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SLICING SITES AND SEMIREPLETE FACTORIZATION SYSTEMS

THORSTEN PALM

Abstract. A factorization system (E ,M) on a category A gives rise to the covariant
category-valued pseudofunctor P of A sending each object to its slice category over
M. This article characterizes the P so obtained as follows: their object images have
terminal objects, and they admit bicategorically cartesian liftings, up to equivalence,
of slice-category projections. It is clear that, and how, (E ,M) can be recovered from
such a P . The correspondence thus described is actually the second of three similar
ones between certain (E ,M) and certain P that the article presents. In the first one
the characterization of the P has all ultimately bicategorical ingredients replaced with
their categorical analogues. A category A with such a P is precisely what the author
has called a “slicing site”. In the article’s terms the associated (E ,M) are again factor-
ization systems — but the concept conveyed extends the standard one by not obliging
isomorphisms to belong to either factor class —, namely those that are “right semire-
plete” (isomorphisms do belong toM) and “left semistrict” (morphisms inM are monic
relative to E). The third correspondence subsumes the other two; here the (E ,M) are
all right-semireplete factorization systems.

Introduction

Every definition of higher-dimensional categories seriously considered to this day has
its underlying concept of higher-dimensional “graphs”, featuring cells and their bound-
ary relations. Traditionally this is simply globular sets, but more complicated devices
have also shown merits, such as (semi-)simplicial sets or (semi-)cubical sets. The higher-
dimensional graphs always form a presheaf category, the site being the category of relevant
cell “shapes” (globes, simplices, cubes). Usually they are so defined, as in the cases just
mentioned, while in the cases of opetopic sets ([1]) and of the variant concept of multitopic
sets ([6]) the statement requires proof.

This necessity also arises for a certain concept related to the last two mentioned (ac-
tually equivalent to the latter), namely that of dendrotopic sets, which I introduced in [8].
Here the cell shapes can be described conveniently as special instances; a trait inherited
from the auxillary concept of polytopic sets , where the cell shapes are called polytopes .
One may tend to think of polytopic sets as primordeal higher-dimensional graphs: in the
cited paper I indicated how the higher-dimensional graphs according to each of the above
concepts can be viewed as polytopic sets with appropriate extra structure, foremost ori-
entations. Yet polytopic sets without (or with only a fragment of this) extra structure fail
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to form a presheaf category, the obstacle being non-trivial morphisms between polytopes
of the same dimension.

I gave a precise account of this matter in the article [9]. The present paper I have
conceived as the first instalment in a series of two, [10] to be the second, delivering
substantial enhancements of those earlier results.

That account concerned far more generally a category with slicing : a category E to-
gether with a functor ∂ to Cat satisfying axioms stating, roughly, that the slice-category
construction can be lifted universally along ∂, so that we obtain a satisfactory slice-object
construction for E . The “ideal” example is a presheaf category together with its category-
of-elements functor, the slice objects being the represented presheaves given by the Yoneda
lemma.

The main theorem told of a canonical embedding of E in a presheaf category SetĚ
op

and characterized the presheaves in its image. The site Ě is defined as follows. Call
an object of E represented if it comes equipped with a distinguished terminal object,
the representation, of its ∂-image. The objects of Ě are the represented objects of E ;
their morphisms in Ě are all their morphisms in E . Of course this definition is odd by
categorists’ standards, as the objects carry structure that is ignored by the morphisms.
Said embedding is induced (assuming E is locally small) by the functor Ě // E forgetting
representations. Said characterization is given in terms of two kinds of special morphisms
in Ě : the discrete fibrations , which are those ∂-cartesian morphisms whose ∂-images
are ordinary discrete fibrations, and the representation-preserving ones, which are those
morphisms whose ∂-images do as the name suggests (“on the nose”). The latter are the
ones we should regard as the “true” morphisms of the objects at hand. Yet in the case of a
presheaf category and its category-of-elements functor the category of represented objects
and representation-preserving morphisms is essentially discrete, a property that allows
conversely to conclude from the theorem that the canonical embedding is an equivalence.

