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PAUL BRESSLER, ALEXANDER GOROKHOVSKY, RYSZARD NEST
AND BORIS TSYGAN

Abstract. We show that for a differential graded Lie algebra g whose components
vanish in degrees below −1 the nerve of the Deligne 2-groupoid is homotopy equivalent
to the simplicial set of g-valued differential forms introduced by V. Hinich [Hinich, 1997].

1. Introduction

The principal result of the present note compares two spaces (simplicial sets) naturally
associated with a nilpotent differential graded Lie algebra (DGLA) subject to certain
restrictions. Our interest in this problem has its origins in formal deformation theory of
associative algebras and, more generally, algebroid stacks ([Bressler, Gorokhovsky, Nest
& Tsygan, 2007]). The results of the present note are used in [Bressler, Gorokhovsky,
Nest & Tsygan, 2015] to deduce a quasi-classical description of the deformation theory of
a gerbe from the formality theorem of M. Kontsevich ([Kontsevich, 2003]).

To a nilpotent DGLA h which satisfies the additional condition

hi = 0 for i < −1 (1)

P. Deligne [Deligne, 1994] and, independently, E. Getzler [Getzler, 2009] associated a
(strict) 2-groupoid which we denote MC2(h) and refer to as the Deligne 2-groupoid.

Our principal result (Theorem 4.2) compares the simplicial nerve NMC2(h) of the
2-groupoid MC2(h), h a nilpotent DGLA satisfying (1), to another simplicial set, denoted
Σ(h), introduced by V. Hinich [Hinich, 1997]:

1.1. Theorem. (Main theorem) Suppose that h is a nilpotent DGLA such that hi = 0 for
i < −1. Then, the simplicial sets NMC2(h) and Σ(h) are weakly homotopy equivalent.

In the case when the nilpotent DGLA h satisfies hi = 0 for i < 0 and, consequently,
MC2(h) is an ordinary groupoid a homotopy equivalence between Σ(h) and the nerve of
MC2(h) was constructed by V. Hinich in [Hinich, 1997].
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Differential graded Lie algebras satisfying (1) arise in formal deformation theory of
algebraic structures such as Lie algebras, commutative algebras, associative algebras to
name a few. In what follows we shall concentrate on the latter example. Let k denote an
algebraically closed field of characteristic zero. For an associative algebra A over k the
shifted Hochschild cochain complex C•(A)[1] has a canonical structure of a DGLA under
the Gerstenhaber bracket; we denote this DGLA by g(A) for short. Suppose that m is a
nilpotent commutative k-algebra (without unit). Then, g(A) ⊗k m is a nilpotent DGLA
which satisfies (1). Thus, the Deligne 2-groupoid MC2(g(A) ⊗k m) is defined. For an
Artin k-algebra R with maximal ideal mR the 2-groupoid MC2(g(A)⊗k mR) is naturally
equivalent to the 2-groupoid of R-deformations of the algebra A. In this sense the DGLA
g(A) controls the formal deformation theory of A.

The reason for considering the space Σ(h) is that it is defined not just for a DGLA (V.
Hinich, [Hinich, 1997]), but, more generally, for any nilpotent L∞ algebra (E. Getzler,
[Getzler, 2009]). Homotopy invariance properties of the functor Σ (Proposition 3.9), the
theory of J.W. Duskin ([Duskin, 2001/02]) and the theorem above yield the following
result. If h is a DGLA satisfying (1), g is a L∞ algebra L∞-quasi-isomorphic to h and
m is a nilpotent commutative k-algebra, then NMC2(h⊗k m) is homotopy equivalent to
Σ(g⊗k m). Thus, the 2-groupoid MC2(h⊗k m) can be reconstructed, up to equivalence,
from the space Σ(g⊗km). The situation envisaged above arises naturally. Any DGLA h is
L∞-quasi-isomorphic to an L∞ algebra with trivial univalent operation (the differential).

The paper is organized as follows. In Section 2 we review various constructions of
nerves of 2-groupoids and their properties. In section 3 we recall the definitions of the
functor Σ (3.4) and of the Deligne 2-groupoid (3.10) and prove basic properties thereof.
The proof of the main theorem (Theorem 4.2) given in Section 4 proceeds by exhibiting
canonical weak homotopy equivalences from Σ(h) and NMC2(h) to a third naturally
defined simplicial set.

2. The homotopy type of a strict 2-groupoid

2.1. Nerves of simplicial groupoids.

2.1.1. Simplicial groupoids. In what follows a simplicial category is a category en-
riched over the category of simplicial sets. A small simplicial category consists of a set of
objects and a simplicial set of morphisms for each pair of objects.

