicial interpretation. We will have the dual result
for (R).

One can produce stronger results with orthogonal factorization systems. For example
in Theorem 3.10 in [PT02], the authors show that Theorem 1.9 holds for all Quillen
categories if the pair of weak factorization systems is in fact orthogonal.

2.1. Weak Factorization Systems. Here we recall the definition of the weak fac-
torization system and prove a simple lemma saying that the trivial (co)fibrations in the
Quillen categories are the trivial (co)fibrations in the model category sense.

2.2. Definition. Let M be a category closed under finite colimits and finite limits. A
pair (L,R) of classes of morphisms in M is called a weak factorization system if the
following properties hold.

(Factorization) Every morphism g in M can be factored as g = p · i with i ∈ L and
p ∈ R.

(Lifting) For every g ∈ L and h ∈ R, g� h holds, i.e., every diagram • //

g

��

•
h
��

• //

??

•

of solid

arrows has a lifting of the dotted arrow.

(Retract) For every commutative diagram •
g

��

α // • β //

h
��

•
g

��
• δ // • γ // •

with βα and γδ being iden-

tities, if h is in L(resp. R) then g is in L(resp. R).

2.3. Remark. If (L,R) is a weak factorization system, then L =� R and R = L� hold
where �R = {g | g � h, ∀h ∈ R} and L� = {h | g � h, ∀g ∈ L}. Thus L is stable
under the pushouts, R is stable under the pullbacks, and L and R are stable under the
compositions.



BUILDING A MODEL CATEGORY OUT OF COFIBRATIONS AND FIBRATIONS 1169

2.4. Lemma. Let M be a Quillen category with its Quillen structure (C,Ft) and (Ct,F).

1. C ∩WM = Ct.

2. F ∩WM = Ft.

Proof. We will prove (1). The proof of (2) is dual.
Let p ∈ Ft and i ∈ Ct. Assume that pi ∈ C. Then diagram •

pi

��

i // •
p

��
• = // •

has a lifting by

the lifting axiom of (C,Ft). Then pi is a retract of i. Hence, by the retract axiom of Ct,
pi ∈ Ct. The other inclusion is clear by the definition.

2.5. On (M), (L), and (R). Let M be a Quillen category with its Quillen structure
(C,Ft) and (Ct,F). We want to give more explicit descriptions of (M), (L), and (R) using
(C,Ft) and (Ct,F).

First, we consider (M). By Lemma 2.4 C∩WM ∩F is the class of the isomorphisms in
M. So WM becomes a subcategory of M if (M) holds. We consider the following variants
of the condition (M).

(M0) For every i ∈ Ct and p ∈ Ft there exist j ∈ Ct and q ∈ Ft such that qj = ip holds.

(ML) For every i ∈ Ct, p ∈ Ft, j ∈ C and q ∈ Ft satisfying qj = ip, j ∈ Ct holds.

(MR) For every i ∈ Ct, p ∈ Ft, j ∈ Ct and q ∈ F satisfying qj = ip, q ∈ Ft holds.

Since Ct and Ft are closed under the compositions, the following lemma holds.

2.6. Lemma. (M) holds for WM iff (M0) holds.

Next, we turn to (L) and (R). We will show that under (M), (L) is equivalent to a
pair of special cases of which the following will be important for us.

For every g ∈ C and h ∈ Ct, if hg ∈ Ct then g ∈ Ct. (1)

Also under (M), (R) is equivalent to two special cases, and one of them is

For every g ∈ Ft and h ∈ F, if hg ∈ Ft then g ∈ Ft. (2)

Please see Lemma 2.8 and Lemma 2.9 for the precise statements. Note that (1) and (2)
are dual to each other.

Consider the following variants of (L). We note that (L3) is (1).

(L0) For every g, i ∈ Ct, j ∈ C, and h, p, q ∈ Ft satisfying piqj = hg, j ∈ Ct holds.

(L1) For every i ∈ Ct, j ∈ C, and p, q ∈ Ft satisfying qj = pi, j ∈ Ct holds.

(L2) For every i ∈ Ct, j ∈ C, and q ∈ Ft satisfying qj = i, j ∈ Ct holds.

(L3) For every i, k ∈ Ct and j ∈ C satisfying kj = i, j ∈ Ct holds.

(L4) For every i, k ∈ Ct, j ∈ C, and q ∈ Ft satisfying qkj = i, j ∈ Ct holds.
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2.7. Lemma.

1. (L) implies (L1), (L2), (L3), and (L4).

