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REDUCED SMOOTH STACKS?

GIORGIO TRENTINAGLIA

Abstract. An arbitrary Lie groupoid gives rise to a groupoid of germs of local dif-
feomorphisms over its base manifold, known as its e�ect. The e�ect of any bundle of
Lie groups is trivial. All quotients of a given Lie groupoid determine the same e�ect.
It is natural to regard the e�ects of any two Morita equivalent Lie groupoids as being
�equivalent�. In this paper we shall describe a systematic way of comparing the e�ects of
di�erent Lie groupoids. In particular, we shall rigorously de�ne what it means for two
arbitrary Lie groupoids to give rise to �equivalent� e�ects. For e�ective orbifold group-
oids, the new notion of equivalence turns out to coincide with the traditional notion of
Morita equivalence. Our analysis is relevant to the presentation theory of proper smooth
stacks.

Introduction

The presentation theorem is a classical result in the theory of orbifolds which essentially
dates back to the original papers on �V -manifolds� by Satake and others [Satake, 1957,
Kawasaki, 1978]. (A detailed exposition is given in [Moerdijk and Mr£un, 2003].) In
modern language [Moerdijk and Pronk, 1997, Moerdijk, 2002], this theorem states that
any e�ective orbifold groupoid1 is Morita equivalent to the translation groupoid associated
to some compact Lie group action on a smooth manifold; of course, the action in question
will be e�ective and have discrete stabilizers. Thus, when regarded as a smooth (De-
ligne�Mumford) stack [Metzler, 2003, Lerman, 2010], any e�ective orbifold is isomorphic
to a stack of the form [M/G], where G is a compact Lie group andM is a smooth manifold
on which G operates smoothly and with discrete stabilizers. The importance of this result
nowadays lies principally in the fact that it enables one to reduce the computation of
many topological and cohomological invariants of orbifolds to a better understood special
case [Adem et al., 2007]. A number of popular research topics in orbifold theory are,
in a way or another, related to the presentation theorem. For instance, a long-stand-
ing conjecture a�rms that any, say, connected, smooth orbifold stack (e�ective or not)
is of the form [M/G], for G, M as above. (The reader is referred to [Henriques and
Metzler, 2004] for an exhaustive discussion and partial results on this conjecture.) For
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various purposes, for example, for computing Chen�Ruan orbifold cohomology [Fantechi
and Göttsche, 2003], classifying smooth symplectic resolutions of (possibly singular) a�ne
Poisson varieties [Ginzburg and Kaledin, 2004], or building models of conformal �eld
theories on singular spaces [Dixon et al., 1987], it is important to understand under what
conditions an orbifold stack is isomorphic to a �global quotient�, that is to say, to a stack
of the form [V/G], where G is a �nite group of smooth automorphisms of a non-singular
manifold V . The presentation theorem itself proves to be a useful tool in the study of this
kind of problem [Adem et al., 2007]. The presentation theorem also has application in
the study of asymptotic spectral properties of elliptic operators on orbifolds [Kordyukov,
2012]. The present paper originates from the author's endeavor to extend the presentation
theorem beyond the scope of orbifold theory [Trentinaglia, 2014] with the intent of gaining
a better geometric understanding of general proper smooth stacks and, possibly, laying
the foundations for a classi�cation theory of such objects along the lines of [Moerdijk,
2003].

It turns out that presentation results are by no means special to orbifolds. It is a
well-known fact (for a proof of which we refer the reader to Section 5 of [Trentinaglia,
2008]) that any Lie groupoid which admits faithful representations is Morita equivalent
to the translation groupoid associated to a smooth action of some Lie group on a smooth
manifold; when the groupoid is proper, the Lie group can be taken to be compact. The
presentation theorem for e�ective orbifolds is then simply a corollary of this fact and of
the fact that any e�ective orbifold groupoid admits a canonical faithful representation on
the tangent bundle of its base manifold. The theorem is thus substantially a result in
the representation theory of Lie groupoids. Even though Lie groupoids normally do not
admit faithful representations [Trentinaglia, 2010, Jelenc and Mr£un, 2013], in view of
recent results obtained by the author [Trentinaglia, 2014] it seems plausible that the more
non-trivially a proper Lie groupoid acts on its own base the larger must be the number
of interesting representations the groupoid possesses. If we agree to call a Lie groupoid
e�ective when the only isotropic arrows that have trivial in�nitesimal e�ect (compare
Section 1 below) are the identities, one may conjecture that any e�ective proper Lie
groupoid admits faithful representations. Although at �rst sight this assertion might look
like a good candidate for a generalized presentation theorem, it does not take long to
realize that in the non-étale case the notion of e�ective groupoid which we have just
introduced is so restrictive that the conjectured result, even if true, would be of little
practical utility. [By way of example consider the translation groupoid Γ = SO(3)nR3 ⇒
R3 associated to the canonical action of the special orthogonal group SO(3) on three-di-
mensional euclidean space. Since this action is faithful, one would like to say that Γ acts
e�ectively on its base R3. On the other hand, outside the origin all the isotropic arrows
of Γ have trivial e�ect.] The approach we propose instead is the following.

Our starting point is the observation that an arbitrary orbifold groupoid can be pre-
sented as an extension of some e�ective orbifold groupoid by a bundle of �nite groups
in a canonical fashion: in fact, the ine�ective isotropic arrows of an arbitrary orbifold
groupoid Γ form a bundle of �nite groups K over the base manifold M of Γ , and the
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quotient groupoid Γ/K ⇒M is an e�ective orbifold groupoid. (Compare e.g. [Henriques
and Metzler, 2004, �2.2].) In general, for an arbitrary short exact sequence of Lie groupoid
homomorphisms 1 → K ↪→ Γ � Γ ′ → 1 presenting a given Lie groupoid Γ ⇒ M as an
extension of some other Lie groupoid Γ ′ ⇒M by a bundle of Lie groups K, the kernel of
the homomorphism Γ � Γ ′ consists of ine�ective arrows. Heuristically speaking, we may
express the circumstance that the two Lie groupoids Γ and Γ ′ induce the same �action�
by germs of local di�eomorphisms on their base manifold M by saying that they give rise
to the same �e�ective transversal geometry�. Thus, we may liberally rephrase the classical
presentation theorem for orbifolds by saying that an arbitrary orbifold groupoid gives
rise to the same �e�ective transversal geometry� as the translation groupoid associated
to some compact Lie group that acts on a smooth manifold e�ectively and with discrete
stabilizers. Much of the above picture naturally generalizes from orbifold groupoids to
arbitrary proper Lie groupoids, in the following manner. Suppose a proper Lie groupoid
Γ �ts in a short exact sequence of Lie groupoid homomorphisms 1→ K ↪→ Γ � Γ ′ → 1
where Γ ′ is a faithfully representable proper Lie groupoid and K is a bundle of compact
Lie groups. By one of the preceding remarks, if we pick a faithful representation of Γ ′ and
pull it back along the homomorphism Γ � Γ ′ to a representation of Γ , we obtain what
in [Trentinaglia, 2010] is called an e�ective representation, i.e. one whose kernel consists
of ine�ective arrows. Conversely, it follows from results proven in [Trentinaglia, 2010,
�4] that an arbitrary proper Lie groupoid which is e�ectively representable �ts in a short
exact sequence of the preceding form. On the basis of these considerations, we argue that
any positive result about the existence of e�ective representations ought to be regarded
as a presentation theorem of a generalized kind. Allowing ourselves a certain freedom
of speech, we might further argue that the primary goal of the presentation theory of
proper smooth stacks is to give an explicit characterization of those proper Lie groupoids
which give rise to the same �e�ective transversal geometries� as e�ectively representable
proper Lie groupoids or, equivalently, as the translation groupoids associated to compact
Lie group actions on smooth manifolds.

The present article is intended to put the heuristic statements involved in the above
speculations on a �rm mathematical basis. To this end, we are going to propose a con-
ceptual framework for the study of what we shall call �generalized reduced orbifolds� or,
better, �reduced smooth stacks�. The basic idea behind our theory is that, instead of try-
ing to de�ne what it means for a smooth stack to be �reduced�, one should try to rigorously
make sense of the assertion that two smooth stacks share the same �e�ective transversal
geometry�. In the spirit of F. Klein's Erlangen program, in order to de�ne when two Lie
groupoids (regarded as smooth stacks) give rise to the same �e�ective transversal geom-
etry� without having to say what the �e�ective transversal geometry� associated with a
Lie groupoid is, we are going to highlight a certain class of Lie groupoid homomorphisms
which in a plausible sense preserve all of the groupoid e�ective transversal structure and
then, by a standard categorical localization procedure, declare the members of that class
to be isomorphisms. By de�nition, two Lie groupoids give rise to the same �e�ective
transversal geometry� if they turn out to be isomorphic when regarded as objects of the
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resulting localized category. Of course there are some di�culties which we have to face if
we want to make sense of these ideas in a truly satisfactory way: our localized category
should admit a calculus of fractions [Gabriel and Zisman, 1967]. This is required, for
instance, in order to show that the notion of reduced smooth stack is indeed a generaliza-
tion of the notion of reduced orbifold (we want the category of reduced orbifolds to imbed
into that of reduced smooth stacks as a full subcategory).

We shall now give a section-by-section description of our article and, with it, some
information about the above-mentioned localized category. The �rst two sections are
essentially preparatory. In Section 1 we review some background notions, such as the no-
tion of e�ect of an arrow or the notion of ine�ective isotropy group, and study how these
behave with respect to homomorphisms. In Section 2 we make a preliminary study of the
homomorphisms that will be formally inverted in the process of constructing our local-
ized category, in particular, we explain in what sense these homomorphisms preserve the
e�ective transversal structure of Lie groupoids. In Section 3, we describe our prototype
category of reduced smooth stacks. At the outset there is the category LGpd· with objects
all Lie groupoids and with morphisms all Lie groupoid homomorphisms that carry ine�ec-
tive isotropic arrows into ine�ective isotropic arrows. On the morphisms of this category,
we introduce an equivalence relation, which we call natural congruence, which identi�es
two homomorphisms when there exists some smooth transformation between them that is
natural �modulo ine�ective isotropy�. Next, we form the category LGpd·

/
.
≡ with objects

all Lie groupoids and with morphisms all natural congruence classes of homomorphisms
in LGpd·. We show that the homomorphisms studied in Section 2, which automati-
cally belong to LGpd·, project down under the quotient functor LGpd· → LGpd·

/
.
≡

to a class of morphisms E which admits a calculus of right fractions. The localized
category LGpd·

/
.
≡[E−1] is our prototype category of reduced smooth stacks. We call ef-

fective equivalence a homomorphism in LGpd· whose image under the canonical functor
LGpd· → LGpd·

/
.
≡[E−1] is an isomorphism. In Section 4 we show that any e�ective

equivalence induces a homeomorphism at orbit space level and preserves the e�ective in-
�nitesimal transversal structure at every base point. Moreover, we show that the category
of reduced orbifolds imbeds canonically into LGpd·

/
.
≡[E−1]. Finally, in Appendix A, we

point out a few consequences of an assumption we make on Lie groupoids, namely, second
countability, which motivate some basic de�nitions we give in Sections 2�3. Among those
consequences there are the following two statements: (1) Any fully faithful homomorphism
of Lie groupoids that at base level covers the identity map is an isomorphism. (2) Any Lie
groupoid with just one orbit is transitive.

Apart from the formulation of generalized presentation results and the related study of
e�ective representations, which provided the original motivation for our analysis, there is
another context where the ideas outlined in the present article are likely to �nd application,
namely, the theory of Riemannian metrics on Lie groupoids propounded recently in [del
Hoyo and Fernandes, 2014]. (We are indebted to M. del Hoyo for drawing our attention
to this potential utilization of our theory.) The existence of such metrics is a property of
Lie groupoids which presumably only depends on the underlying �reduced smooth stacks�
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and, therefore, is invariant under e�ective equivalence. Our theory may even provide a
convenient framework for the analysis of other (e.g. symplectic or Poisson) �transversely
invariant� geometric structures on Lie groupoids. The problem of how to give a systematic
treatment of such structures is relevant e.g. to Poisson geometry [Fernandes et al., 2009].