A simplicial category G is a particular case of a simplicial object [p] 7→ Gp in Cat whose
simplicial set of objects [p] 7→ N0Gp is constant.

A simplicial category is a simplicial groupoid if it is a groupoid in each (simplicial)
degree.

2.1.2. The näıve nerve. Suppose that G is a simplicial category. Applying the nerve
functor degree-wise we obtain the bi-simplicial set NG : ([p], [q]) 7→ NqGp whose diagonal
we denote by NG and refer to as the näıve nerve of G.
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2.1.3. The simplicial nerve. For a simplicial category G the simplicial nerve, also
known as the homotopy coherent nerve, NG is represented by the cosimplicial object in
[p] 7→ ∆p

N ∈ Cat∆, i.e
NpG = HomCat∆

(∆p
N, G).

Here, ∆p
N is the canonical free simplicial resolution of [p] which admits the following

explicit description ([Cordier, 1982]).
The set of objects of ∆p

N is {0, 1, . . . , p}. For 0 ≤ i ≤ j ≤ p the simplicial set of
morphisms is given by Hom∆p

N
(i, j) = NP(i, j). The category P(i, j) is a sub-poset of

2{0,...,p} (with the induced partial ordering whereby viewed as a category) given by

P(i, j) = {I ⊂ Z | (i, j ∈ I) & (k ∈ I =⇒ i 6 k 6 j)}.

The composition in ∆p
N is induced by functors

P(i, j)× P(j, k)→ P(i, k) : (I, J) 7→ I ∪ J.

In particular, ∆0
N = [0] and ∆1

N = [1]
We refer the reader to [Hinich, 2007] for applications to deformation theory and to

[Lurie, 2009] for the connection with higher category theory. The simplicial nerve of
a simplicial groupoid is a Kan complex which reduces to the usual nerve for ordinary
groupoids.

Since ∆0
N = [0] (respectively, ∆1

N = [1]) it follows that N0G (respectively, N1G) is the
set of objects (respectively, the set of morphisms) of G0.

2.1.4. Comparison of nerves. We refer the reader to [Hinich, 2007] for the definition
of the canonical map of simplicial sets NG → NG. In what follows we will make use of
the following result of loc. cit.

2.2. Theorem. ([Hinich, 2007], Corollary 2.6.3) For any simplicial groupoid G the canon-
ical map NG→ NG is a weak homotopy equivalence.

2.3. Strict 2-groupoids.

2.3.1. From strict 2-groupoids to simplicial groupoids. Suppose that G is a
strict 2-groupoid, i.e. a groupoid enriched over the category of groupoids. Thus, for every
g, g′ ∈ G, we have the groupoid HomG(g, g

′) and the composition is strictly associative.
The nerve functor [p] 7→ Np(·) := HomCat([p], ·) commutes with products. Let Gp de-

note the category with the same objects as G and with morphisms defined by HomGp(g, g′) =
Np HomG(g, g

′); the composition of morphisms is induced by the composition in G. Note
that the groupoid G0 is obtained from G by forgetting the 2-morphisms.

The assignment [p] 7→ Gp defines a simplicial object in groupoids with the constant
simplicial set of objects, i.e. a simplicial groupoid which we denote by G̃.
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2.4. Lemma. The simplicial nerve NG̃ admits the following explicit description:

1. There is a canonical bijection between N0G̃ and the set of objects of G.

2. For n ≥ 1 there is a canonical bijection between NnG̃ and the set of data of the form
((µi)0≤i≤n, (gij)0≤i<j≤n, (cijk)0≤i<j<k≤n), where (µi) is an (n + 1)-tuple of objects of
G, (gij) is a collection of 1-morphisms gij : µj → µi and (cijk) is a collection of
2-morphisms cijk : gijgjk → gik which satisfies

cijlcjkl = ciklcijk (2)

(in the set of 2-morphisms gijgjkgkl → gil).

For a morphism f : [m] → [n] in ∆ the induced structure map f ∗ : NnG̃ → NmG̃ is given
(under the above bijection) by f ∗((µi), (gij), (cijk)) = ((νi), (hij), (dijk)), where νi = µf(i),
hij = gf(i),f(j), dijk = cf(i),f(j),f(k) (cf. [Duskin, 2001/02]).

Proof. An n-simplex of NG̃ is the following collection of data:

1. objects µ0, . . . , µn of G;

2. morphisms of simplicial sets NP(i, j)) → N HomG(µi, µj)) intertwining the maps
induced on the nerves by composition functors P(i, j) × P(j, k) → P(i, k) and
HomG(µi, µj)× HomG(µj, µk)→ HomG(µi, µk).