So the theorem allows for E as a mere category to be reconstructed from Ě as a
category with two distinguished morphism classes, say Ědi.fi. and Ěre.pr.. The question
arises whether ∂ as well can be reconstructed. The affirmative answer given in the article
was evasive in that it referred to additional data much more closely related to ∂, namely
the corresponding functor ∂̌ to the accordingly defined category Čat(1). (One can arrange
the pertinent data to a pullback square with Ě as the vertex.) ∂̌ admits cartesian liftings,
up to representation-preserving isomorphism, of slice-category projections. This property,
inherited from the principal axiom on a category with slicing, was taken as the single axiom
on a slicing site.

Clearly ∂̌ suffices to determine Ědi.fi. and Ěre.pr.. The enhancement delivered in the
present work is that the converse is also true: from Ědi.fi. and Ěre.pr. (even from Ěre.pr. alone)
we can reconstruct ∂̌. In conjunction with the prior result this yields a proper affirmative
answer to the question as stated. The eager reader will find no big difficulties in replacing
the objects of Ě with the relevant presheaves on Ě to obtain a direct reconstruction of ∂

1People with some knowledge of Czech will pronounce this symbol like the English word ‘chat’.
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that can serve as an adequate supplement to the theorem. This idea will be pursued in
the mentioned second instalment.

As a prelude to the reconstruction of ∂̌ we have to find requisite properties of Ědi.fi. and
Ěre.pr.. The proof of the theorem decisively used what I called the slice-object factorization,
which in particular exhibits an arbitrary morphism in a slicing site as the composite of
first a representation-preserving one and then a discrete fibration. This would suggest
that (Ěre.pr., Ědi.fi.) is a factorization system — if it were not for the evident failure, in
general, of an isomorphism to be representation preserving; a reminder of the oddity of
the definition of Ě .

Upon closer inspection this failure turns out to be the only one. Emboldened by the
example I widen the scope of the term ‘factorization system’ by dropping the condition
that isomorphisms belong to either factor class (thus retaining self-duality). If they never-
theless do, I call the factorization system replete. If they at least belong to the right-factor
class(2), as in the example at hand, I call the factorization system right semireplete.

In the construction itself each object of Ě is assigned a skeleton with respect to
isomorphisms from Ěre.pr. of the slice category over Ědi.fi.. But for an arbitrary right-
semireplete factorization system this merely yields a pseudofunctor. To obtain an actual
functor we rely on yet another property of Ědi.fi. and Ěre.pr.: the right factors are monic
relative to the left ones; that is, an individual factorization is determined by its right half.
I call such a factorization system left semistrict .

This, then, is all (apart from the issue of size): for every left-semistrict, right-semire-
plete factorization system the construction yields a slicing-site structure inducing it. So
in effect we obtain a conceptually simpler definition of ‘slicing site’.

This summarizes the content of section 1, which makes up most of this work. Section 2
describes the 2-category of slicing sites in terms of the associated factorization systems
and goes on to consider arbitrary functors and natural transformations as the higher cells
of a convenient larger realm of discourse. Section 3 tells how to maintain the foregoing
results while dropping the unusual condition of left semistrictness. The second instalment
will present related results on categories with slicing.

Note on terminology. We shall have to deal with some 2- (most actually bi-)cat-
egorical concepts, albeit only very basic ones. When it comes to the 2-dimensional gen-
eralizations of a 1-dimensional concept, distinguished by how well the requisite laws are
obeyed — without qualification, up to invertible cells, up to arbitrary cells the conven-
tional way or up to arbitrary cells the opposite way —, I am going to employ the terms
‘strict(-ly)’, ‘weak(-ly)’, ‘lax(-ly)’ and ‘op-lax(-ly)’, respectively, the first one usually being
a default. So I say ‘weak functor’ rather than ‘pseudofunctor’ (in spite of the above) or
‘homomorphism’, and I say ‘weakly natural transformation’ rather than ‘pseudonatural
transformation’ or ‘strong transformation’. Thus there always is an adjective available to
express any of these qualities with regard to mediating cells already present (as in ‘this

2The terms ‘left’ and ‘right’ will refer to the graphical representation using horizontal arrows that, as
usual, run in the reading direction common to all Western languages.
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op-lax functor is weak’ or ‘this laxly natural transformation is weakly natural’).