2. (L1) holds iff (L2) holds.

3. (L2) and (L3) hold iff (L4) holds.

4. (L) holds iff (L0) holds.

Proof. (1) Every j in (L1)-(L4) belongs to WM by (L). So j ∈ Ct by Lemma 2.4.(1).
(2) (L2) is a special case of (L1). Conversely, let us decompose the diagram in (L1)

into a //
∼
i

//

f ""

��

j

��

x

p ∼

����

b×y x

∼
<< <<

∼
}}}}

b
∼
q

// // y

. We factor f = r · k where r ∈ Ft and k ∈ C. (L2) applied

to the upper triangle implies k ∈ Ct. Then, applying Lemma 2.4 to the left triangle, we
get j ∈ Ct.

(3) (L2) and (L3) are special cases of (L4). Conversely, k · j ∈ Ct by (L2). Then j ∈ Ct
by (L3).

(4) Suppose (L) holds. By (L), q · j ∈ WM. Then (1) and (L1) imply j ∈ Ct. The
converse is clear.

2.8. Lemma.

1. Assume that (M) holds. Then, (L2) and (L3) hold iff (L) holds.

2. (M) and (L2) hold iff (ML) holds.

Proof. (1) Assume that (L2) and (L3) hold. We will show (L0) holds. Using (M0),
we can find k ∈ Ct and r ∈ Ft such that rk = iq. Lemma 2.7.(2) and (L2) imply that
k · j ∈ Ct. Then, j ∈ Ct by (L3). Hence, (L) holds. The other direction follows from
Lemma 2.7.(1)

(2) Suppose (M0) and (L2) hold. By (M0), the diagram in (ML) can be turn into a
commutative diagram in (L1). Hence Lemma 2.7.(2) and (L2) imply (ML) holds. Con-
versely, suppose that (ML) holds. (L2) is one instance of (ML). (M0) follows from (ML)
using the (C,Ft)-factorization.

There are the dual of (L0) through (L4). We will index them (R0) through (R4) so
that (L0) is dual to (R0), and so on. We note that (R3) is (2).

The following lemma is the dual of Lemma 2.8.
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2.9. Lemma.

1. Assume that (M) holds. Then, (R2) and (R3) hold iff (R) holds.

2. (M) and (R2) hold iff (MR) holds.

3. Simplicial Quillen categories

In this section, we study the two out of three property of simplicial Quillen categories.
After considering some consequences of the axiom SM0 in section 3.1 we collect some
properties of simplicial Quillen categories in section 3.2. Finally, in section 3.3, we will
prove our statements in the introduction. The proofs reply on sSet being a simplicial
model category.

3.1. SM0 and Simplicial Homotopy. Here we will make some remarks on conse-
quences of the axiom SM0 and use them to show that two simplicially homotopic maps in
simplicial Quillen categories induce the same morphism between the simplicial homotopy
classes of maps.

On chapter II.1 [Qui67], Quillen defined an abstract notion of cylinder object and its
dual path object in the simplicial context. The axiom SM0 in Definition 1.5 guarantees
that they exist. What is not explained in [Qui67] but follows from the definition is that

x⊗ k is a bifunctor (3)

and
φk,x,y is a natural in each variable. (4)

We also have the dual of (3) and (4).
Two simplicially homotopic maps in simplicial model categories induce the same mor-

phism between the simplicial homotopy classes of maps. The same result holds without
the two out of three property. In fact, it is true for every simplicial category satisfying
SM0.

Like simplicial model categories, the simplicial homotopy between two maps in sim-
plicial Quillen categories is the simplicial homotopy in the underlying simplicial category.

3.2. Definition. [cf. Definition 4 on Chapter II.1 in [Qui67]] Let M be a simplicial
Quillen category. Let g, h ∈ M(x, y). We say that g and h are simplicially homotopic,
g

s∼h, if there is a commutative diagram

∂J
g+h //

��

M(x, y)

J
H

66

where J is a generalized interval and ∂J is the boundary of J.
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3.3. Lemma. [cf. Proposition 9.6.7 in [Hir03]] Let M be a simplicial category satisfying
SM0. Let g, h ∈ Mor(M). We assume that g and h are simplicially homotopic. Then the
following two properties hold.

1. π0M(g, z) = π0M(h, z) for every z ∈M.

2. π0M(a, g) = π0M(a, h) for every a ∈M.