Since the nerve functor is fully faithful, the above data are equivalent to the following:

1. objects µ0, . . . , µn of G;

2. for any I ∈ N0P(i, j), a 1-morphism gI : µj → µi in G;

3. for any morphism J → I in P(i, j), a 2-morphism cIJ : gJ → gI , such that

cIJcJK = cIK (3)

These data have to be compatible with the composition pairings P(i, j)×P(j, k)→
P(i, k) and HomG(µi, µj)× HomG(µj, µk)→ HomG(µi, µk).

Let gij : µj → µi denote the morphism g{i,j}. By compatibility with compositions, if I =
{i, i1, . . . , ik, j} then gI = gii1 . . . gikj. Let cijk denote the two-morphism c{i,j,k},{i,k} : gik →
gijgjk. Now, by virtue of (3) and of compatibility with compositions, cijk satisfy the two-
cocycle identity (3) and determine cIJ for any I, J .
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In what follows, for a strict 2-groupoid G, we will denote by NG (respectively NG) the
näıve (respectively simplicial) nerve of the associated simplicial groupoid G̃.

3. Homotopy types associated with L∞-algebras

3.1. L∞-algebras. We follow the notation of [Getzler, 2009] and refer the reader to loc.
cit. for details.

Recall that an L∞-algebra is a graded vector space g equipped with operations∧kg→ g[2− k] : x1 ∧ . . . ∧ xk 7→ [x1, . . . , xk]

defined for k = 1, 2, . . .. which satisfy a sequence of Jacobi identities.
It follows from the Jacobi identities that the unary operation [.] : g→ g[1] is a differ-

ential, which we will denote by δ.
An L∞-algebra is abelian if all operations with valency two and higher (i.e. all op-

erations except for δ) vanish. In other words, an abelian L∞-algebra is a complex. An
L∞-algebra structure with vanishing operations of valency three and higher reduces to a
structure of a DGLA.

The lower central series of an L∞-algebra g is the canonical decreasing filtration F •g
with F ig = g for i ≤ 1 and defined recursively for i ≥ 1 by

F i+1g =
∞∑
k=2

∑
i=i1+···+ik

ik6i

[F i1g, . . . , F ikg].

An L∞-algebra is nilpotent if there exists an i such that F ig = 0.

3.1.1. Maurer-Cartan elements. Suppose that g is a nilpotent L∞-algebra. For
µ ∈ g1 let

F(µ) = δµ+
∞∑
k=2

1

k!
[µ∧k]. (4)

The element F(µ) of g2 is called the curvature of µ. For any µ ∈ g1 the curvature F(µ)
satisfies the Bianchi identity ([Getzler, 2009], Lemma 4.5)

δF(µ) +
∞∑
k=1

1

k!
[µ∧k,F(µ)] = 0. (5)

An element µ ∈ g1 is called a Maurer-Cartan element (of g) if it satisfies the condition
F(µ) = 0. The set of Maurer-Cartan elements of g will be denoted MC(g):

MC(g) := {µ ∈ g1 | F(µ) = 0}.
The set MC(g) is pointed by the distinguished element 0 ∈ g1.

Suppose that a is an abelian L∞-algebra. Then,

MC(a) = Z1(a) := ker(δ : a1 → a2),

hence is equipped with a canonical structure of an abelian group.



1006 P. BRESSLER, A. GOROKHOVSKY, R. NEST AND B. TSYGAN

3.1.2. Central extensions. Suppose that g is a L∞-algebra and a is a subcomplex of
(g, δ) such that [a ∧ g∧k] = 0 for all k ≥ 1. In this case we will say that a is central in g.

If a is central in g, then there is a unique structure of an L∞-algebra on g/a such that
the projection g→ g/a is a map of L∞-algebras. If g is nilpotent, then so is g/a.

In what follows we assume that g is a nilpotent L∞-algebra and a is central in g.

3.2. Lemma.

1. The addition operation on g1 restricts to a free action of the abelian group MC(a)
on the set MC(g).

2. The map MC(g)→ MC(g/a) is constant on the orbits of the action.

3. The induced map MC(g)/MC(a)→ MC(g/a) is injective.

Proof. Suppose that α ∈ a1 and µ ∈ g1. Since a is central in g, [(α + µ)∧k] = [µ∧k] for
k ≥ 2 and F(α+ µ) = δα+F(µ) (in the notation of (4)). Therefore, MC(a) + MC(g) =
MC(g). In other words, the addition operation in g1 restricts to an action of the abelian
group MC(a) on the set MC(g) which is obviously free. Since the map MC(g)→ MC(g/a)
is the restriction of the map g → g/a constant on the orbits of the action, i.e. factors
through MC(g)/MC(a), and the induced map MC(g)/MC(a)→ MC(g/a) is injective.

3.2.1. The obstruction map. The image of the map MC(g) → MC(g/a) may be
described in terms of the obstruction map (6) which we construct presently.