We consider the constructions described in this article to be simply a �rst step towards
a full-�edged theory of reduced smooth stacks. (The question mark in the article's title
is supposed to allude to the developing status of our theory.) In particular, the localized
category LGpd·

/
.
≡[E−1] should be regarded simply as a �minimal working model� which,

albeit already satisfactory from the point of view of our original objectives, may lend itself
to further development. Just to mention one possibility, we have contented ourselves with
only formally inverting those homomorphisms (among those that preserve the e�ective
transversal structure) for which the standard weak pullback construction su�ces to estab-
lish the existence of a calculus of fractions. Nothing however excludes that, by suitably
modifying that construction, one might be able to invert a larger class of homomorphisms.
Ideally, we would like e�ective equivalences to admit an explicit characterization (at best,
one stable under natural congruence), like weak equivalences. We have also deliberately
ignored any 2-categorical aspect in our exposition. However, as argued in [Lerman, 2010],
higher-level information ought to be taken into account in order to obtain a fully satis-
factory theory. The appropriate setting for a theory of �reduced smooth stacks� is, most
probably, that of bicategories of fractions [Pronk, 1996]. All these aspects, along with
those mentioned in the previous paragraph, shall be addressed elsewhere.

Overall conventions about terminology and notation. Throughout the article
the name groupoid will designate a small category in which all arrows are invertible. A
generic groupoid Γ will be written Γ(1) ⇒ Γ(0) when there is need to specify its set of
objects Γ(0) (also called the base of Γ ) and its set of arrows Γ(1) (itself often written Γ
by abuse of notation) individually. The structure maps of a groupoid Γ will be denoted
sΓ (source), tΓ (target), mΓ (composition law), uΓ (unit) and iΓ (inverse), omitting the
superscript `Γ ' whenever there is no risk of ambiguity. For every pair of objects x, y ∈ Γ(0)

the set of all arrows of source x respectively target y will be indicated by Γ x = Γ (x,−)
respectively Γy = Γ (−, y); moreover Γ x

y = Γ (x, y) will denote the intersection Γ x ∩ Γy.
The following standard abbreviations will be used systematically: sg for sΓ (g); tg for
tΓ (g); g′g for mΓ (g′, g) when sg′ = tg; 1x or just x for uΓ (x); g−1 for iΓ (g).

By a di�erentiable manifold we mean a (non-empty) locally compact manifold of class

C∞. For each point x of a di�erentiable manifold X there is some local chart ϕ : U
≈→ Rn

of class C∞ centered at x = ϕ−1(0) ∈ U . The integer n ∈ N, which does not depend on
the choice of ϕ, is called the local dimension of X at x and indicated by dimxX. The
function dimX : X → N is locally constant over X. When it is (overall) constant, we say
X is of constant dimension. By a smooth manifold we mean a di�erentiable manifold of
constant dimension whose topology is Hausdor� and possesses a countable basis of open
sets.

A di�erentiable groupoid will be a groupoid Γ ⇒ X in whichX and Γ are di�erentiable
manifolds, sΓ and tΓ are submersive di�erentiable maps, and the other groupoid structure



REDUCED SMOOTH STACKS? 1037

maps (namely mΓ , uΓ and iΓ ) are di�erentiable. A homomorphism (of di�erentiable
groupoids) will be a di�erentiable functor. The term Lie groupoid will be regarded as
synonymous with smooth groupoid ; the latter term indicates a di�erentiable groupoid
whose manifold of objects and whose manifold of arrows are both smooth.

1. Ine�ective isotropy

The purpose of this section is to provide a self-contained introduction to some concepts
which lie at the heart of the theory expounded in Sections 2 to 4. There is not much claim
to originality to be made here. In view of the fundamental role played by the notions
to be discussed below, the reader will forgive us if, occasionally, we give full proofs of
well-known facts. We will start by reviewing the basic structure theory of di�erentiable
groupoids, in particular, the notion of orbit; in combination with Godement's theorem
[Serre, 2006], the arguments given in [Moerdijk and Mr£un, 2003] are essentially still valid
in the present, more general context.

Let Γ ⇒ X be an arbitrary di�erentiable groupoid. For each pair of base points
x, y ∈ X the subset Γ x

y = Γ (x, y) ⊂ Γ is a di�erentiable submanifold of Γ . In particu-
lar, the isotropy group Γ x

x = Γ (x, x) has a canonical di�erentiable group structure. The
source �ber Γ x = Γ (x,−) = s−1(x) ⊂ Γ is also a di�erentiable submanifold of Γ . The
composition of arrows restricts to a di�erentiable action of the group Gx = Γ x

x on the
manifold Γ x from the right. This action is free and has the property that on the quotient
set Γ x/Gx there exists a unique di�erentiable structure relative to which the canonical
projection prΓx : Γ x � Γ x/Gx becomes a submersion. The di�erentiable manifold ob-
tained in this way shall be denoted by OΓ

x and referred to as the orbit of Γ (Γ -orbit)
through x. The action of the group Gx on the manifold Γ x makes the di�erentiable �bra-
tion prΓx : Γ x � OΓ

x into a principal right Gx-bundle over O
Γ
x . Hereafter we will usually

write `[g]' in place of `prΓx (g)'.
Every orbit OΓ

x is injectively immersed into the groupoid baseX in a canonical fashion.
Namely, there is a unique map inΓx : OΓ

x → X such that the composition inΓx ◦ prΓx equals
tx : Γ x → X, the restriction of the target map to the source �ber, and this map is
necessarily di�erentiable, injective and immersive. The longitudinal tangent space at x is
de�ned to be the image of the tangent linear map T[x]in

Γ
x : T[x]O

Γ
x � TxX,

T_
↔
x Γ(0) := im(T[x]in

Γ
x ) ⊂ TxX

(the base point x and the corresponding unit arrow 1x being identi�ed notationally). The
transversal tangent space at x is de�ned to be the quotient vector space

T_
l
x Γ(0) := TxX / T_

↔
x Γ(0).

Intuitively, the former space consists of all those vectors in TxX that are �tangent� to the
orbit OΓ

x , whereas the latter consists of those that are �perpendicular� to it.
We observe that for every arrow g ∈ Γ

im(T[tg]intg) = im(T[g]insg). (1)
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To see this, notice that the right-translation map h 7→ hg is a di�eomorphism of Γ tg

onto Γ sg which is equivariant relative to the group isomorphism Γ tg
tg
∼→ Γ sg

sg given by
conjugation by g−1 and therefore descends to a well-de�ned di�eomorphism between the
orbits Otg and Osg which intertwines the maps intg and insg.

Let an arrow g ∈ Γ be given. Put x = sg and x′ = tg. Consider an arbitrary local
di�erentiable section γ : U ↪→ Γ to the source map s : Γ � X through g = γ(x). The
tangent linear map Tx(t ◦ γ) : TxX → Tx′X carries the longitudinal subspace T_↔x Γ(0) ⊂
TxX into its counterpart T_↔x′ Γ(0) ⊂ Tx′X; this follows from the existence of a di�erentiable
map c : in−1

x (U)→ Ox′ such that inx′ ◦ c = (t ◦ γ) ◦ inx [such a map exists as a corollary
to the local triviality of the orbit �bration prx : Γ x � Ox]. As a consequence, Tx(t ◦ γ)
must induce a well-de�ned linear map between the transversal tangent spaces T_lx Γ(0) and
T_lx′ Γ(0); we let this map be indicated by εγx provisionally.

1.1. Lemma. The linear map εγx : T_lx Γ(0) → T_lx′ Γ(0) does not depend on the choice of a
local source section γ through the given arrow g ∈ Γ (x, x′).

Proof. Let γ1 and γ2 be local s-sections through g = γ1(x) = γ2(x). We have

Tx(t ◦ γ1)− Tx(t ◦ γ2) = Tgt ◦ (Txγ1 − Txγ2).

The di�erence Txγ1−Txγ2 takes values in the s-vertical tangent space kerTgs. Now, since
Tgt

x = T[g]inx ◦ Tgprx, it is clear from the identity (1) that Tgt maps kerTgs into T
_↔
x′ Γ(0).

Thus the two linear maps Tx(t ◦ γi) [i = 1, 2] di�er from one another by a linear map
taking values in T_↔x′ Γ(0) and hence induce the same map between the transversal tangent
spaces T_lx Γ(0) and T

_l
x′ Γ(0).

We set ε(g) := εγx and call this the (in�nitesimal) e�ect of g. Notice that ε(1x) = id
for every base point x ∈ X and that ε(g′g) = ε(g′) ◦ ε(g) for every composable pair of
arrows (g′, g) ∈ Γ s×t Γ . Both identities are an immediate consequence of the de�nitions.

1.2. Lemma. For any base point x ∈ X, the correspondence that to each arrow g ∈ Γ x
x

associates its e�ect ε(g) gives rise to a di�erentiable group homomorphism of Γ x
x into

GL(T_lx Γ(0)) which shall be indicated by εx.

Proof. There is only to check the di�erentiability of the correspondence εx. Put G = Γ x
x

for brevity. Consider an arbitrary local C∞ source trivialization ϕ : Ω
≈→ U × Rn, g 7→

ϕ(g) =
(
sg, f(g)

)
[where Ω ⊂ Γ and U ⊂ X are open subsets]. Put A = G ∩ Ω and

let ψ : A × U → X be the map given by ψ(a, u) = tϕ−1
(
u, f(a)

)
. Clearly ψ is of class

C∞ and the same is true of its second partial D2ψ(−, x) : A × TxX → TxX. From the
de�nitions it follows that if we �x any vector-space basis v1, . . . , vm of TxX so that the
last m− r vectors span the longitudinal subspace T_↔x Γ(0) then the top left r× r minor in
the matrix representing D2ψ(a, x) ∈ End(TxX) will be the matrix representing the e�ect
of a relative to the induced basis v̄1, . . . , v̄r of the transversal tangent space T

_l
x Γ(0).
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We shall refer to the closed subgroup
.
Γ x
x := ker

(
εx : Γ x

x → GL(T_
l
x Γ(0))

)
⊂ Γ x

x

as the ine�ective isotropy group of Γ at x.
We proceed to study the behavior of ine�ective isotropy under homomorphisms. Let

φ : Γ → ∆ be an arbitrary homomorphism of di�erentiable groupoids. Let X denote the
base manifold of Γ and Y that of ∆. Also let f : X → Y denote the base map induced
by φ. For each base point x ∈ X we have a map Oφ

x : OΓ
x → O∆

f(x) characterized by the
equation

Oφ
x ◦ prΓx = pr∆f(x) ◦ φx, (2a)

where φx : Γ x → ∆f(x) indicates the map induced by φ between the source �bers. This
map is necessarily di�erentiable (because prΓx is a surjective submersion and therefore
admits local sections). Alternatively, Oφ

x can be characterized through the equation

in∆f(x) ◦Oφ
x = f ◦ inΓx . (2b)

If we di�erentiate the latter equation at [x] ∈ OΓ
x , we obtain the identity

T[f(x)]in
∆
f(x) ◦ T[x]O

φ
x = Txf ◦ T[x]in

Γ
x ,

which makes it evident that the tangent linear map Txf : TxX → Tf(x)Y carries the
longitudinal subspace T_↔x Γ(0) ⊂ TxX into the longitudinal subspace T_↔f(x)∆(0) ⊂ Tf(x)Y
and hence yields a well-de�ned linear map of the transversal tangent space T_lx Γ(0) into
the transversal tangent space T_lf(x)∆(0); this map shall be denoted by T_lx φ(0) hereafter.

1.3. Lemma.The linear map T_lx φ(0) : T_lx Γ(0) → T_lf(x)∆(0) intertwines the group represen-

tations εΓx : Γ x
x → GL(T_lx Γ(0)) and ε∆f(x) : ∆

f(x)
f(x) → GL(T_lf(x)∆(0)) via the homomorphism

φxx : Γ x
x → ∆

f(x)
f(x). More explicitly, the following identity holds for every arrow g ∈ Γ x

x :

T_
l
x φ(0) ◦ εΓx (g) = ε∆f(x)

(
φ(g)

)
◦ T_lx φ(0). (3)

Proof. Let us set y = f(x) and h = φ(g) for brevity. Let γ be any local source section
of class C∞ through g and let δ be any similar section through h. We have

Txf ◦ Tx(tΓ ◦ γ)− Ty(t∆ ◦ δ) ◦ Txf = Tx(f ◦ tΓ ◦ γ)− Tx(t∆ ◦ δ ◦ f)

= Tx(t
∆ ◦ φ ◦ γ)− Tx(t∆ ◦ δ ◦ f)

= Tht
∆ ◦
(
Tx(φ ◦ γ)− Tx(δ ◦ f)

)
.