Proof. We will prove (2). The proof of (1) is dual.
The point is that if g and h are simplicially homotopic, g∗ = M(a, g) and h∗ = M(a, h)

are simplicially homotopic in sSet for every a ∈M. This is a formal consequence of SM0
of M and sSet together with (3), (4), and their duals.

Let H : J → M(x, y) be a simplicial homotopy from g to h. There is a morphism
x → yJ that corresponds to H by SM0. We also denote this map with H and let
H∗ : M(a, x) → M(a, yJ) be the induced morphism in sSet. By SM0 of M, we have
M(a, yJ) ∼= sSet(J,M(a, y)). Then by SM0 of sSet, we have the following diagram of solid
arrows.

∆[0]× ∂J k //

��

M(a, x)× ∂J g∗+h∗ //

��

M(a, y)

∆[0]× J k //M(a, x)× J

H∗

55

Thus for any k : ∆[0]→M(a, x) in M(a, x)0, we have g∗(k)
s∼h∗(k) in M(a, y).

3.4. Characterizations of C ∩ SC and F ∩ SF. Here, we collect some properties of
simplicial Quillen categories including the two out of three property of SC and SF. The
main result is Proposition 3.14 that connects the properties (1) and (2) with the simplicial
structure of M.

We begin by recording that SC and SF satisfy the two out of three property.

3.5. Lemma. Let M be a simplicial Quillen category. Then SC and SF satisfy two out of
three property.

Proof. It follows from the definitions of SC and SF.

Next, we recall the (co)fibrant replacement of morphisms.

3.6. Definition. Let M be a Quillen category with its Quillen structure (C,Ft) and
(Ct,F). Let x ∈ obM.

1. A cofibrant replacement of x is a morphism Qx→ x in Ft such that Qx is cofibrant.

2. A fibrant replacement of x is a morphism x→ Rx in Ct such that Rx is fibrant.
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3.7. Definition. Let M be a Quillen category with its Quillen structure (C,Ft) and
(Ct,F). Let g ∈M(x, y).

1. A cofibrant replacement of g is a commutative diagram Qx

Qg

��

α // x

g

��
Qy

β // y

such that α and

β are cofibrant replacements of x and y respectively.

2. A fibrant replacement of g is a commutative diagram x

g

��

α // Rx

Rg
��

y
β // Ry

such that α and

β are fibrant replacements of x and y respectively.

We note that in Definition 1.8, we did not ask every cofibrant replacement to be in
SC. But using a similar trick as in the proof of Lemma 3.9, one can show that if one
cofibrant replacement of g is in SC, then every cofibrant replacement of g is in SC.

SC and SF also have two out of three property. But first we need to prepare a lemma.

3.8. Lemma. Let M be a simplicial Quillen category with its simplicial Quillen structure
(C,Ft) and (Ct,F). Then the following hold.

1. Ct ⊆ SC and Ft ⊆ SF.

2. Ct ∩Mor(Mf ) ⊆ SF and Ft ∩Mor(Mc) ⊆ SC.

3. If (M) holds, then Ct ⊆ SC and Ft ⊆ SF.

4. Ct ⊆ SF and Ft ⊆ SC.

Proof. (1) We prove the first inclusion. The proof of the second is dual.
Let i ∈ Ct and z ∈ obMf . Let i∗ := π0M(i, z). First, we show that i∗ is injective. Let

g, h ∈ M(b, z). Suppose that g · i s∼h · i. Then there is a commutative diagram of solid

arrows ∂J
g+h//

��

M(b, z)

i∗

��
J //

;;

M(a, z)

. SM7 implies i∗ : M(b, z)→M(a, z) is a trivial fibration of sSet.

In sSet, ∂J → J is a cofibration. Hence, the above diagram has a lifting of the dotted
arrow. Therefore i∗ is injective.

Next, we show that i∗ is surjective. Let f ∈ M(a, z). Since z is fibrant, the diagram

a
f //

i
��

z

��
b //

??

∗

of solid arrows has a lifting where ∗ is the terminal object. Therefore i∗ is

surjective.



1174 SEUNGHUN LEE

(2) We prove Ft ∩Mor(Mc) ⊆ SC. The proof of Ct ∩Mor(Mf ) ⊆ SF is dual.
Let p ∈M(x, y). Assume that p ∈ Ft and x, y ∈Mc. Then there are liftings r and H

of the following diagrams of solid arrows where σ is the constant homotopy.