If µ ∈ g1 and µ + a1 ∈ MC(g/a), then F(µ + a1) = F(µ) + δa1 ⊂ a2 and the Bianchi
identity (5) reduces to δF(µ+ a1) = 0, i.e. the assignment µ+ a1 7→ F(µ+ a1) gives rise
to a well-defined map

o2 : MC(g/a)→ H2(a) (6)

(notation borrowed from [Goldman, Millson, 1988], 2.6).

3.3. Lemma. The sequence of pointed sets

0→ MC(g)/MC(a)→ MC(g/a)
o2−→ H2(a) (7)

is exact.

Proof. If F(µ+ a1) ⊂ δa1, then there exists α ∈ a1 such that F(µ+ α) = 0, i.e. µ+ a1

is in the image of MC(g)→ MC(g/a).

3.4. The functor Σ. In what follows we denote by Ωn, n = 0, 1, 2, . . . the commutative
differential graded algebra over Q with generators t0, . . . , tn of degree zero and dt0, . . . , dtn
of degree one subject to the relations t0+· · ·+tn = 1 and dt0+· · ·+dtn = 0. The differential
d : Ωn → Ωn[1] is defined by ti 7→ dti and dti 7→ 0. The assignment [n] 7→ Ωn extends in a
natural way to a simplicial commutative differential graded algebra.
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3.4.1. The simplicial set Σ(g). For a nilpotent L∞-algebra g and a non-negative
integer n let

Σn(g) = MC(g⊗ Ωn).

Equipped with structure maps induced by those of Ω• the assignment n 7→ Σn(g) defines
a simplicial set denoted Σ(g).

The simplicial set Σ(g) was introduced by V. Hinich in [Hinich, 1997] for DGLA and
used by E. Getzler in [Getzler, 2009] (where it is denoted MC•(g)) for general nilpotent
L∞-algebras.

3.4.2. Abelian DGLA. If a is an abelian L∞-algebra, then Σ(a) is given by Σn(a) =
Z1(Ωn ⊗ a) = Z0(Ωn ⊗ a[1]) and has a canonical structure of a simplicial abelian group.
In particular, it is a Kan simplicial set.

Recall that the Dold-Kan correspondence associates to a complex of abelian groups
A a simplicial abelian group K(A) defined by K(A)n = Z0(C•([n];A)), the group of
cocycles of (total) degree zero in the complex of simplicial cochains on the n-simplex with
coefficients in A.

The integration map
∫

: Ωn ⊗ a→ C•([n]; a) induces a homotopy equivalence∫
: Σ(a)→ K(a[1]); (8)

see [Getzler, 2009], Section 3. Thus, πiΣ(a) ∼= H1−i(a).

3.4.3. Central extensions. Suppose that g is a nilpotent L∞-algebra and a is a central
subalgebra in g. Then, for n = 0, 1, . . ., Ωn ⊗ a is central in Ωn ⊗ g.

3.5. Lemma.

1. The addition operation on (Ωn ⊗ g)1 induces a principal action of the simplicial
abelian group Σ(a) on the simplicial set Σ(g).

2. The map Σ(g)→ Σ(g/a) factors through Σ(g)/Σ(a).

3. The induced map Σ(g)/Σ(a)→ Σ(g/a) is injective.

Proof. Follows from Lemma 3.2 and the naturality properties of the constructions in
3.1.2.

For n = 0, 1, . . . the map ([n]→ [0])∗ : Q→ Ωn is a quasi-isomorphism, with the quasi-
inverse provided by the map induced by any morphism [0] → [n]. Therefore, the map
a→ Ωn⊗a is a quasi-isomorphism as well. The induced isomorphisms H2(a) ∼= H2(Ωn⊗a)
give rise to the isomorphism of the constant simplicial set H2(a) and n 7→ H2(Ωn ⊗ a).

The maps

o2,n : Σn(g/a) = MC(Ωn ⊗ g/a)→ H2(Ωn ⊗ a) ∼= H2(a)
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assemble into the map of simplicial sets

o2 : Σ(g/a)→ H2(a). (9)

which factors as Σ(g/a)→ π0Σ(g/a)→ H2(a).
Let Σ(g/a)0 = o−1

2 (0). Thus, by (7), Σ(g/a)0 is a union of connected components of
Σ(g/a) equal to the range of the map Σ(g)/Σ(a)→ Σ(g/a).

It follows that the map Σ(g) → Σ(g/a)0 is a principal fibration with group Σ(a), in
particular, a Kan fibration ([May, 1967], Lemma 18.2).