The di�erence Tx(φ ◦ γ)−Tx(δ ◦ f) : TxX → Th∆ is a linear map taking values in the s∆-
vertical subspace kerThs

∆ ⊂ Th∆, because

Ths
∆ ◦
(
Tx(φ ◦ γ)− Tx(δ ◦ f)

)
= Tx(s

∆ ◦ φ ◦ γ)− Tx(s∆ ◦ δ ◦ f)

= Tx(f ◦ sΓ ◦ γ)− Tx(id ◦ f)

= Txf − Txf = 0.

The identity (1) implies that Tht
∆ carries kerThs

∆ into T_↔y ∆(0), whence (3).
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1.4. Proposition. The following implications hold for any homomorphism of di�eren-
tiable groupoids φ : Γ → ∆ for every base point x of Γ .

(a) If T_lx φ(0) is surjective then φ(
.
Γ x
x ) ⊂

.
∆φx
φx.

(b) If T_lx φ(0) is injective then φ−1(
.
∆φx
φx) ∩ Γ x

x ⊂
.
Γ x
x .

(c) If T_lx φ(0) is bijective then, for all g ∈ Γ x
x , g ∈

.
Γ x
x ⇔ φ(g) ∈

.
∆φx
φx.

Proof. The last assertion follows from the other two, which in turn are straightforward
consequences of the identity (3).

We shall call a homomorphism of di�erentiable groupoids φ : Γ → ∆ transversal
whenever the following map is a submersion (notations as above).

s∆ ◦ pr 2 : X f×t ∆→ Y (4)

1.5. Proposition. Let φ : Γ → ∆ be a transversal homomorphism of di�erentiable
groupoids. Then for each base point x of Γ the linear map T_lx φ(0) : T_lx Γ(0) → T_lφx∆(0) is
surjective.

Proof. As before, let f : X → Y denote the map induced by φ on the groupoid bases.
Also set y = f(x). By the transversality hypothesis on φ, over some open neighborhood
V of y in Y it will be possible to �nd a C∞ section through (x, 1y) ∈ X f×t ∆ to the
map (4). This section will be of the form (a, δ) with a : V → X a C∞ map and δ : V → ∆
a di�erentiable s∆-section through 1y such that t∆ ◦ δ = f ◦ a. The di�erence

Txf ◦ Tya− idTyY = Ty(t
∆ ◦ δ)− idTyY

will be a linear map carrying TyY into T_↔y ∆(0), because Ty(t
∆ ◦ δ) represents ε∆y (1y) = id .

The surjectivity of T_lx φ(0) is evident now.

Recall that a homomorphism of di�erentiable groupoids φ : Γ → ∆ is said to be a
weak equivalence if the associated map (4) is a surjective submersion (so that in particular
φ is transversal) and the square diagram

Γ

(s,t)

��

φ
// ∆

(s,t)

��

X ×X
f×f

// Y × Y

(5)

(in the above notations) is a pullback within the category of di�erentiable manifolds.

1.6. Proposition. Let φ : Γ → ∆ be a weak equivalence of di�erentiable groupoids.
Then for each base point x of Γ the linear map T_lx φ(0) : T_lx Γ(0) → T_lφx∆(0) is bijective.
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Proof. Let f , y and (a, δ) : V → X f×t∆ be as in the proof of the previous proposition.
There is a (necessarily unique) C∞ map from the open subset in−1

y (V ) of Oy into Ox

whose composition with inx coincides with iny [restricted to in−1
y (V )] followed by a; this

can be seen by exploiting the availability of local C∞ sections to the projection pr y :
∆y � Oy together with the pullback universal property of the diagram (5). The existence
of such a map implies that Tya : TyY → TxX carries T_↔y ∆(0) into T

_↔
x Γ(0) and therefore

induces a linear map of T_ly ∆(0) into T
_l
x Γ(0) which we may call say α. From the proof of

Proposition 1.5 it follows that α must be a right inverse for T_lx φ(0).
We contend that α is also a left inverse for T_lx φ(0). To see this, choose any open

neighborhood U of x in X so that f(U) ⊂ V and let fU : U → V denote the map induced
by f by restriction. The pullback universal property of the diagram (5) applied to the
maps δ ◦fU and (id , a◦fU) yields a local source section γ : U → Γ of class C∞ through 1x
such that t ◦ γ = a ◦ fU . The composite linear map Tya ◦Txf = Tx(t ◦ γ), thus, represents
the trivial e�ect ε(1x) = id .

For an interesting characterization of weak equivalences which encompasses the last
two results, cf. Theorem 4.3.1 of [del Hoyo, 2013]. Combining the above with Proposi-
tion 1.4(c), we obtain the following notable property of weak equivalences, which appears
already in [Trentinaglia, 2010] as part of Lemma 4.2.

1.7. Corollary. For any weak equivalence of di�erentiable groupoids φ : Γ → ∆ and
for any base point x of Γ , the group isomorphism φxx : Γ x

x
∼→ ∆φx

φx establishes a bijection

between the ine�ective subgroup
.
Γ x
x of Γ x

x and the ine�ective subgroup
.
∆φx
φx of ∆φx

φx.

We conclude the section with a remark about natural transformations which will be
needed only later in Section 4 on a single occasion. Recall that a natural transformation τ
between two homomorphisms of di�erentiable groupoids φ, ψ : Γ → ∆, in mathematical
notation `τ : φ ⇒ ψ', is a map of class C∞ from the base X of Γ into the arrows of ∆
which to each point x ∈ X assigns an arrow τ(x) ∈ ∆(φx, ψx) in such a way as to yield
an ordinary natural transformation of (abstract) functors between φ and ψ.

1.8. Lemma. Let τ : φ⇒ ψ be a natural transformation between two homomorphisms of
di�erentiable groupoids φ, ψ : Γ → ∆. For every base point x of Γ

ε
(
τ(x)

)
◦ T_lx φ(0) = T_

l
x ψ(0). (6)

Proof. Pick any local s∆-section δ through τ(x) = δ(φx). Then

Tφx(t ◦ δ) ◦ Txφ− Txψ = Tφx(t ◦ δ) ◦ Txφ− Tx(t ◦ τ)

= Tτ(x)t ◦ (Tφxδ ◦ Txφ− Txτ)

will be a linear map taking values in the longitudinal tangent space T_↔ψx∆(0), because the
parenthesized linear map takes values in kerTs.
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2. Completely transversal and full homomorphisms

We open the present section�which like the previous one is preparatory�by reviewing
some standard basic constructions. Then, we proceed to establish some seemingly not so
well-known results, notably Proposition 2.3 and Lemma 2.9, which motivate and underlie
the theory discussed in the subsequent sections.

Let Γ ⇒ X, ∆ ⇒ Y be di�erentiable groupoids. We remind the reader that we call
a homomorphism φ : Γ → ∆ transversal if the associated map s ◦ pr 2 : X φ×t ∆→ Y is
submersive. We call φ completely transversal if the same map is, moreover, surjective.2

2.1. Lemma. The composition of two (completely) transversal homomorphisms of di�er-
entiable groupoids is also (completely) transversal.

Proof. Let φ : Γ → ∆ and ψ : ∆ → Σ be arbitrary homomorphisms of di�erentiable
groupoids. Let X, Y , Z denote the base manifolds of Γ , ∆, Σ respectively. We have the
following commutative diagram of C∞ maps

(X φ×t ∆) ψ◦s◦pr2
×t Σ

(s◦pr2)×id
��

// // X ψ◦φ×t Σ
s◦pr2

��

Y ψ×t Σ
s◦pr2 // Z

(x, h; k)
_

��

� // (x, ψ(h)k)
_

��

(sh, k)
� // sk = s(ψ(h)k)

in which the top horizontal map is a surjective submersion. The claim about the compo-
sition ψ ◦ φ is obvious now.

Let Γ ⇒ X, ∆ ⇒ Y and Σ ⇒ B be di�erentiable groupoids. Let φ : Γ → Σ and
ψ : ∆ → Σ be di�erentiable groupoid homomorphisms. Assume that φ is transversal.
Then we can form the weak pullback of φ along ψ

∆ ψuφ Γ
pr∆

��

prΓ // Γ

φ

��

∆
ψ

//	� Σ

(7)

whose construction we proceed to recall. Because of the transversality of φ, the following
turn out to be di�erentiable manifolds:

Z = Y ψ×t Σ s×φ X = Y ψ×t◦pr1
(Σ s×φ X);

Π = ∆ ψ◦s×t Σ s×φ◦s Γ = ∆ ψ◦s×t◦pr1◦(id×s) (Σ s×φ◦s Γ ).

Regarding Z as the base manifold and Π as the manifold of arrows, one declares the map
s× id × s given by (h, k, g) 7→ (sh, k, sg) [which is clearly a surjective submersion] to be

2In the literature, a homomorphism which is completely transversal is usually called essentially sur-

jective. We believe our terminology is preferable, for obvious reasons.
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the source, and the map (h, k, g) 7→
(
th, ψ(h)kφ(g)−1, tg

)
[which is obviously C∞] to be

the target. The composition law, unit and inversion map are respectively given by

(h′, k′, g′)(h, k, g) = (h′h, k, g′g), 1(y, k, x) = (1y, k, 1x)

and (h, k, g)−1 =
(
h−1, ψ(h)kφ(g)−1, g−1

)
;

they are obviously all C∞ and make Π ⇒ Z into a di�erentiable groupoid which we agree
to indicate by ∆ ψuφ Γ .

2.2. Lemma. In the weakly commutative diagram (7), the homomorphism pr∆ given by
(h, k, g) 7→ h is transversal and in fact submersive at the level of groupoid bases. Moreover,
if φ is completely transversal then pr∆ is onto at the level of bases and thus a fortiori
also completely transversal.

Let ∆⇒ Y be a di�erentiable groupoid. Let f : X → Y be a di�erentiable map which
is essentially submersive in the sense that the associated map s ◦ pr 2 : X f×t ∆ → Y is
submersive. Then we can form the pullback groupoid

f ∗∆ := (X f×t ∆) s◦pr2
×f X ⇒ X (8)

whose groupoid structure is uniquely determined by the requirement that the obvious
`projection' π : f ∗∆→ ∆ ought to be a homomorphism of groupoids. The `projection' π
is in fact a homomorphism of di�erentiable groupoids, and a weak equivalence as soon as
f is also essentially surjective (i.e. as soon as s ◦ pr 2 is also surjective).

2.3. Proposition. Let Γ , ∆ be Lie groupoids. Let φ : Γ → ∆ be a homomorphism
which is transversal and full (as an abstract functor). Then φ is automatically C∞-full
in the following sense; let X, Y denote the base manifolds of Γ , ∆ respectively and
let f : X → Y denote the base map induced by φ. For any maps h : U → ∆ and
(x, x′) : U → X ×X of class C∞ which satisfy the condition (s, t) ◦ h = (f × f) ◦ (x, x′)
there exist an open cover c : U ′ � U (i.e. a surjective map which on each connected
component of U ′ restricts to a di�eomorphism onto an open subset of U) and a C∞ map
g : U ′ → Γ such that φ ◦ g = h ◦ c and such that (s, t) ◦ g = (x, x′) ◦ c.

U ′
g

//

c // // U

(x,x′)
))

h

$$

Γ

(s,t)

��

φ
// ∆

(s,t)

��

X ×X
f×f

// Y × Y

(9)

Proof. Since the map f : X → Y is essentially submersive, we can form the pullback
groupoid f ∗∆ ⇒ X, as in (8). In the case under consideration this is a Lie groupoid.
Its `projection' π : f ∗∆ → ∆ is a homomorphism of Lie groupoids which covers the
map f : X → Y at base level. By the evident C∞-pullback universal property of this
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homomorphism, φ will factor through f ∗∆ as φ = π ◦ φ′ for a unique homomorphism
φ′ : Γ → f ∗∆ covering the identity on the common base X of Γ and f ∗∆.