∅ //

��

x

p

��
y = //

r

@@

y

x⊗ ∂∆[1]
r·p+1x //

��

x

p

��
x⊗∆[1] σ //

H

66

x
p // y

Since p ∈ Ft and y ∈ obMc, such r exists. Since x ∈ obMc, x⊗ ∂∆[1]→ x⊗∆[1] belongs
to C by SM7 and Proposition 3 on Chapter II.2 in [Qui67]. Hence H also exists. Then p
is a simplicial homotopy equivalence with its inverse r. So, p ∈ SC by Lemma 3.3.

(3) follows from (1) and (M0).
(4) We prove the first inclusion. The proof of the second is dual.

Let g ∈ Ct and let β be a fibrant replacement of cod(g). Then • β·g //

g

��

•
=

��
• β // •

is a fibrant

replacement of g. Hence g ∈ SF.

Recall that the elements of SC and SF are those having cofibrant replacements in SC

and SF respectively.

3.9. Lemma. Let M be a simplicial Quillen category with its simplicial Quillen structure
(C, Ft) and (Ct,F). Then SC and SF satisfy two out of three property.

Proof. We will prove it for SC. The proof of SF is dual.
First, we prove the property (M). Let g : x → y and h : y → z be morphisms in SC.

Let Qg and Qh be cofibrant replacements of g and h respectively such that Qg,Qh ∈ SC.

Qx
α //

Qg

��

x

g

��
Qy

β // y

Qy
γ //

Qh

��

y

h

��
Qz

δ // z

Consider the commutative diagram Qw
pw // w

β′ //

γ′

��

Qy

β

��
Qy

γ // y

obtained by the pullback and

a cofibrant replacement pw of w. Then, since β′ · pw, γ′ · pw ∈ Ft ∩ Mor(Mc), β
′ · pw,

γ′ · pw ∈ SC by Lemma 3.8.(2). Since Qx ∈Mc and β′ · pw ∈ Ft, there is a lifting r of Qg
against β′ · pw such that Qg = β′ · pw · r. Since Qg, β′ · pw ∈ SC, every such a lifting is in
SC by Lemma 3.5. Then Qh · γ′ · pw · r is in SC and it is a cofibrant replacement of hg.

The proofs of (L) and (R) are similar, so we omit.
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3.10. Lemma. Let M be a simplicial Quillen category with its simplicial Quillen structure
(Ct,F) and (C,Ft).

1. WM ∩Mor(Mc) ⊆ SC. If C ∩ SC ⊆ Ct, then SC ∩Mor(Mc) ⊆WM also holds.

2. WM ∩Mor(Mf ) ⊆ SF. If F ∩ SF ⊆ Ft, then SF ∩Mor(Mf ) ⊆WM also holds.

Proof. We will prove (1). The proof of (2) is dual.
The first inclusion follows from (1) and (2) of Lemma 3.8. Let g ∈ SC∩Mor(Mc). Let

g = p · i be a (C,Ft)-factorization of g. p ∈ SC by Lemma 3.8.(2). i ∈ SC by Lemma 3.5.
Then by our assumption C ∩ SC ⊆ Ct, i ∈ Ct. Thus g ∈WM.

The following lemma was proved for sSet during the proof of Lemma 7 on chapter II.3
in [Qui67]. The proof is formal so that they also work for the simplicial Quillen category
with little modification.

3.11. Lemma. Let M be a simplicial Quillen category. If i ∈ SC, then M(i, z) is a weak
equivalence in sSet for all z ∈ obMf .

Proof. Let i ∈ Mor(a, b). Let z ∈ obMf . Let k ∈ obsSet. By SM0 and the dual of (4),
we have the following commutative diagram

π0sSet(k,M(b, z)) i∗ //

∼=
��

π0sSet(k,M(a, z))

∼=
��

π0M(b, zk) i∗ // π0M(a, zk)

By SM7, zk is fibrant. So i ∈ SC implies that the bottom i∗ is bijective. Hence the top i∗

is also bijective. Then by Proposition 9.5.16 and Proposition 9.6.9 in [Hir03], M(i, z) is a
weak equivalence in sSet.

3.12. Remark. In the previous lemma, if the domain and the codomain of i are cofibrant,
then M(a, z) and M(b, z) are fibrant by SM7( and cofibrant). Then using K. Brown’s
lemma and using a similar argument as the proof of Lemma 3.8.(1), one can show that
M(i, z) being a weak equivalence for all z ∈ obMf implies i ∈ SC.

The following lemma which plays a key role in our paper was also proved in [Qui67]
in the context of sSet. The proof also works with our setting with little changes. But
we will give the proof for the sake of completeness. Our proof uses the two out of three
property of WsSet. Because of this, the proof is shorter than that in [Qui67].