3.6. Lemma. Suppose that g is a nilpotent L∞-algebra. Then, Σ(g) is a Kan simplicial
set.

Proof. If g is an abelian L∞-algebra then Σ(g) is a simplicial group and therefore a Kan
simplicial set.

Let F •g denote the lower central series. Assume that GriFg 6= 0 if and only if 0 ≤ i ≤ n;
that is, g is nilpotent of length n. By induction assume that Σ(h) is a Kan simplicial set
for any nilpotent L∞-algebra h of length at most n− 1.

Since g is nilpotent of length n, it follows that F ng = Grng is central in g and g/F ng is
nilpotent of length n−1. Therefore, Σ(g/F ng) is a Kan simplicial set and so is Σ(g/F ng)0.
Since Σ(g)→ Σ(g/F ng)0 is a Kan fibration it follows that Σ(g) is a Kan simplicial set as
well.

3.7. Lemma. Suppose that g is a nilpotent L∞-algebra such that gq = 0 for q ≤ −k, k a
positive integer. Then, for any connected component X of Σ(g), πi(X) = 0 for i > k.

Proof. Suppose that g is an abelian L∞-algebra. Then, πiΣ(g) ∼= H1−i(g). For an
L∞-algebra g which is not necessarily abelian the statement follows by induction on the
nilpotency length, the abelian case establishing the base of the induction.

Let F •g denote the lower central series. Assume that GriFg 6= 0 if and only if 0 ≤ i ≤ n;
that is, g is nilpotent of length n. By induction assume that the conclusion holds for all
nilpotent L∞-algebras of length at most n− 1.

Since g is nilpotent of length n, it follows that F ng = Grng is central in g and
g/F ng is nilpotent of length n − 1. Let X ⊆ Σ(g) be a connected component of Σ(g)
and let Y ⊆ Σ(g/F ng) be the image of X under the map induced by the quotient map
g→ g/F ng. Then, X → Y is a principal fibration with group the connected component
of the identity in Σ(F ng). The desired vanishing of higher homotopy groups of X follows
from the induction hypotheses using the long exact sequence of homotopy groups.

3.7.1. Homotopy invariance.

3.8. Lemma. Suppose that f : a → b is a quasi-isomorphism of abelian L∞-algebras.
Then, the induced map Σ(f) : Σ(a)→ Σ(b) is a weak homotopy equivalence.
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Proof. Note that Σ(f) is a morphism of simplicial abelian groups. It is sufficient to show
that the maps πnΣ(f) : πnΣ(a) → πnΣ(b) are isomorphisms for n > 0. To this end note
that πnΣ(f) factors as the composition of isomorphisms

πnΣ(a) ∼= H1−n(a)
H1−n(Σ(f))−−−−−−−→ H1−n(b) ∼= πnΣ(b).

3.9. Proposition. ([Getzler, 2009], Proposition 4.9) Suppose that f : g→ h is a quasi-
isomorphism of L∞-algebras and R is an Artin algebra with maximal ideal mR. Then, the
map Σ(f ⊗ Id) : Σ(g⊗mR)→ Σ(h⊗mR) is a weak homotopy equivalence.

Proof. We use induction on the nilpotency length of mR, which is to say the largest
integer l such that ml

R 6= 0.
If m2

R = 0, then f⊗Id : g⊗mR → h⊗mR is a quasi-isomorphism of abelian L∞-algebras
and the claim follows from Lemma 3.8.

Suppose that ml+1
R = 0. By the induction hypothesis

• the map Σ(g⊗mR/m
l
R)→ Σ(h⊗mR/m

l
R) is a weak homotopy equivalence and

• the map π0Σ(g⊗mR/m
l
R)→ π0Σ(h⊗mR/m

l
R) is a bijection.

The map f ⊗ Idml
R

is a quasi-isomorphism of abelian L∞-algebras, therefore the map

H2(g⊗ml
R)→ H2(h⊗ml

R) is an isomorphism. The commutativity of

π0Σ(g⊗mR/m
l
R) −−−→ π0Σ(h⊗mR/m

l
R)y y

H2(g⊗ml
R) −−−→ H2(h⊗ml

R)

implies that the map

π0Σ(g⊗mR/m
l
R)0 → π0Σ(h⊗mR/m

l
R)0

is a bijection. Therefore, the map

Σ(g⊗mR/m
l
R)0 → Σ(h⊗mR/m

l
R)0

is a weak homotopy equivalence. The map Σ(f) restricts to a map of principal fibrations

Σ(g⊗mR) −−−→ Σ(h⊗mR)y y
Σ(g⊗mR/m

l
R)0 −−−→ Σ(h⊗mR/m

l
R)0

relative to the map of simplicial groups Σ(g ⊗ ml
R) → Σ(h ⊗ ml

R). The latter is a weak
homotopy equivalence by Lemma 3.8. Therefore, so is the map Σ(g⊗mR)→ Σ(h⊗mR).
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3.10. Deligne groupoids.