Γ
φ′

((

φ

$$

(s,t)
((

f ∗∆

(s,t)

��

π // ∆

(s,t)

��

X ×X
f×f

// Y × Y

(10)

Fullness of φ plainly entails fullness of φ′, so that φ′ is a surjective homomorphism of
Lie groupoids which covers the identity over X. It follows from Proposition A.2 in the
appendix that φ′ is actually an epimorphism of Lie groupoids viz. that the map which φ′

induces between the manifolds of arrows is a surjective submersion.
Now, suppose we are assigned maps h and (x, x′) as in the universal problem (9). By

the C∞-pullback universal property of the square (10), there will be a unique C∞ map
h′ : U → f ∗∆ satisfying the conditions π ◦ h′ = h and (s, t) ◦ h′ = (x, x′). We are thus
reduced to the simpler problem depicted below, where the outer square commutes by
de�nition of h′.

U ′
g

//

// // U

(x,x′)
((

h′

$$

Γ

(s,t)

��

φ′
// // f ∗∆

(s,t)

��

X ×X = // X ×X

(11)

Consider any point u ∈ U . Since φ′ : Γ � f ∗∆ is a surjective submersion, we can �nd
a local C∞ section g′u : Vu → Γ to φ′ de�ned around h′(u). We can then select an open
neighborhood Wu of u in U so that h′(Wu) ⊂ Vu and de�ne a map gu on Wu by setting
gu = g′u◦h′ Wu. The coproduct map g =

∐
gu [de�ned on the disjoint union U

′ =
∐
Wu of

all the open sets Wu as u is let vary over U ] will be a solution to the problem schematized
in (11).

2.4. Corollary. Let φ : Γ → ∆ be a completely transversal homomorphism of Lie
groupoids which is both full and faithful (as an abstract functor). Then φ must be a weak
equivalence.

Of course, the property of C∞-fullness de�ned with Proposition 2.3 makes sense for
homomorphisms between arbitrary di�erentiable groupoids. Any C∞-full homomorphism
of di�erentiable groupoids is full.

2.5. Lemma. The composition of two C∞-full homomorphisms of di�erentiable groupoids
is itself C∞-full.

2.6. Lemma. In the weak pullback diagram (7), the homomorphism pr∆ must be C∞-full
whenever so is φ (of course assuming this is transversal).
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Proof. Suppose two C∞ maps h : U → ∆ and (y, k, x; y′, k′, x′) : U → Z × Z [recall:
Z = Y ψ×t Σ s×φ X in the notations of 2.2] are given which satisfy the condition

(s, t) ◦ h = (pr∆ × pr∆) ◦ (y, k, x; y′, k′, x′) = (y, y′).

Then the map [i ◦ k′][ψ ◦ h]k : U → Σ (i = inversion map in Σ hereafter) given by
u 7→ (k′u)

−1ψ(hu)ku and the map (x, x′) : U → X ×X will satisfy the condition

(s, t) ◦ ([i ◦ k′][ψ ◦ h]k) = (φ× φ) ◦ (x, x′).

Now, since φ is C∞-full, it will be possible to �nd an open cover c : U ′ � U for which
there exists a C∞ map g : U ′ → Γ such that

φ ◦ g = ([i ◦ k′][ψ ◦ h]k) ◦ c and (s, t) ◦ g = (x, x′) ◦ c.

The map (h ◦ c, k ◦ c, g) : U ′ → ∆ ψ◦s×t Σ s×φ◦s Γ will be a solution for the original
universal problem expressing the C∞-fullness of the homomorphism pr∆.

2.7. Remark. Making U = {∗} in the preceding proof, the same reasoning shows that
pr∆ must be full whenever so is φ.

The above lemmas suggest that one might be able to build a reasonable category of
fractions by localizing di�erentiable groupoids at their completely transversal, C∞-full
homomorphisms. This is indeed so, as we will see shortly. Before proceeding further,
however, we must convince ourselves that such homomorphisms preserve the �e�ective
transversal geometry� of di�erentiable groupoids. This is the goal of the next couple of
lemmas. Recall that any di�erentiable groupoid Γ ⇒ X gives rise to an associated orbit
space X/Γ ; this is the quotient of X by the equivalence relation that identi�es any two
points which can be connected by an arrow in Γ , topologized with the �nest topology
that makes the quotient projection X → X/Γ continuous.

2.8. Lemma. Any full, completely transversal homomorphism of di�erentiable groupoids
induces a homeomorphism between the associated orbit spaces.

Proof. Let φ : Γ → ∆ be any such homomorphism and let f : X/Γ → Y/∆ denote
the continuous map induced by φ between the orbit spaces of Γ and ∆. By complete
transversality of φ, f must be surjective and open. By fullness of φ, f must be injective.

For any base point x of an arbitrary di�erentiable groupoid Γ , put

�

Γ x
x := Γ x

x /
.
Γ x
x ;

since
.
Γ x
x is a closed normal subgroup of the di�erentiable group Γ x

x , the quotient group
�

Γ x
x will inherit a canonical di�erentiable group structure. We shall refer to the e�ective

�

Γ x
x space T_lx Γ(0) as the e�ective �rst order approximation of Γ at x or as the e�ective

in�nitesimal model for Γ at x.



1046 GIORGIO TRENTINAGLIA

A homomorphism of di�erentiable groupoids φ : Γ → ∆ shall be called faithfully
transversal if (it is transversal and) for every point x in the base of Γ the linear map
T_lx φ(0) : T_lx Γ(0) → T_lφx∆(0) is injective (hence bijective by Proposition 1.5). By Corol-
lary 1.4, any transversal φ : Γ → ∆ must induce a di�erentiable group homomorphism
�

φxx :
�

Γ x
x →

�

∆φx
φx at every x, which will be injective as soon as φ is faithfully transversal;

by Proposition A.6 in the appendix, any injective homomorphism of di�erentiable groups
must be a monomorphism.

2.9. Lemma.Any C∞-full, transversal homomorphism of di�erentiable groupoids is faith-
fully transversal.

Proof. Let φ : Γ → ∆ be any such homomorphism. Let us temporarily assume that Γ
and ∆ are groupoids over the same base manifold X and that φ covers the identity over
X. Then for any given point x ∈ X the linear map T_lx φ(0) will be injective if and only if
the tangent base map Txφ = idTxX at x satis�es the condition

(Txφ)δx = δx ∈ T_↔x ∆(0) ⇒ δx ∈ T_↔x Γ(0)

for all δx ∈ TxX. Thus, suppose δx ∈ T_↔x ∆(0), i.e., δx = d
dτ τ=0

thτ for some C∞ path
τ 7→ hτ ∈ ∆(x,−) such that h0 = 1x. Since φ is C∞-full, we can lift τ 7→ hτ locally
around zero to a C∞ path τ 7→ gτ ∈ Γ (x,−); it will not be restrictive to assume that
g0 = 1x (for otherwise we can simply take τ 7→ gτg

−1
0 ). Then

δx = d
dτ τ=0

thτ = d
dτ τ=0

tφ(gτ ) = d
dτ τ=0

tgτ ∈ T_↔x Γ(0).

Now suppose φ : Γ → ∆ is completely general. As in the proof of Proposition 2.3,
we can write φ as the composition of a homomorphism φ′ covering the identity on the
bases with a weak equivalence π. Using the faithfulness of π, it is straightforward to check
that φ′ must be itself C∞-full. Since weak equivalences are always faithfully transversal by
Proposition 1.6, we are �nally reduced to the special situation considered at the beginning.

Clearly, any C∞-full homomorphism φ : Γ → ∆ will induce an epimorphism of di�er-
entiable groups φxx : Γ x

x � ∆φx
φx at each base point x of Γ . Thus, by the remarks preceding

the last lemma, when φ is also transversal the quotient homomorphism
�

φxx :
�

Γ x
x →

�

∆φx
φx

will be an isomorphism (of di�erentiable groups); therefore, by the lemma, we will have
an isomorphism

(
�

φxx, T
_l
x φ(0)) : (

�

Γ x
x , T

_l
x Γ(0)) ∼−→ (

�

∆φx
φx, T

_l
φx∆(0)) (12)

between the e�ective in�nitesimal model for Γ at x and that for ∆ at φx.

3. The category of reduced Lie groupoids

Throughout the rest of the article we shall let LGpd stand for the category of Lie group-
oids and Lie groupoid homomorphisms. We shall use the notation `h1 ≡ h2 (mod

.
∆)'
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as an abbreviation for `sh1 = sh2 = y, th1 = th2 and h−1
2 h1 ∈

.
∆y
y'. Since

.
∆ is a nor-

mal,3 totally isotropic (abstract) subgroupoid of ∆, it follows that the binary relation ≡
(mod

.
∆) thus de�ned on the arrows of ∆ is a (categorical, abstract) congruence (although

in general not a regular congruence in the sense of Appendix A).

3.1. Definition. Let Γ
φ
//

ψ
// ∆ be any pair of homomorphisms between two given Lie

groupoids Γ and ∆. By a natural congruence τ between φ and ψ, in symbols `τ : φ
.⇒ ψ',

we shall mean a map τ : X → ∆ of class C∞ from the base manifold X of Γ into the
manifold of arrows of ∆ such that τ(x) ∈ ∆(φx, ψx) for all x ∈ X and such that for all
g ∈ Γ

τ(tg)φ(g) ≡ ψ(g)τ(sg) (mod
.
∆).

Obviously, any ordinary natural isomorphism τ : φ ⇒ ψ is a fortiori a natural con-
gruence τ : φ

.⇒ ψ. The collection of all natural congruences between homomorphisms
Γ → ∆ is closed under the obvious operations of composition τ ′τ and inversion τ−1. On
each hom-set LGpd(Γ,∆) the binary relation

φ
.≡ ψ ⇔ there exists a natural congruence between φ and ψ

is therefore an equivalence. If we now let LGpd· denote the subcategory of LGpd with
the same objects (Lie groupoids) and with morphisms all those φ ∈ LGpd(Γ,∆) such
that φxx(

.
Γ x
x ) ⊂

.
∆φx
φx for every base point x of Γ , it is immediate to check that the above

equivalence
.≡ gives rise to a categorical congruence on LGpd·. We shall let LGpd·

/
.
≡

denote the resulting quotient category whose morphisms are the
.≡-equivalence classes of

morphisms in LGpd· (compare [Mac Lane, 1998, II.8]). The notation [φ]· will be used to
indicate the

.≡-class of a homomorphism φ ∈ Mor(LGpd·).
Let E ⊂ Mor(LGpd·) denote the collection of all the (C∞-)full and completely

transversal homomorphisms of Lie groupoids (we know that any transversal homomor-
phism must lie within LGpd·, by the results of Section 1). By abuse of notation, we
shall use the same letter to indicate the image of E under the quotient projection func-
tor LGpd· → LGpd·

/
.
≡, φ 7→ [φ]·; the intended meaning will always be clear from the

context. We claim that the localized category LGpd·
/

.
≡[E−1] admits a calculus of right

fractions. The remainder of the present section will essentially be devoted to checking
that the pertinent axioms [Gabriel and Zisman, 1967, I.2.2] are indeed satis�ed for E .
Before doing this, however, we want to illustrate (and justify) the preceding de�nitions
by means of a few examples.

3.2. Example. The goal of our �rst example is to show that there are normally many
homomorphisms of Lie groupoids which do not lie in the subcategory LGpd·, and thus
that passing from LGpd to LGpd· already makes a relevant di�erence from the point

3That is to say, for each h ∈ ∆, letting ch : ∆sh
sh
∼→ ∆th

th indicate the group isomorphism k 7→ hkh−1

(conjugation by h), we have ch(
.
∆sh
sh) ⊂

.
∆th
th.
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of view of what �reduced smooth stacks� turn out to be eventually in comparison with
ordinary smooth stacks.

Let the orthogonal group O(2) act on R2 by matrix multiplication (canonical action).
Similarly, let the special orthogonal group SO(3) act on R3 by matrix multiplication.
Let G ⊂ SO(3) denote the closed subgroup formed by all matrices P ∈ SO(3) such
that Pe3 = ±e3, where e3 indicates the standard basis vector (0, 0, 1) in R3. We have a
continuous and injective group homomorphism θ : O(2) ↪→ G given by

A 7→
[
A 0
0 detA

]
,

the determinant det : O(2)→ {±1} being itself a continuous homomorphism. Obviously,
the map f : R2 ↪→ R3 given by (x, y) 7→ (x, y, 0) is equivariant with respect to θ. The Lie
groupoid homomorphism4

θ n f : O(2) nR2 −→ GnR3

sends the ine�ective isotropic arrow (( 1 0
0 −1 ); 1, 0) ∈ O(2) n R2 to the isotropic arrow

(
(

1 0 0
0 −1 0
0 0 −1

)
; 1, 0, 0) ∈ GnR3, whose e�ect is evidently non-trivial since the G-orbit through

(1, 0, 0) is the circle {(x, y, 0) x2 + y2 = 1}.