1. Objects

Factorization systems

Let us start with a review of a well-known concept. A factorization system on a category
A consists of two classes of morphisms in A , say L and R, obeying certain requirements.
We call the elements of L left morphisms and represent them graphically by the symbol
‘ // //’, and we call the elements of R right morphisms and represent them graphically by
the symbol ‘ // //’. Some basic properties are given as (F1–6) below. That list has been
compiled with a certain purpose in mind. It can serve as an axiomatization; as such,
however, it is marred by several logical dependencies. All of this will soon be made clear.

(F1)l L contains all identities of A .

(F1)r R contains all identities of A .

(F2)l L is closed in A with respect to binary composition.

(F2)r R is closed in A with respect to binary composition.

(F3)l For every composable two morphisms l and g in A , if l ∈ L and g·l ∈ L, then also
g ∈ L.

(F3)r For every composable two morphisms g and r in A , if r ∈ R and r·g ∈ R, then
also g ∈ R.

(F4) Every morphism in A is a composite r·l with l ∈ L and r ∈ R.

(F5) For every l ∈ L and every r ∈ R, l is left orthogonal to r, or, equivalently, r is right
orthogonal to l. That is, for each commutative square

B

A,

��
r
��

C
f
//

g
??D

h //

l ���� (1)

there is a unique morphism g as shown, rendering the two triangles commutative.

(F6)l L contains all invertible morphisms of A .

(F6)r R contains all invertible morphisms of A .

This description is self-dual in the obvious sense; in fact for each occurrence of (Fi)
(without subscript) the statement so denoted is self-dual, while for each occurrence of (Fj)l

and (Fj)r the two statements so denoted are dual to each other (and so their conjunction,
to be denoted by just (Fj), is self-dual). Statements (F1,2)l and statements (F1,2)r can
be subsumed by saying that L and R, respectively, are all-object subcategories of A .
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For axiomatization purposes the list can be pruned down as follows. Conditions (F1)l

and (F1)r can obviously be omitted. (They are superseded by (F6)l and (F6)r, respect-
ively.) Conditions (F3)l and (F3)r can also be omitted, but less obviously so. (Consider
the latter: it is implied by (F2)r and (F4) along with its weaker variant (F3)′r obtained
by adding ‘g ∈ L’ to the premiss; (F3)′r is in turn implied by (F5) and (F6)r.) Moreover,
condition (F5) can be replaced with its weaker variant (F5)′ obtained from its spelt-out
form by adding ‘h ∈ L and f ∈ R’ to the premiss. (It is implied by (F2), (F4) and (F5)′.)

The further discussion is facilitated by some notation. (“Calligraphic” letters will
stand for arbitrary morphism classes.) We denote by A 0 the class of all identities in
A , by F·H the class of all composites f ·h with f ∈ F and h ∈ H, by F⊥ the class of
morphisms left orthogonal to all of F , by ⊥H the class of morphisms right orthogonal to
all of H, and by A × the class of all invertible morphisms in A . Now we can write most
of the above conditions in symbolic form as inclusions: (F1)l is A 0 ⊆ L, (F1)r is A 0 ⊆ R
(and (F1) is A 0 ⊆ L ∩R); (F2)l is L·L ⊆ L, (F2)r is R·R ⊆ R; (F4) is A ⊆ R·L; (F5)
is L ⊆ R⊥, or, equivalently, R ⊆ ⊥L; (F6)l is A × ⊆ L, (F6)r is A × ⊆ R (and (F6) is
A × ⊆ L ∩R).

The converse of (F6) holds true (it follows from a much weaker variant of (F5)), so
that in fact A × = L ∩R. Also, the two converses of (F5) hold true (as for ⊥L ⊆ R, the
inclusion ⊥L ⊆ R·A × follows from (F4) and (F5), and R·A × ⊆ R trivially follows from
(F2)r and (F6)r), so that in fact

⊥L = R and R⊥ = L. (2)

Conversely, any class of the form F⊥ (in place of L) satisfies all of the above “left con-
ditions”, and any class of the form ⊥H (in place of R) satisfies all of the above “right
conditions”. Thus we see that the entire list is equivalent to just (F4) and (2), which are
well known to form the snappiest axiomatization of ‘factorization system’.