3.10.1. Gauge transformations. Suppose that h is a nilpotent DGLA. Then, h0

is a nilpotent Lie algebra. The unipotent group exp h0 acts on the space h1 by affine
transformations. The action of expX, X ∈ h0, on γ ∈ h1 is given by the formula

(expX) · γ = γ −
∞∑
i=0

(adX)i

(i+ 1)!
(δX + [γ,X]). (10)

The effect of the above action on the curvature F(γ) = δγ +
1

2
[γ, γ] is given by

F((expX) · γ) = exp(adX)(F(γ)). (11)

3.10.2. The functor MC1. Suppose that h is a nilpotent DGLA. It follows from (11)
that gauge transformations (10) preserve the subset of Maurer-Cartan elements MC(h) ⊂
h1.

We denote by MC1(h) the Deligne groupoid (denoted C(h) in [Hinich, 1997]) defined
as the groupoid associated with the action of the group exp h0 by gauge transformations
on the set MC(h).

Thus, MC1(h) is the category with the set of objects MC(h). For γ1, γ2 ∈ MC(h),
HomMC1(h)(γ1, γ2) is the set of gauge transformations between γ1, γ2. The composition

HomMC1(h)(γ2, γ3)× HomMC1(h)(γ1, γ2)→ HomMC1(h)(γ1, γ3)

is given by the product in the group exp(h0).

3.10.3. The functor MC2. For h as above satisfying the additional vanishing condition
hi = 0 for i < −1 we denote by MC2(h) the Deligne 2-groupoid as defined by P. Deligne
[Deligne, 1994] and independently by E. Getzler, [Getzler, 2009]. Below we review the
construction of Deligne 2-groupoid of a nilpotent DGLA following [Getzler, 2009, Getzler,
2002] and references therein.

The objects and the 1-morphisms of MC2(h) are those of MC1(h). That is, for γ1, γ2 ∈
MC(h) the set HomMC1(h)(γ1, γ2) is the set of objects of the groupoid HomMC2(h)(γ1, γ2).

The morphisms in HomMC2(h)(γ1, γ2) (i.e. the 2-morphisms of MC2(h)) are defined as
follows.

For γ ∈ MC(h) let [·, ·]γ denote the Lie bracket on h−1 defined by

[a, b]γ = [a, δb+ [γ, b]]. (12)

Equipped with this bracket, h−1 becomes a nilpotent Lie algebra. We denote by expγ h
−1

the corresponding unipotent group, and by

expγ : h−1 → expγ h
−1
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the corresponding exponential map. If γ1, γ2 are two Maurer-Cartan elements, then the
group expγ2

h−1 acts on HomMC1(h)(γ1, γ2). For expγ2
t ∈ expγ2

h−1 and HomMC1(h)(γ1, γ2)
the action is given by

(expγ2
t) · (expX) = exp(δt+ [γ2, t]) expX ∈ exp h0.

By definition, HomMC2(h)(γ1, γ2) is the groupoid associated with the above action.

The horizontal composition in MC2(h), i.e. the map of groupoids

⊗ : HomMC2(h)(expX23, expY23)× HomMC2(h)(expX12, expY12)→
HomMC2(h)(expX23 expX12, expX23 expY12),

where γi ∈ MC(h), expXij, expYij, 1 ≤ i, j ≤ 3 is defined by

expγ3
t23 ⊗ expγ2

t12 = expγ3
t23 expγ3

(exp(adX23)(t12)),

where expγj tij ∈ HomMC2(h)(expXij, expYij).

3.11. Remark. There is a canonical map of 2-groupoids MC1(h) → MC2(h) which in-
duces a bijection π0(MC1(h))→ π0(MC2(h)) on sets of isomorphism classes of objects.

3.12. Properties of NMC2.

3.12.1. Abelian DGLA.

3.13. Lemma. Suppose that a is an abelian DGLA satisfying ai = 0 for i < −1. Then,
the simplicial sets NMC2(a) and K(a[1]) are isomorphic naturally in a.

Proof. The claim is an immediate consequence of the definitions and the explicit de-
scription of the nerve of MC2(a) given in Lemma 2.4.

Combining Lemma 3.13 with the integration map (8) we obtain the map of simplicial
abelian groups ∫

: Σ(a)→ NMC2(a) (13)

which is a weak homotopy equivalence.

3.13.1. Central extensions. Suppose that g is a nilpotent DGLA satisfying gi = 0
for i < −1 and a is a central subalgebra in g. Note that MC2 commutes with products, N
commutes with products and the addition map +: a × g → g is a morphism of DGLAs.
Thus, we obtain an action of the simplicial abelian group NMC2(a) on the simplicial set
NMC2(g)

NMC2(+): NMC2(a)×NMC2(g)→ NMC2(g).