3.3. Example. The next examples demonstrate that the relation of natural congruence
is quite coarser than the relation of natural isomorphism in most cases. We shall exhibit
several pairs of homomorphisms φ, ψ ∈ Mor(LGpd·) such that φ is naturally congruent
but not isomorphic to ψ.

(a) Let SO(2) act canonically on R2, and let SO(3) act similarly on R3. Consider the
map f : R2 → R3 de�ned by (x, y) 7→ (0, 0, 1). This map is obviously equivariant relative

to the Lie group homomorphism θ : SO(2) ↪→ SO(3) given by A 7→
[
A 0
0 1

]
. For any

Lie group endomorphism η of SO(2), the same map is also (θ ◦ η)-equivariant. The two
Lie groupoid homomorphisms [which, trivially, lie in Mor(LGpd·)]

θ n f, (θ ◦ η) n f : SO(2) nR2 −→ SO(3) nR3

are naturally congruent, because all the isotropic arrows in SO(3)nR3 outside the origin
are ine�ective, but not naturally isomorphic (unless of course η = id), because all the
isotropy groups in SO(3) nR3 outside the origin are abelian.

(b) Let ω : R → R be an arbitrary C∞ real-valued function of one real variable.
Let R = (R,+) [= the additive group of the real numbers] act on the product C× R by

4Recall that if G is a di�erentiable group acting say from the left on a di�erentiable manifold X in a
C∞ fashion then one can form the corresponding translation groupoid GnX = G×X ⇒ X. This is the
di�erentiable groupoid whose source map is the projection from G × X on X, target map is the group
action, and arrow composition law is given by the formula (g′, gx)(g, x) = (g′g, x). Clearly, when G is a
Lie group and X is a smooth manifold, GnX is a Lie groupoid.
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operating on the �rst factor by rotations with frequency ω: θ · (z, t) = (eiω(t)θz, t). Any
C∞ real-valued function of one real variable ϕ : R→ R such that |ϕ(t)| = |ω(t)| for all t
gives rise to a Lie groupoid homomorphism

Rn [C× R] −→ SO(3) nR3, (θ; z, t) 7→ (

(
cosϕ(t)θ − sinϕ(t)θ 0

sinϕ(t)θ cosϕ(t)θ 0

0 0 1

)
; 0, 0, t)

which belongs to Mor(LGpd·) and whose kernel contains the totally isotropic, normal
subgroupoid K of Rn [C× R] de�ned by the expression

K = {(θ; z, t) [ω(t) 6= 0 & ω(t)θ ∈ 2πZ] ∨ θ = 0}.

Since K is, in fact, a closed regular kernel of constant dimension in Rn [C×R] (compare
Appendix A and Example 4.6 below), this homomorphism factors through the quotient
groupoid Γ = (Rn[C×R])/K ⇒ C×R, thus giving rise to a Lie groupoid homomorphism
φ : Γ → SO(3) n R3 which still belongs to Mor(LGpd·). Now, let ϕ0, ϕ1 be any
two functions as above, and let φ0, φ1 denote the Lie groupoid homomorphisms Γ →
SO(3)nR3 they give rise to. Clearly, one has φ0

.≡ φ1 as soon as ϕ0(0) = ϕ1(0). However
φ0 6≡ φ1 unless ϕ0(t) = ϕ1(t) for all t 6= 0.

3.4. Example. Let Γ s=t−→ M s=t←− ∆ be any two Lie group bundles over the same base
manifold M . Any two homomorphisms φ, ψ : Γ → ∆ covering the identity map on the
base are naturally congruent. In particular, any endomorphism φ : Γ → Γ covering the
identity map on the base is naturally congruent to the identity homomorphism id : Γ → Γ .
It follows that any two Lie group bundles over the same base manifold are isomorphic
when regarded as objects of the category LGpd·

/
.
≡.

We proceed to check that the class of morphisms E ⊂ Mor(LGpd·
/

.
≡) satis�es the

axioms for a calculus of right fractions [Gabriel and Zisman, 1967, I.2.2]:

3.5. Axiom I. The class of morphisms E ⊂ Mor(LGpd·
/

.
≡) is multiplicative viz. con-

tains the identities and is closed under composition. This is obvious a fortiori, since E is
multiplicative already as a subclass of Mor(LGpd·). Cf. Lemmas 2.1 and 2.5.

3.6. Axiom II. Given any pair of morphisms*

Γ ′

[φ]·∈E
��

∆
[ψ]·

// Γ

there exists a commutative diagram

∆′

[φ′]·∈E
��

[ψ′]·
// Γ ′

��

∆ // Γ

(*for visual immediacy, we shall be using wavy arrows to represent morphisms belonging
to E). Since φ belongs to E , by de�nition it must be transversal so that we may form the
weak pullback (which in our case is clearly also a smooth groupoid)

∆ ψuφ Γ ′

pr∆

��

prΓ ′
// Γ ′

φ

��

∆
ψ

//	� Γ
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(the diagram here is supposed to commute up to natural isomorphism). By the lemmas
2.2 and 2.6, φ ∈ E implies pr∆ ∈ E . Thus, we will be done if we set ∆′ = ∆ ψuφ Γ ′,
φ′ = pr∆ and ψ′ = prΓ ′ , provided we show that prΓ ′ belongs to Mor(LGpd·). To
this end, suppose h′ is an ine�ective isotropy arrow in ∆ ψuφ Γ ′. Since both ψ and pr∆
belong to Mor(LGpd·), so will do their composition ψ◦pr∆ and hence also the composite
homomorphism φ ◦ prΓ ′ as this is naturally isomorphic to ψ ◦ pr∆.5 We will then have
φ(prΓ ′h′) ∈

.
Γ . Now φ is faithfully transversal by Lemma 2.9. We can therefore invoke

Corollary 1.4 to yield the desired conclusion that prΓ ′h′ ∈
.
Γ ′.

3.7. Axiom III. Given any morphisms

Γ
[ψ1]·

//

[ψ2]·
// ∆

[φ]·∈E
// ∆′

with the property that [φ]·[ψ1]· = [φ]·[ψ2]·, there is also some morphism [π]· : Γ ′ // Γ
belonging to E with the property that [ψ1]·[π]· = [ψ2]·[π]·. Let X, Y and Y ′ respectively
denote the base manifolds of the Lie groupoids Γ , ∆ and ∆′. By assumption, we have
φ ◦ψ1

.≡ φ ◦ψ2, in other words, there exists some natural congruence τ ′ : φ ◦ψ1
.⇒ φ ◦ψ2.

We make use of the C∞-fullness of φ in the situation depicted below.

X ′
τ

//

c // // X

(ψ1,ψ2)
))

τ ′

%%

∆

(s,t)

��

φ
// ∆′

(s,t)

��

Y × Y
φ×φ

// Y ′ × Y ′

(13)

The map c : X ′ � X is an open cover, in particular, a surjective submersion. Hence it
certainly makes sense to pull back the Lie groupoid Γ along it.

c∗Γ

(s,t)

��

π // Γ

(s,t)

��

X ′ ×X ′ c×c
// X ×X

(14)

The resulting pullback groupoid, denoted Γ ′ = c∗Γ ⇒ X ′, will be a Lie groupoid as well,6

and its canonical projection π onto Γ will be a weak equivalence of Lie groupoids and thus,
a fortiori, an element of E and hence a morphism in the category LGpd·. We contend
that the C∞ map τ in (13) must be a natural congruence ψ1 ◦ π

.⇒ ψ2 ◦ π. Certainly

5More in general, whenever φ
.≡ ψ ∈ LGpd(Γ,∆) and φ ∈ LGpd·(Γ,∆) then also ψ ∈ LGpd·(Γ,∆).

The proof is immediate.
6It can always be assumed that X ′ is a smooth manifold. Indeed, in any case X ′ is a (non-empty)

Hausdor� manifold of constant dimension, just because so is X. Since X is second countable, we can
always �nd a countable open cover X ′′ � X subordinate to X ′ � X via some map X ′′ → X ′.
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(s, t)◦ τ = (ψ1, ψ2)◦ c = (ψ1 ◦π, ψ2 ◦π) by the commutativity of (13) and (14). Moreover,
for every arrow g′ ∈ Γ ′,

φ
(
τ(tg′)ψ1(πg′)

)
= τ ′(tπg′)[φ ◦ ψ1](πg′)

≡ [φ ◦ ψ2](πg′)τ ′(sπg′) (mod
.
∆′)

= φ
(
ψ2(πg′)τ(sg′)

)
. (15)

By Lemma 2.9, φ must be a faithfully transversal homomorphism. We immediately con-
clude from Corollary 1.4 that the following implication holds:

φ(h1) ≡ φ(h2) (mod
.
∆′) ⇒ h1 ≡ h2 (mod

.
∆).

We thus deduce from (15) that

τ(tg′)[ψ1 ◦ π](g′) ≡ [ψ2 ◦ π](g′)τ(sg′) (mod
.
∆),

as desired.

Our proof that the multiplicative system E in the category LGpd·
/

.
≡ does indeed

admit a calculus of right fractions is thus �nished. For convenience, we recall how the
corresponding explicit model for the localization LGpd·

/
.
≡[E−1] is obtained.

Let us set L = LGpd·
/

.
≡ for brevity. One starts by introducing the �category of right

fractions� LE−1:

• The objects of LE−1 are simply those of L (namely Lie groupoids);

• The morphisms in LE−1(Γ,∆) are equivalence classes of �spans� in L

∆ Γ ′
αoo ε // Γ with ε ∈ E ,

two such spans (α1, ε1) and (α2, ε2) being equivalent whenever there is a commuta-
tive diagram

Γ ′1
α1

ww

ε1

''
∆ Γ ′′

OO

��

ε′ // Γ

Γ ′2

α2

gg

ε2

77 with ε′ ∈ E ;

• The composition of morphisms in LE−1 is given by

•

�� ��•

�� ��

•

�� ��• • •

(using Axiom II).

Let us indicate by α/ε the class of a span (α, ε) in LE−1(Γ,∆). There is a canonical
functor from the category of fractions LE−1 into the localization L[E−1]; it is the identity
on objects, and it sends α/ε to pr(α)pr(ε)−1, where pr : L→ L[E−1] denotes the universal
localization functor. This functor LE−1 → L[E−1] is full and faithful [Gabriel and Zisman,
1967, Proposition 2.4, p. 14] and hence an isomorphism of categories.
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3.8. Definition.We shall call LGpd·
/

.
≡[E−1] the category of reduced Lie groupoids and

use the shorthand RedLGpd for it.

The reader may �nd the following interpretation of the above categorical construction
enlightening. Ideally, for each Lie groupoid Γ we would like to regard the quotient group-
oid Γ/

.
Γ as a Lie groupoid too. This, however, is not a smooth groupoid unless

.
Γ is a Lie

kernel i.e. a closed regular kernel of constant dimension (we account for the terminology
used here in the appendix). In fact, for most Lie groupoids the quotient Γ/

.
Γ even fails

to be di�erentiable. It is thus unclear what the right notion of �smooth� isomorphism be-
tween two groupoids of the form Γ/

.
Γ could be. The objects of the category RedLGpd

should be thought of as quotient groupoids of the form Γ/
.
Γ equipped with a suitable

�smooth� structure. The canonical functor LGpd· → RedLGpd should be thought of
as the �operation� Γ 7→ Γ/

.
Γ .