3.13. Lemma. [cf. Lemma 7 on Chapter 2.3 in [Qui67]] Let M be a simplicial Quillen
category with its simplicial Quillen structure (C,Ft) and (Ct,F). Let i ∈ C ∩ SC. Then,
for every q ∈ F with cod(q) ∈ obMf , (i∗, q

∗) is a trivial fibration of sSet. In particular,
i� q holds.
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Proof. We may assume that simplicial Quillen category M is not the simplicial model
category sSet.

Let q ∈ M(x, y) ∩ F. We assume that y ∈ Mf . Note that x ∈ obMf too. Let

a α //

i
��

x

q

��
b

β // y

be a commutative diagram. It induces the following commutative diagram.

M(b, x)
(i∗,p∗) //M(b, y)×M(a,y) M(a, x)

f //

��

M(a, x)

��
M(b, y)

M(i,y) //M(a, y)

Since x, y ∈ obMf , M(i, y) and f · (i∗, p∗) are trivial fibrations in sSet by Lemma 3.11 and
SM7 of M. Since f is a pull-back of M(i, y), f is also a trivial fibration in sSet. Then by
two out of three property of sSet, (i∗, p∗) is an weak equivalence. Therefore (i∗, p∗) is a
trivial fibration by SM7.

Now, we have a lifting of the following diagram of solid arrows

∂∆[0] //

��

M(b, x)

(i∗,p∗)
��

∆[0] //M(b, y)×M(a,y) M(a, x),

where the bottom map is given by the first diagram. Then the lifting is a lifting of the
first diagram.

3.14. Proposition. Let M be a simplicial Quillen category with its simplicial Quillen
structure (C,Ft) and (Ct,F).

1. For every i ∈ C, the following are equivalent

(a) i ∈ SC.

(b) For every fibrant replacement j of cod(i), j · i ∈ Ct.

(c) There is a morphism j ∈ Ct such that j · i ∈ Ct.

2. For every p ∈ F, the following are equivalent

(a) p ∈ SF.

(b) For every cofibrant replacement q of dom(p), p · q ∈ Ft.

(c) There is a morphism q ∈ Ft such that p · q ∈ Ft.
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Proof. We will prove (1). The proof of (2) is dual.
(a) ⇒ (b) Let i ∈ M(a, b). Let ib : b → Rb be a fibrant replacement of b. We factor

ib · i as ib · i = p ·α a // α
∼ //

��
i
��

x

p
����

b // ∼
ib
// Rb

where p ∈ F and α ∈ Ct. By Lemma 3.13, there is a lifting

of the above diagram. So, p has a section. Then ib · i is a retract of α. Hence, ib · i ∈ Ct.
(b) ⇒ (c) is clear.
(c)⇒ (a) By Lemma 3.8.(1), j and j · i are in SC. Then i is in SC too by Lemma 3.5.

Since the identities for (co)fibrant objects are (co)fibrant replacements, we have the
following corollary of Proposition 3.14.

3.15. Corollary. Let M be a simplicial Quillen category with its simplicial Quillen
structure (C,Ft) and (Ct,F). Then

SC ∩Mor(M)f ⊆ Ct, SF ∩Mor(M)c ⊆ Ft

hold where Mor(M)f is the class of morphisms whose codomain are fibrant and Mor(M)c

is the class of morphisms whose domain are cofibrant.

3.16. Proofs. Here we prove the results stated in the introduction. We will reproduce
the statements for the convenience of readers.

3.17. Theorem 1.7. Let M be a simplicial Quillen category.

1. SC∩Mor(Mc)f = WM∩Mor(Mc)f holds where Mor(Mc)f is the class of morphisms
in Mc whose codomains are fibrant.

2. SF∩Mor(Mf )
c = WM∩Mor(Mf )

c holds where Mor(Mf )
c is the class of morphisms

in Mf whose domains are cofibrant.

In particular, WM ∩Mor(Mcf ) satisfies two out of three property.

Proof. We will prove (1). The proof of (2) is dual.
By Lemma 3.10, WM∩Mor(Mc)f ⊆ SC∩Mor(Mc)f holds. Let g ∈ SC∩Mor(Mc)f . We

can factor g = p ·i so that p ∈ Ft and i ∈ C. Since g ∈ Mor(Mc), p ∈ Mor(Mc). So, p ∈ SC

by Lemma 3.8.(2). Hence, i ∈ SC. Since g ∈ Mor(M)f , cod(i) ∈ obMf . Then by Corollary
3.15, we have i ∈ Ct. Therefore, g ∈ WM. Hence WM ∩ Mor(Mc)f ⊇ SC ∩ Mor(Mc)f
holds.