Note that the group structure on NMC2(a) is obtained from the case a = g. Clearly, the
action is free and the map NMC2(g)→ NMC2(g/a) factors through NMC2(g)/NMC2(a).

3.13.2. The obstruction map.
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3.14. Lemma. The obstruction map (6) factors as

MC(g/a)→ π0 MC2(g/a)→ H2(a)

Proof. Suppose µ+ a1 ∈ MC(g/a). It follows from the formula (10) that

exp(X + a0) · (µ+ a1) = (expX) · µ+ a1.

The formula (11) implies that

F(exp(X + a0) · (µ+ a1)) = F((expX) · µ) + δa1 = exp(adX)(F(µ) + δa1).

Since F(µ)+δa1 ⊂ a2, it follows that exp(adX)(F(µ)+δa1) = F(µ)+δa1 or, equivalently,
o2(exp(X + a0) · (µ+ a1)) = o2(µ+ a1).

Recall (Lemma 2.4) that an n-simplex of NMC2(g/a), i.e. an element of Nn MC2(g/a)
includes, among other things, a collection of n + 1 gauge-equivalent Maurer-Cartan ele-
ments of g/a. By Lemma 3.14 all of these Maurer-Cartan elements give rise to the same
element of H2(a) under the map (6). Therefore, the assignment of this common value to
an element of Nn MC2(g/a) give rise to a well-defined map

o2,n : Nn MC2(g/a)→ H2(a) (14)

for each n = 0, 1, 2, . . . such that the sequence of pointed sets

0→ Nn MC2(g)/Nn MC2(a)→ Nn MC2(g/a)
o2,n−−→ H2(a)

is exact. The maps (14) assemble into a map of simplicial sets

o2 : NMC2(g/a)
o2−→ H2(a),

where H2(a) is constant. Let NMC2(g/a)0 = o−1
2 (0). The simplicial subset NMC2(g/a)0

is a union of connected components of NMC2(g/a) equal to the range of the map
NMC2(g)/NMC2(a)→ NMC2(g/a).

It follows that NMC2(g) → NMC2(g/a)0 is a principal fibration with the group
NMC2(a).

4. NMC2 vs. Σ

In this section we show that for a DGLA h satisfying hi = 0 for i < −1 the simplicial sets
NMC2(h) and Σ(h) are isomorphic in the homotopy category of simplicial sets.
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4.1. The main theorem. Let Σ2
n(h) = ˜MC2(Ωn ⊗ h), where the latter is the simplicial

groupoid associated with the strict 2-groupoid MC2(Ωn⊗h) (see 2.3.1). Let Σ2(h) : [n] 7→
Σ2
n(h) denote the corresponding simplicial object in simplicial groupoids. Note that Σ(h)

is the simplicial set of objects of Σ2(h), hence there is a canonical map

Σ(h)→ NΣ2(h). (15)

The map Q→ Ω• of simplicial DGA induces the map of simplicial objects in simplicial
groupoids

MC2(h)→ Σ2(h). (16)

Consider the diagram

Σ(h)
(15)−−−→ NΣ2(h)

N((16))←−−−− NMC2(h). (17)

4.2. Theorem. Suppose that h is a nilpotent DGLA satisfying hi = 0 for i < −1. Then,
the morphisms (15) and N((16)) are weak homotopy equivalences so that the diagram (17)
represents an isomorphism Σ(h) ∼= NMC2(h) in the homotopy category of simplicial sets.

The rest of Section 4 is devoted to a proof of Theorem 4.2 which borrows techniques
from the proof of Proposition 3.2.1 of [Hinich, 2004].

4.3. The map (15) is a weak homotopy equivalence. Let Σ1(h) denote the simpli-
cial object in groupoids defined by Σ1

n(h) = MC1(Ωn⊗h). Note that Σ(h) is the simplicial
set of objects of Σ1(h) and hence there is a canonical map

Σ(h)→ NΣ1(h); (18)

by Remark 3.11 there is a canonical map of simplicial objects in simplicial groupoids

Σ1(h)→ Σ2(h). (19)

The map (15) is equal to the composition

Σ(h)
(18)−−→ NΣ1(h)

N ((19))−−−−→ NΣ2(h)→ NΣ2(h),

where the last map is the weak homotopy equivalence of Theorem 2.2.