4. Comparison with the category of reduced orbifolds

The elements of the class E are not the only morphisms of the category LGpd· which
become invertible under the canonical functor

LGpd· −→ LGpd·
/

.
≡[E−1]. (16)

By way of example, consider any Lie groupoid homomorphism ψ : Γ → ∆ for which
there exists some element φ : ∆ // ∆′ of E such that the composition φ ◦ ψ also lies
in E . Clearly, ψ must be a homomorphism in LGpd·, and its image under (16) must
be invertible. We shall call any element of Mor(LGpd·) with this property an e�ective
equivalence. In order to maintain our intuitive interpretation of RedLGpd as a category
of �e�ective transversal geometry types�, we need to make absolutely sure�among other
things�that the lemmas 2.8 and 2.9 continue to hold for e�ective equivalences.

There is a canonical functor LGpd· ⊂ LGpd → Top into the category of topo-
logical spaces and continuous maps, which to each Lie groupoid Γ ⇒ M assigns the
corresponding orbit space M/Γ and to each Lie groupoid homomorphism ψ : Γ → ∆ the
(continuous) map of M/Γ into N/∆ induced by ψ. Evidently, any two naturally con-
gruent homomorphisms induce the same map between the orbit spaces. By the universal
property of quotient categories [Mac Lane, 1998, Section II.8], we obtain a well-de�ned
functor LGpd·

/
.
≡ → Top. Next, we make use of the universal property of the localization

functor LGpd·
/

.
≡ → LGpd·

/
.
≡[E−1] (compare [Gabriel and Zisman, 1967, Lemma I.1.2])

in combination with Lemma 2.8 to obtain a functor

LGpd·

(16)

��

// Top
<<

RedLGpd

which we agree to call the �coarse moduli space functor�. We have proved:
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4.1. Proposition. Every e�ective equivalence of Lie groupoids φ : Γ → ∆ induces a

homeomorphism M/Γ
≈→ N/∆ between the orbit space of Γ and the orbit space of ∆.

The generalization to e�ective equivalences of Lemma 2.9 and of its consequences,
although conceptually not more involved than the generalization of Lemma 2.8 which we
have just obtained, requires some extra preparation work. For every pair of Lie groupoids
Γ ⇒ M, ∆ ⇒ N , let us de�ne SΓ,∆ to be the set of all 4-tuples (x, y; θ, λ) consisting of

a base point x ∈ M , a base point y ∈ N , a Lie group homomorphism θ :
�

Γ x
x →

�

∆y
y and

a θ-equivariant linear map λ : T_lx Γ(0) → T_ly ∆(0). We have two obvious maps αΓ,∆ and
βΓ,∆ of SΓ,∆ into respectively M and N and, for each triplet of Lie groupoids Γ, Γ ′, Γ ′′,
an obvious composition operation

SΓ ′,Γ ′′ αΓ ′,Γ ′′×βΓ,Γ ′ SΓ,Γ ′ −→ SΓ,Γ ′′ . (17a)

Let SΓ,∆ denote the quotient of the set SΓ,∆ with respect to the equivalence relation

(x, y; θ, λ) ∼ (x′, y′; θ′, λ′)⇔ ∃g ∈ Γ (x, x′) ∃h ∈ ∆(y, y′) [θ′ ◦ cg = ch ◦ θ
& λ′ ◦ ε(g) = ε(h) ◦ λ], (17b)

where cg :
�

Γ x
x
∼→

�

Γ x′

x′ and similarly ch mean �conjugation�, and where ε(g) and ε(h) as
usual mean �e�ect�. Evidently, we have induced maps*

M/Γ
aΓ,∆←−− SΓ,∆

bΓ,∆−−→ N/∆ and SΓ ′,Γ ′′ aΓ ′,Γ ′′×bΓ,Γ ′ SΓ,Γ ′ −→ SΓ,Γ ′′ (17c)

[*the quotient composition operation being well de�ned essentially because of the formulas
below, which hold for every isotropic arrow g ∈ Γ x

x :

θ ◦ cg = cθg ◦ θ; λ ◦ ε(g) = ε(θg) ◦ λ (θ-equivariance of λ)].

We introduce an auxiliary category, Skel, which we call the category of �transversal
skeletons� of Lie groupoids. Lie groupoids are the objects of Skel. For every pair of Lie
groupoids Γ,∆ the hom-set Skel(Γ,∆) consists of all those global sections σ : M/Γ →
SΓ,∆ to the map aΓ,∆ : SΓ,∆ → M/Γ which have the property that the composition
bΓ,∆ ◦σ : M/Γ → N/∆ is continuous. The composition of morphisms in Skel is de�ned in
terms of the operation (17c) in the evident way. We have a canonical functor LGpd· →
Skel which to each Lie groupoid homomorphism ψ : Γ → ∆ assigns the global aΓ,∆-

section [x] 7→ [x, ψx;
�

ψxx, T
_l
x ψ(0)]. Reasoning as we did before,7 we conclude that there

must be a factorization of this functor through RedLGpd.

LGpd·

��

// Skel;;

RedLGpd

7This is the place where Lemma 1.8 (or rather its obvious generalization to natural congruences) is
needed.
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4.2. Proposition. For any e�ective equivalence of Lie groupoids φ : Γ → ∆ and for any

base point x of Γ , the Lie group homomorphism
�

φxx :
�

Γ x
x →

�

∆φx
φx and the

�

φxx-equivariant
linear map T_lx φ(0) : T_lx Γ(0) → T_lφx∆(0) are bijective. Thus, we still have an isomorphism
of the form (12) between the e�ective in�nitesimal model for Γ at x and that for ∆ at
φx.

4.3. Remark on terminology. In [Trentinaglia, 2010], we called e�ective a Lie group-
oid representation whose kernel consists of ine�ective isotropic arrows. More in general,
we may call e�ective a homomorphism of di�erentiable groupoids which enjoys the same
property. Our terminology `e�ective equivalence' is consistent with this use of the adjec-
tive `e�ective'. Indeed, by 4.2, any e�ective equivalence is faithfully transversal and hence
satis�es the hypotheses of Proposition 1.4(b), which then implies the desired property.

One of the claims we made in the introduction to the present article was that our
notion of �reduced smooth stack� was going to generalize the notion of reduced orbifold.
It is now time to substantiate that claim. In doing this, we shall make essential use of
the existence of a calculus of fractions for the localized category LGpd·

/
.
≡[E−1]. Without

a calculus of fractions, the task of comparing the above-mentioned two notions would be
very likely an insurmountable mess. We shall adopt the general point of view on orbifolds
that is advocated for instance in [Moerdijk and Pronk, 1997, Moerdijk, 2002]. In practice,
for our purposes this means that the category of reduced orbifolds we want to compare
with our category of reduced Lie groupoids is obtained in conformity with the following
stepwise procedure. Start with the category of e�ective orbifold groupoids.8 Then pass
to the quotient category where any two homomorphisms are identi�ed whenever there
exists a natural isomorphism connecting them. Finally formally invert the morphisms
corresponding to weak equivalences.

We shall place our discussion in a context which is slightly more general than strictly
needed. Let effLGpd ⊂ LGpd denote the full subcategory consisting of all e�ective Lie
groupoids. Since by de�nition the ine�ective subbundle of an e�ective Lie groupoid is
trivial, effLGpd is actually a full subcategory of LGpd·. Moreover, by the same token,
the two equivalence relations ≡ (natural isomorphism) and

.≡ (natural congruence) turn
out to coincide when restricted to the morphisms of this subcategory. We thus have
a canonical imbedding of categories (i.e., a fully faithful functor which is �identical� on
objects)

effLGpd/≡
⊂−→ LGpd·

/
.
≡. (18)

Let W ⊂ Mor(LGpd·) denote the class of all weak equivalences of Lie groupoids, and
set Weff := W ∩Mor(effLGpd). It is standard routine to check that the localized cate-
gory effLGpd/≡[W−1

eff ] admits a calculus of right fractions. By the universal property of

8For us, an orbifold groupoid will be a proper, étale, smooth groupoid. Our de�nition is slightly
di�erent from�but essentially equivalent to�the de�nition given in [Moerdijk, 2002]. We remind the
reader that a di�erentiable groupoid is said to be étale, if its source and its target are C∞-étale maps
(local di�eomorphisms), and proper, if it is Hausdor� and for each compact subset K of its base manifold
the set s−1(K) ∩ t−1(K) is compact.
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localization, the imbedding (18) induces a canonical functor

effLGpd/≡[W−1
eff ] −→ LGpd·

/
.
≡[E−1].

4.4. Proposition. The above functor is fully faithful and hence an imbedding of cate-
gories.

Proof. (Fullness.) Let a span be given ∆ oo
[ψ]·

Γ ′
[φ]·∈E

// Γ representing a morphism in
RedLGpd between two given e�ective Lie groupoids Γ and ∆. Since φ ∈ E is transversal,
we must have φ(

.
Γ ′) ⊂

.
Γ (= 1 because Γ is e�ective). Hence

.
Γ ′ ⊂ kerφ. Since in addition

φ is faithfully transversal, for every isotropic arrow g′ in Γ ′ we must have φ(g′) ∈
.
Γ ⇒ g′ ∈.

Γ ′, whence a fortiori kerφ ⊂
.
Γ ′. Thus kerφ =

.
Γ ′. Moreover, since ψ ∈ Mor(LGpd·), we

must have ψ(
.
Γ ′) ⊂

.
∆ (= 1 because ∆ is e�ective) and therefore kerψ ⊃

.
Γ ′ = kerφ. Now,

if as in the proof of Proposition 2.3 we decompose φ into an epimorphism identical on the
bases φ′ followed by a weak equivalence π, then from the �rst homomorphism theorem for
Lie groupoids it follows that ψ admits a unique factorization ψ = ψ′ ◦ φ′ through φ′. It is
evident that the span (ψ′, π) [in which π ∈ Weff because Γ is e�ective and e�ectiveness is
a Morita invariant property] represents the same morphism in RedLGpd as (ψ, φ) does.

Γ ′
ψ

vv

φ∈E

((
∆ Γ ′

id

φ′
����

Γ

•
ψ′

hh

π∈Weff

66

(Faithfulness.) Suppose given a commutative diagram in LGpd·
/

.
≡ of the form

Γ ′1
[ψ1]·

ww

[φ1]·∈W

''
∆ Γ ′

[χ1]·
OO

[χ2]·

��

Γ

Γ ′2

[ψ2]·

gg

[φ2]·∈W

77

where: (a) Γ, Γ ′1, Γ
′
2, ∆ ∈ Ob(effLGpd); (b) φ1 and φ2 are weak equivalences; (c) [φ1 ◦

χ1]· = [φ2 ◦ χ2]· = [φ]· where φ ∈ E . To begin with, notice that since
.
Γ = 1 the

condition φi ◦ χi
.≡ φ (natural congruence) is equivalent to the condition φi ◦ χi ≡ φ

(natural isomorphism). Similarly, since
.
∆ = 1, we must have ψ1 ◦χ1 ≡ ψ2 ◦χ2. Now each

φi is a faithful functor, hence for every isotropic arrow g′ in Γ ′ we must have χi(g
′) =

1 ⇔ φiχi(g
′) = 1 ⇔ φ(g′) = 1. Thus kerχi = kerφ (=

.
Γ ′, as noticed in the previous

paragraph). Write φ as the composition of an epimorphism identical on the bases φ′ :
Γ ′ � Γ ′′ with a weak equivalence π : Γ ′′ → Γ . Necessarily Γ ′′ is e�ective, because so is
Γ . By the �rst homomorphism theorem for Lie groupoids, we have a unique factorization
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χi = χ′i ◦φ′ of each χi through φ′. Trivially, each χ′i must be a homomorphism in LGpd·.
Now in general

α ◦ φ′ ≡ β ◦ φ′ implies α ≡ β

for any pair of homomorphisms α, β from Γ ′′ into any given other Lie groupoid. [Since
φ′ is identical on the bases, any natural isomorphism τ : α ◦ φ′ ⇒ β ◦ φ′ may also be
interpreted as a natural isomorphism τ : α⇒ β.] Since (φi ◦χ′i)◦φ′ = φi ◦χi ≡ φ = π ◦φ′,
by this observation we see that φi ◦ χ′i ≡ π ∈ W . By the same token, ψ1 ◦ χ′1 ≡ ψ2 ◦ χ′2.
We thus obtain the following commutative diagram in effLGpd/≡.

Γ ′1
[ψ1]

ww

[φ1]

''
∆ Γ ′′

[χ′
1]

OO

[χ′
2]

��

[π]
// Γ

Γ ′2

[ψ2]

gg

[φ2]

77 (φ1, φ2, π ∈ Weff)

(The notation [ ] is supposed to indicate the ≡-class of a homomorphism.)