To prove Theorem 1.9, we record the following corollary of Proposition 3.14.

3.18. Corollary. Let M be a simplicial Quillen category with its simplicial Quillen
structure (C,Ft) and (Ct,F).

1. (1) holds iff C ∩ SC ⊆ Ct holds.

2. (2) holds iff F ∩ SF ⊆ Ft holds.
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3.19. Remark. By Lemma 3.8.(1), C ∩ SC ⊇ Ct and F ∩ SF ⊇ Ft always hold. So
Corollary 3.18 tells us that (1) is precisely what is needed to characterize the acyclicity
of the elements of C in terms of the simplicial structure of M.

3.20. Theorem 1.9. Let M be a simplicial Quillen category with its simplicial Quillen
structure (C,Ft) and (Ct,F). Then the following are equivalent.

1. (M), C ∩ SC ⊆ Ct, and F ∩ SF ⊆ Ft hold.

2. WM = SC holds.

3. C ∩ SC = Ct holds.

4. WM = SF holds.

5. F ∩ SF = Ft holds.

6. WM has two out of three property.

Proof. (1)⇒(2) Let g ∈ SC. We factor g as g = p · i so that p ∈ F and i ∈ Ct. By
Lemma 3.8.(3) and (M), i ∈ SC. So by Lemma 3.9, p ∈ SC. Let p ∈ M(x, y). Let

Qx ∼
α
// //

Qp

��

x

p

����
Qy ∼

β
// // y

be a cofibrant replacement of p such that Qp ∈ SC. Since Qp ∈ SC and Qx,

Qy ∈Mc, Qp ∈WM by Lemma 3.10 and C∩SC ⊆ Ct. Then p ·α ∈ Ft by the Lemma 2.4.
So, p ∈ SF by the implication (c)⇒(a) of Proposition 3.14.(2). Then by our assumption
F ∩ SF ⊆ Ft, p ∈ Ft. Therefore SC ⊆WM.

Conversely, let g ∈WM and factor g as g = p · i where p ∈ Ft and i ∈ Ct. By (3) and
(4) of Lemma 3.8 and our assumption (M), p, i ∈ SC. So by Lemma 3.9, g ∈ SC.

(2)⇒(6) follows from Lemma 3.9.
(6)⇒(1) follows from Corollary 3.18 and Lemma 2.7.(1).
(2)⇒(3) follows from Lemma 2.4.
(3)⇒(2) Let f ∈ WM. Then f = p · i for some p ∈ Ft and i ∈ Ct. p ∈ SC by Lemma

3.8.(4). i ∈ Ct ⊆ C∩ SC, hence i ∈ SC. So f ∈ SC by Lemma 3.9. Conversely, let f ∈ SC.
Let f = p · i be a (C,Ft)-factorization of f . Since p ∈ SC by Lemma 3.8.(4), i ∈ SC by
Lemma 3.9. Then i ∈ C ∩ SC ⊆ Ct, and f ∈WM.

By duality, (4) and (5) are equivalent to (6).

3.21. Remark. If WM has two out of three property, then M is a simplicial model
category and WM = SC holds by a general result. See Theorem 9.7.4.(4) in [Hir03] and
Remark 3.12.
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3.22. Proposition 1.10. Let M be a simplicial Quillen category with its simplicial
Quillen structure (Ct,F) and (C,Ft). We assume that M = Mc. Then, the following
are equivalent.

1. C ∩ SC ⊆ Ct holds.

2. WM = SC holds.

3. WM has two out of three property.

Proof. (1)⇒(2) follows from Lemma 3.10 and our assumption Mc = M.
(2)⇒(3) follows from Lemma 3.5.
(3)⇒(1) follows from Corollary 3.18 and Lemma 2.7.(1).

3.23. Remark. If M = Mc and WM has two out of three property, then M is a simplicial
model category and WM = SC holds by a general result. See Corollary 9.7.5 in [Hir03].
Mc = M is a rather strong restriction on M. It implies SC = SC. And Mc = M and
C∩ SC ⊆ Ct imply (M) and F ∩ SF ⊆ Ft. So, Proposition 1.10 also follows from Theorem
1.9. But the proof given above is shorter.
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