4.4. Lemma. ([Hinich, 2004], Proposition 3.2.1) The map (18) is a weak homotopy equiv-
alence.

Proof. Let Gn(h) := exp((Ωn ⊗ h)0). Then, G(h) : [n] 7→ Gn(h) is a simplicial group
acting on Σ(h), and Σ(h) is the associated groupoid. Therefore,

NqΣ(h) = Σ(h)×G(h)×q

and the map
Σ(h)→ NqΣ(h)

is a weak homotopy equivalence because G(h) is contractible.
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4.5. Proposition. The map N ((19)) is a weak homotopy equivalence.

Proof. Let Γ1(h) (respectively, Γ2(h)) denote the full subcategory of Σ1(h) (respectively,
of Σ2(h)) whose set of objects is MC(h) (a constant simplicial set). There is a commutative
diagram

Γ1(h) −−−→ Γ2(h)y y
Σ1(h)

(19)−−−→ Σ2(h)

The vertical arrows induce weak homotopy equivalences on respective nerves since, for
each n the functors Γ1(h)n → Σ1(h)n = MC1(Ωn⊗h) and Γ2(h)n → Σ2(h)n = MC2(Ωn⊗
h) are equivalences by [Hinich, 2001], Proposition 8.2.5.

The map Γ1(h) → Γ2(h) induces a bijection between sets of isomorphism classes
of objects. For µ ∈ MC(h), HomΓ2(h)(µ, µ) is naturally identified with the nerve of the
groupoid associated to the action of the simplicial group H(h, µ) : [n] 7→ exp((Ωn⊗h)µ) on
the simplicial set HomΓ1(h)(µ, µ). Since the group H(h, µ) is contractible (it is isomorphic
as a simplicial set to [n] 7→ Ω0

n ⊗ h−1) the induced map HomΓ1(h)(µ, µ)→ HomΓ2(h)(µ, µ)
is an equivalence.

4.6. The map N((16)) : NMC2(h) → NΣ2(h) is a weak homotopy equivalence.
It suffices to show that the map

NMC2(h)→ NMC2(Ωn ⊗ h)

is a weak homotopy equivalence for all n. This follows from Proposition 4.7.

4.7. Proposition. Suppose that h is a nilpotent DGLA concentrated in degrees greater
than or equal to −1. The functor

MC2(h)→ MC2(Ωn ⊗ h) (20)

is an equivalence.

Proof. The induced map π0((20)) is a bijection by Remark 3.11 and (the proof of)
[Hinich, 1997], Lemma 2.2.1. The result now follows from Lemma 4.8 below.

4.8. Lemma. Suppose µ ∈ MC(h). The functor

HomMC2(h)(µ, µ)→ HomMC2(Ωn⊗h)(µ, µ) (21)

is an equivalence.
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Proof. According to the description given in 3.10.3, for any nilpotent DGLA (g, δ) with
gi = 0 for i < −1 and µ ∈ MC(g) the groupoid HomMC2(g)(µ, µ) is isomorphic to the
groupoid associated with the action of the group expµ g

−1 on the set exp(ker(δ−1
µ )) ⊂

exp(g0) where δµ = δ + [µ, .].
Note that, for any X ∈ ker(δ−1

µ ), the automorphism group Aut(exp(X)) is isomorphic
to (the additive group) ker(δ−1

µ ).
The map

([n]→ [0])∗ ⊗ Id : (h, δ)→ (Ωn ⊗ h, d+ δ) (22)

is a quasi-isomorphism of DGLA with the quasi-inverse given by the evaluation map ev0 :=
([0]→ [n])∗⊗Id : Ωn⊗h→ h (for any choice of a morphism [0]→ [n]) which is a morphism
of DGLA as well. The same maps are mutually quasi-inverse quasi-isomorphisms of DGLA

(h, δµ)� (Ωn ⊗ h, d+ δµ).

Since (22) is a quasi-isomorphism and both DGLA are concentrated in degrees greater
than or equal to −1, the induced map ker(δ−1

µ )→ ker((d+ δµ)−1) an isomorphism, hence
so are the maps of automorphism groups.

Since the map (21) admits a left inverse (namely, ev0) it remains to show that the
induced map on sets of isomorphism classes is surjective. Note that, since ev0 is a sur-
jective quasi-isomorphism, the map d+ δµ : ker(ev0)−1 → ker(ev0)0

⋂
ker((d+ δµ)0) is an

isomorphism.
Consider X ∈ (Ωn⊗g)0. Then, X = ev0(X)+Y with Y ∈ ker(ev0), and (d+δµ)X = 0

if and only if δµ ev0(X) = 0 and (d+ δµ)Y = 0.
Suppose X ∈ ker((d + δµ)0). Then, exp(X) = exp(ev0(X)) · exp(Z) where Z ∈

ker(ev0)0
⋂

ker((d+ δµ)0), and, therefore, Z = (d+ δµ)U for a uniquely determined U .
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