Let efforbGpd ⊂ effLGpd denote the full subcategory with objects all e�ective
orbifold groupoids. (Recall that by an orbifold groupoid we mean a proper étale Lie
groupoid; cf. Footnote 8.) By the universal property of localization, we have canonical
functors

efforbGpd/≡[W−1
efforb] −→ effLGpd/≡[W−1

eff ] −→ LGpd/≡[W−1];

here of course we have setWefforb :=W∩Mor(efforbGpd). Each one of the two localized
categories at the extremes of the sequence admits a calculus of right fractions. The right-
hand canonical functor is trivially an imbedding, essentially because e�ectiveness is a
Morita invariant property. The other canonical functor is also an imbedding. This is
almost as trivial to see, by using the fact that any foliation groupoid is the codomain
of a weak equivalence with domain an étale groupoid.9 Combining 4.4 with the above
remarks, we obtain:

9By a foliation groupoid, in general, we mean a di�erentiable groupoid of constant dimension which
has only discrete (i.e., zero-dimensional) isotropy groups. For any foliation groupoid Γ ⇒ X there is
some integer 0 5 r 5 dimX such that dimT_lx Γ(0) = r for all x ∈ X. Equivalently, the Γ -orbits all have
the same dimension dimOΓx = dimX − r throughout X. In fact

r = 2dimX − dimΓ .

When Γ ⇒ X is a smooth foliation groupoid, we can �nd a complete transversal inT : T → X with
domain a smooth manifold T of dimension r. The pullback groupoid Π = in∗TΓ ⇒ T will be a smooth
groupoid with all orbits zero-dimensional and all isotropy groups discrete. Clearly, any such groupoid
must be étale.
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4.5. Corollary. The canonical functor of localized categories

RedOrb := efforbGpd/≡[W−1
efforb] −→ LGpd·

/
.
≡[E−1] =: RedLGpd

imbeds the category of reduced orbifolds into that of reduced Lie groupoids.

Do e�ective Lie groupoids really constitute the ultimate class of Lie groupoids for
which conclusions analogous to those of Proposition 4.4 hold? It seems reasonable to try
to generalize Proposition 4.4 to those Lie groupoids which are geometrically reduced in the
sense that they do not contain non-trivial Lie kernels (closed regular kernels of constant
dimension, see the appendix). We point out that all of the Lie groupoids occurring in
our previous examples 3.2 and 3.3 are geometrically reduced.10 [To be precise, this is
true of Example 3.3(b) only when the set {ω 6= 0} is dense within R.] Those examples
suggest that a hypothetical generalization of Proposition 4.4 should be phrased in terms
of natural congruence (rather than natural isomorphism) classes of homomorphisms.

So, let redLGpd· denote the full subcategory of LGpd· formed by all geometrically
reduced Lie groupoids. Let us consider the localized category redLGpd·

/
.
≡[W−1

red]; like

before,Wred ⊂ Mor(redLGpd·) denotes the subclass formed by all the weak equivalences.
It is routine to check that this localized category admits a calculus of right fractions. There
is an obvious canonical functor

redLGpd·
/

.
≡[W−1

red] −→ LGpd·
/

.
≡[E−1]. (19)

Is this functor (a) full? (b) faithful? (c) essentially surjective on objects?
Quite interestingly, the functor (19) fails to be full. One can construct pairs of geo-

metrically reduced, proper, Lie groupoids which are isomorphic as objects of the category
LGpd·

/
.
≡[E−1] but not as objects of redLGpd·

/
.
≡[W−1

red] (and thus, in particular, are not

Morita equivalent). We have good reasons to believe that the functor (19) also fails to be
essentially surjective on objects�even though one can show that every proper Lie group-
oid lies in its essential image. A sample of the pathologies which arise in the non-proper
case, and which make it unlikely that a geometrically reduced representative can be ex-
hibited for each Lie groupoid, is given in our next example. Evidence for the other claims
contained in this paragraph will be given in a future paper.

4.6. Example. Let L → M be an arbitrary complex line bundle of class C∞ over a
connected, smooth manifold M . The projection down to M of a bundle element l ∈ L
will be denoted by [l]. Let ω : M → R be an arbitrary real-valued function of class
C∞ on M . Generalizing the construction given in Example 3.3(b), we let the additive
group of the real numbers R = (R,+) act on the manifold L by �berwise rotations of
frequency ω�in other words, we set θ · l = eiω([l])θl for all θ ∈ R, l ∈ L�and then form
the translation groupoid Rn L⇒ L. The totally isotropic subgroupoid

K = {(θ, l) ω([l]) 6= 0 & θ ∈ 2πω([l])−1Z} ∪ {(0, l) l ∈ L}

10Ending up with only geometrically reduced Lie groupoids was the main reason behind the apparently
unnecessary technical complications in Example 3.3.
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is evidently normal, closed, and smooth since it can be parameterized by means of local
C∞ sections to the groupoid source projection (θ, l) 7→ l. By the theory of regular kernels
(reviewed at the beginning of Appendix A), the quotient groupoid

Γ = (Rn L)/K ⇒ L

is naturally equipped with the structure of a smooth groupoid. We contend that, provided
the open set U = {ω 6= 0} and the interior V of the vanishing locus of ω are both non-emp-
ty, the codomain Γ ′ of any Lie groupoid homomorphism φ : Γ // Γ ′ belonging to E must
contain some non-trivial regular kernel which is also closed and of constant dimension. In
particular, it seems unlikely that a geometrically reduced representative for the e�ective
equivalence class of Γ may exist. To begin with, since the existence of such non-trivi-
al kernels is a Morita invariant property, by the argument already used in the proof of
Proposition 2.3 it will not be restrictive to assume that φ is a full homomorphism covering
the identity on L. Let us set K ′ = kerφ. By our hypothesis about φ, K ′ is a regular
kernel in Γ and thus K ′ ⊂

.
Γ . In particular for every l ∈ L such that ω([l]) 6= 0 we must

have (K ′)ll ⊂
.
Γ l
l = {1l}. It follows that (K ′)ll = {1l} for every l ∈ L not lying over V .

Indeed, if [θ0, l0] ∈ K ′ is such that [l0] lies within the closure of the open set U in M , and
so we can �nd a sequence {ln}∞n=1 converging to l0 in L such that ω([ln]) 6= 0 for all n,
then since by the regularity of K ′ there exists some local C∞ section σ through [θ0, l0] to
the projection K ′ � L we have

[θ0, l0] = σ(l0) = lim
n
σ(ln) = lim

n
[0, ln] = [0, l0].

By hypothesis, Γ ′ is a smooth groupoid, so K ′ must be closed and of constant dimension.
Since the restriction of K ′ over L U coincides with the unit bisection of Γ , we have
dimK ′ = dimL. Thus, any local C∞ section to the projection K ′ � L is also a local
parameterization of K ′. This immediately implies that the subset

K ′′ = 1
2
K ′ = {[1

2
θ, l] [θ, l] ∈ K ′} ⊂ Γ(1)

is itself a closed regular kernel of constant dimension in Γ . Since K ′′ % K ′ (unless of
course 1

2
K ′ = K ′, in which case the reader will surely know how to appropriately rede�ne

K ′′), its image φ(K ′′) will be a non-trivial closed regular kernel of constant dimension in
Γ ′.

A. Remarks on the property of second countability

The present appendix consists of substantially two parts. In the �rst part, we review a
number of standard facts concerning congruences, quotients and kernels in the context
of smooth groupoids. The whole part is essentially a straightforward exercise relying
on Godement's theorem [Serre, 2006] and on the basic structure theory of di�erentiable
groupoids (nothing beyond the material recollected at the beginning of Section 1). The
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reader may consult [Higgins and Mackenzie, 1990] for a comprehensive discussion on the
topic. The second part assembles a few results which generalize a well-known basic fact in
the elementary theory of Lie groups�namely, that any bijective Lie-group homomorphism
is a di�eomorphism�to Lie groupoids along various directions. Surprisingly, we could
�nd no hint at these results in the literature. They appear to have been overlooked. A
possible explanation is that they all depend in an essential way on the property of second
countability, which is part of the speci�c notion of Lie groupoid we adopt here and also
part of the standard notion of Lie group but is usually glossed over in most of the literature
on Lie groupoids.

We shall say that a homomorphism φ : Γ → ∆ between two arbitrary di�erentiable
groupoids is an epimorphism, in symbols `φ : Γ � ∆', if the map φ(1) : Γ(1) → ∆(1)

induced by φ between the manifolds of arrows is a surjective submersion. Necessarily
then the map φ(0) : Γ(0) → ∆(0) induced by φ between the bases is also a surjective
submersion. We shall say that φ covers the identity over a di�erentiable manifold X if
Γ(0) = ∆(0) = X and φ(0) = idX . We shall call φ a monomorphism if φ(1) is an injective
immersion, and we shall express this circumstance symbolically by writing `φ : Γ � ∆'.
Necessarily then φ(0) is also an injective immersion.11

Let now Γ be an arbitrary (small) category. Recall that a congruence R on Γ is an
equivalence relation R ⊂ Γ(1) × Γ(1) on the arrows of Γ which enjoys the two properties
listed below, where we write g1 ≡ g2 (R being understood) instead of (g1, g2) ∈ R.
(i) g1 ≡ g2 ⇒ (sg1 = sg2 & tg1 = tg2).

(ii) g′1 ≡ g′2 ⇒ g′′g′1g ≡ g′′g′2g.

Given a congruence R on Γ there is on the quotient set Γ(1)/R a unique structure of
category with the same objects as Γ such that the quotient projection pr (1) : Γ(1) � Γ(1)/R
becomes a functor covering the identity. (Compare [Mac Lane, 1998, II.8].) The resulting
quotient category shall be denoted by Γ/R hereafter. Clearly Γ/R will be a groupoid
whenever Γ is. Now suppose Γ is a di�erentiable groupoid. We shall say that a congruence
R on Γ is regular if R is a regular equivalence relation on the di�erentiable manifold Γ(1)

[viz. R ⊂ Γ(1) × Γ(1) is a di�erentiable submanifold and the projection onto the second
factor restricts to a submersion of R onto Γ(1)]. For any such congruence there exists on
the quotient groupoid Γ/R a unique di�erentiable groupoid structure with the property
that the projection functor pr : Γ � Γ/R becomes an epimorphism which covers the
identity. The expected universal property holds. The quotient di�erentiable groupoid
Γ/R will be Hausdor� if, and only if, R ⊂ Γ(1) × Γ(1) is a closed submanifold. If Γ is a
second countable groupoid then the same will be true of Γ/R.

We de�ne the kernel of an arbitrary homomorphism of di�erentiable groupoids φ :
Γ → ∆ to be the (abstract, set-theoretic) subgroupoid of Γ

kerφ := {g ∈ Γ(1) sg = tg & φ(g) ∈ u(∆(0))}.

11Unfortunately there is some con�ict between the terminology we are introducing here and the usual
categorical nonsense. Our outlook is geometrical, in this case, rather than categorical. We have tried to
keep our terminology as consistent as possible with that commonly used in Lie theory.



1060 GIORGIO TRENTINAGLIA

In a broader sense, by a kernel in an arbitrary groupoid Γ we shall mean a totally isotropic
subgroupoid which contains all the units of Γ and is normal (cf. Footnote 3 on page 1047).
Of course, the kernel of a homomorphism turns out to be a kernel in this sense. It is not
hard to show that if φ : Γ � ∆ is an epimorphism of di�erentiable groupoids which covers
the identity then kerφ is actually a regular kernel in Γ , that is to say, a kernel which is
also a di�erentiable subgroupoid of Γ .12 Moreover, under the same assumption, if the
groupoid ∆ is Hausdor� then kerφ is a closed subset of the manifold Γ(1). Conversely,
let K be an arbitrary kernel in a given di�erentiable groupoid Γ ⇒ X. The equivalence
relation RK on the arrows of Γ de�ned by

g1RKg2 ⇔ (tg1 = tg2 & g−1
2 g1 ∈ K)

is an (abstract, categorical) congruence on Γ . In this context, we shall write Γ/K for the
quotient groupoid Γ/RK . The congruence RK is regular if, and only if, the kernel K is
regular. Whenever K is regular and the base X is Hausdor�, the subset RK ⊂ Γ(1)×Γ(1)

is closed if, and only if, so is the subset K ⊂ Γ(1). Notice that if the groupoid Γ ⇒ X
is of constant dimension and the kernel K is regular then, as a groupoid over X, K is of
constant dimension if, and only if, the same is true of the quotient Γ/K, in which case

dimΓ/K = dimΓ − dimK + dimX.

It follows that for any regular kernel K in a smooth groupoid Γ the quotient di�erentiable
groupoid Γ/K is smooth if, and only if, K is closed and of constant dimension.

Let φ : Γ → ∆ be a weak equivalence between two arbitrary di�erentiable groupoids.
For each kernel K in Γ there is a corresponding �direct image� kernel φ∗K in ∆ consisting
of all the arrows of the form h−1φ(k)h, where k ∈ K, h ∈ ∆ and th = φ(sk). Conversely,
for each kernel L in ∆ one has a corresponding �inverse image� kernel φ∗L := {k ∈ Γ
sg = tg & φ(k) ∈ L} in Γ . The correspondences K 7→ φ∗K and L 7→ φ∗L are inverse to
each other. It is not hard to show that K is regular if and only if so is φ∗K.

It is a well-known fact in the elementary theory of Lie groups that any bijective
Lie-group homomorphism must be a di�eomorphism and hence an isomorphism; compare
[Bröcker and tom Dieck, 1995, Exercise 2.22(2)]. The relevant property of Lie groups, here,
is second countability. In fact, the statement in question is false for general (i.e., non-Lie)
di�erentiable groups. By way of example, let G be the one-dimensional di�erentiable
group obtained by endowing the additive group of euclidean 2-space (R2,+) with the
one-dimensional di�erentiable structure resulting from the identi�cation

R2 =
∐
t∈R

R× {t}, (20)

where the right-hand side denotes the disjoint union of uncountably many copies of R. The
identifying map itself provides a bijective homomorphism of di�erentiable groups between

12A di�erentiable subgroupoid of Γ is a subgroupoid Γ ′ (in the abstract, set-theoretic sense) such that
Γ ′(1) ⊂ Γ(1) is a di�erentiable submanifold and such that the source map of Γ restricts to a submersion of
Γ ′(1) onto a di�erentiable submanifold of Γ(0). With the induced di�erentiable structure, a di�erentiable
subgroupoid becomes a di�erentiable groupoid in its own right.
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G and (R2,+) [= standard, two-dimensional, euclidean Lie group] which is certainly not
an isomorphism (not even a homeomorphism).

A.1. Lemma. Suppose f : X → Y is a map of class C∞ from a second countable di�er-
entiable manifold of constant dimension X into an arbitrary di�erentiable manifold Y .
The following implications are true:

(a) If f is both immersive and surjective then it is a local di�eomorphism.

(b) If f is a bijective immersion then it is a (global) di�eomorphism.

Proof. The second implication is an immediate consequence of the �rst one. In order
to prove (a), we have to check that for any point x in X the rank m = rkTxf [= dimX]
equals the local dimension n = dimf(x) Y . By considering the restriction of f to the
preimage of a local chart in Y centered at f(x), it will be no loss of generality to assume
that Y = Rn and that f(x) therein is the origin.

We argue by contradiction. Suppose m < n. Since f : X → Rn is an immersion,
we may �nd an open cover {Ui i ∈ I} of X so that, for each i ∈ I, f restricts to a
di�eomorphism of Ui onto a di�erentiable submanifold f(Ui) of Rn. Since dim f(Ui) =
m < n, each f(Ui) will be a subset of Rn with empty interior. Let us �x a countable basis
{Vk k ∈ N} for the topology of the manifold X. Let S denote the set of all those k ∈ N
for which there is some i ∈ I such that Vk b Ui.

13 Clearly {Vk k ∈ S} will be a basis for
the topology of X, in particular, X =

⋃
k∈S Vk. By the surjectivity of f ,

Rn = f(X) = f
(⋃

k∈S Vk
)

=
⋃
k∈S f(Vk) =

⋃
k∈S f(Vk).

Now each f(Vk) = closRn f(Vk) is a closed subset of Rn of empty interior, because it is
contained in some f(Ui) [since f(Vk) = f(closUi Vk) when Vk b Ui by the compactness
of f(closUi Vk)]. But the union of countably many such subsets must be itself of empty
interior by Baire's theorem [Lang, 1969, p. 183]: contradiction.

A.2. Proposition. Let φ : Γ → ∆ be a homomorphism of Lie groupoids which covers
the identity and which is full as an abstract functor. Then φ is an epimorphism.

Proof. Let M = Γ(0) = ∆(0) denote the common base of Γ and ∆. In the �rst place,
we show that for each point x in M the map Oφ

x : OΓ
x → O∆

φx=x characterized by either
of the equations (2) is a (global) di�eomorphism. Since by our assumptions the map
φx : Γ x → ∆x is surjective, Equation (2a) entails that Oφ

x is surjective. Similarly, since
φ(0) = idM , Equation (2b) implies that Oφ

x is both injective and immersive. Any orbit
of a Lie groupoid is a manifold of constant dimension14 which is also second countable
(because so is the corresponding source �ber). The desired conclusion drops out at once
from Lemma A.1(b).

13For an arbitrary subset A of a topological space T we write A b T (read: A is relatively compact

within T ) as an abbreviation for `closT A is compact'.
14The precise general statement, whose proof we leave as an exercise, is the following: Any orbit of a

di�erentiable groupoid over a base of constant dimension is a manifold of constant dimension.
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Next, we show that each isotropy homomorphism φxx : Γ x
x → ∆x

x is a submersion.
Let us set G = Γ x

x , H = ∆x
x and f = φxx for short. By our hypotheses, f : G → H is

a surjective Lie-group homomorphism. Its kernel K is a closed normal subgroup of G,
the quotient G/K is a Lie group, and the projection π : G � G/K is a submersion.
By the �rst homomorphism theorem for Lie groups, there is a unique homomorphism
f̃ : G/K → H such that f = f̃ ◦ π. Evidently f̃ must be bijective and thus, in view of
Lemma A.1(b), a di�eomorphism.

We are now in a position to conclude that each one of the maps φx : Γ x → ∆x which
φ induces between two corresponding source �bers is a submersion. In fact, our claim is
a straightforward consequence of what we have already shown, Equation (2a), and the
principality of the Lie-group bundles prΓx : Γ x � OΓ

x and pr∆x : ∆x � O∆
x .

Finally, for every arrow g ∈ Γ x the matrix expression

Tgφ(1) =

(
Txφ(0) 0
∗ Tgφ

x

)
=

(
id 0
∗ Tgφ

x

)
associated with any choice of splittings to the surjective linear maps Tgs

Γ and Tφ(g)s
∆

makes it evident that the linear map Tgφ(1) must be surjective.

Recall that a di�erentiable groupoid Γ ⇒ X is locally transitive if the associated
combined source�target map (s, t) : Γ → X × X is submersive, and transitive if in
addition the same map is surjective. By a one-orbit groupoid we shall mean a groupoid
whose combined source�target map is surjective.

A.3. Proposition. (Cf. [Mackenzie, 1987, Corollary 1.9, p. 89].) Any one-orbit Lie
groupoid is transitive.

Proof. A general di�erentiable groupoid Γ ⇒ X is locally transitive if, and only if, for
every base point x ∈ X the restricted target map tx : Γ x → X is a submersion. If tx

is surjective then the orbit immersion inΓx : OΓ
x � X is a bijection. Moreover, if Γ is

second countable and X is of constant dimension then the orbit OΓ
x is a second countable

manifold of constant dimension. We conclude from Lemma A.1(b) that whenever Γ ⇒ X
is a one-orbit Lie groupoid the orbit immersion inΓx is a di�eomorphism and consequently
tx = inΓx ◦ prΓx is a submersion.

A.4. Counterexamples. (a) Let M = N tN denote the disjoint union of two copies
of a smooth manifold N . Let G be any Lie group of positive dimension. Let Γ and ∆
respectively denote the trivial Lie-group bundles (G×N)t (G×N) = G×M →M and
G × N → N . The map (1G × idN) t idG×N : Γ → ∆ (where 1G indicates the constant
endomorphism of G) is a surjective Lie-groupoid homomorphism for which the conclusion
of Proposition A.2 fails. This shows that the hypothesis φ(0) = id in that proposition
cannot be relaxed in any substantial way.

(b) Let G denote the one-dimensional di�erentiable group arising from the identi�-
cation (20). Consider the two translation groupoids Γ = Gn R2 and ∆ = (R2,+) n R2,
the group action in either case being given by the formula (s, t) · (a, b) = (s + a, t + b).
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Each of them is a one-orbit di�erentiable groupoid. However, Γ is not transitive. The
isotropy groups of Γ and ∆ are all trivial. The �identical� homomorphism from Γ onto
∆ is bijective and covers the identity over Γ(0) = ∆(0) = R2. However, none of the
injective immersions induced between the orbits OΓ

x � O∆
x (albeit bijective) can be a

di�eomorphism (for reasons of dimension since dimOΓ
x = 1 whereas dimO∆

x = 2).

For the sake of completeness, we record the following useful lemma, which shows that
there is essentially no such thing as a theory of di�erentiable groups beyond the classical
theory of Lie groups. The only way in which a general di�erentiable group may fail to
be a Lie group is in having uncountably many connected components, each component
being a perfectly nice, smooth manifold.

A.5. Lemma. Every connected di�erentiable group is a Lie group.

Proof. Let G be any such group. Since translations in G are di�eomorphisms, G is
of constant dimension. By a standard argument, any di�erentiable group is Hausdor�.
Thus, the claim is essentially all about second countability.

The connectedness of G entails that if U is any neighborhood of the unit e then
G =

⋃∞
k=1 U

k where Uk = U · · ·U (k-fold product in G). The product ST of any dense
subsets S ⊂ V , T ⊂ W of two arbitrary subsets V , W of G must be dense within the
product VW . Indeed, let v ∈ V , w ∈ W and let U 3 vw be any open neighborhood. By
the continuity of group multiplication, we may �nd open neighborhoods V ′ 3 v, W ′ 3 w
so that V ′W ′ ⊂ U . By density, there will be elements s ∈ S ∩ V ′, t ∈ T ∩W ′. Then,
st ∈ ST ∩ V ′W ′ ⊂ ST ∩ U .

Let us �x an arbitrary local chart ϕ : U
≈→ Rn for G with center at e = ϕ−1(0).

For every k ∈ N let us put Uk = ϕ−1
(
B1/k(0)

)
, where B1/k(0) denotes the open ball

{x ∈ Rn |x| < 1/k}. Since R ≈ϕ Qn is a dense subset of U ≈ϕ Rn, we conclude from
the above that Rk must be dense within Uk for all k and hence that

⋃∞
k=1 R

k must be
dense within

⋃∞
k=1 U

k = G. Thus G has to contain some dense sequence {gl}l∈N. We
contend that {Vkgl (k, l) ∈ N × N} where Vk = Uk ∩ U−1

k must be a countable basis for
the topology of G. Indeed, given any element w of an open subset W of G we choose k
so that VkVk ⊂ UkUk ⊂ Ww−1 and then l so that gl ∈ Vkw; then clearly w ∈ Vkgl ⊂ W .

A.6. Proposition. Let φ : Γ → ∆ be a homomorphism between two arbitrary di�eren-
tiable groupoids. Suppose that φ covers the identity and is faithful as an abstract functor.
Then φ is a monomorphism.

Proof. In view of the hypothesis φ(0) = id , Equation (2b) implies that each one of the
maps Oφ

x : OΓ
x → O∆

x induced by φ between two corresponding orbits is an injective
immersion. As next step, we show that each isotropy homomorphism φxx : Γ x

x → ∆x
x is an

immersion. Clearly, it will be enough to show that T1xφ
x
x is an injective linear map. By

Lemma A.5, the identity component of Γ x
x is a Lie group. The claim is then an immediate

consequence of the naturality of the exponential map of a Lie group [Bröcker and tom
Dieck, 1995, (3.2), p. 23]. The proof proceeds by analogy with that of Proposition A.2.
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A.7. Corollary. Any fully faithful homomorphism of Lie groupoids which covers the
identity is an isomorphism.
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