Condition (F5)′, its premiss being symmetric in (l, f) and (h, r), implies that the
morphism g in its conclusion is invertible; the proof uses the most basic among non-
trivial category-theoretic arguments. We call the condition and this consequence together
the symmetric variant of (F5). We may render the former by adapting the common-
parlance phrase ‘unique up to isomorphism’: an (L,R)-factorization is unique up to a
unique morphism. To convey the latter at the same time we can employ a parenthesis:
‘unique up to a unique (iso-)morphism’. This exemplifies how we are going to deal with
analogous situations below.

Other preliminaries

We continue with a concise account of those concepts fundamental to this work that
appear in [9].

Let A and K be two categories, and let P : A // K be a functor. This situation
is described by saying that (A , P ) is a category over K . In most of the following ter-
minology P is understood. Let f : B // A be a morphism in A . It is said to lie above a
morphism f ′ : B′ // A′ in K if Pf = f ′. It is called cartesian if for every g : C // A
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in A and h′ : PC // PB in K with Pf ·h′ = Pg there is a unique h : C // B above h′

with f ·h = g. Now let A be an object of A and f ′ : B′ // PA be a morphism in K . A
cartesian (straight) lifting of f ′ for A consists of an object B of A and a cartesian morph-
ism f : B // A above f ′; if one exists for all A and f ′ then P is a Grothendieck fibration.
A cartesian up-to-isomorphism lifting of f ′ for A consists of an object B of A , a cartesian
morphism f : B // A, and, here called its skewness , an isomorphism β′ : PB ' // B′

in K with Pf = f ′·β′; if one exists for all A and f ′ then P is a Street fibration. The
cartesianness condition is equivalent to a similar one involving the original f ′: for every
g : C // A in A and h′ : PC // B′ in K with f ′·h′ = Pg there is a unique h : C // B
in A with β′·Ph = Pf and f ·h = g. (This exhibits a cartesian up-to-isomorphism lifting
for A as being the same as an invertible universal morphism from the induced functor
P↓A : A ↓A // K ↓PA.) Such a lifting is unique up to a unique (iso-)morphism; that
is, for any two cartesian up-to-isomorphism liftings (B0, f0, β

′
0) and (B1, f1, β

′
1) of f ′ for

A there is a unique (iso-)morphism β : B0
// B1with β′1·Pβ = β′0 and f1·β = f0. We can

look at cartesian liftings up to any class X ′ of isomorphisms in K (that is, we require
the skewnesses to be in X ′). Preferably X ′ is an all-object subgroupoid of K ; then the
isomorphism mediating between two such liftings lies above one in X ′. Taking X ′ to
consist of just the identities yields the concept of a cartesian (strict) lifting; taking X ′ to
consist of all isomorphisms yields the concept of a cartesian up-to-isomorphism lifting.

We are interested in categories over Cat, the category of (small) categories and func-
tors. It will be advantageous to make certain typographical distinctions between categories
occurring in their own right and categories occurring as objects of Cat. Primarily, while
the former appear in script type (apart from the use of object-name abbreviations such
as ‘Cat’), the latter will appear in ordinary italic type, as do objects of the former in
general; objects of the latter will appear in serifless type. In what follows this convention
covers for overt Cat-membership statements.

Here is a quick run-down of the pertinent features of slicing in Cat. Let A be a
category. Each object A of A gives rise to the slice category A↓A of objects over A. This
has objects (X, x) with X ∈ A and x : X // A, and morphisms i : (X0, x0) // (X1, x1) with
i : X0

// X1 such that x1 ◦ i = x0. We denote the associated projection A↓A // A by
δAA . The functor δAA is invertible precisely if A is terminal. Each morphism u : A′ // A
in A induces a functor A↓A′ // A↓A (namely, (X′, x′) � // (X′, u ◦ x′) and i′ � // i′), which
we denote by A↓u. We have A↓1A = 1A↓A and A↓(u ◦ u′) = (A↓u)·(A↓u′) (that is, A↓( )

is an A-shaped diagram in Cat), and further δAA ·(A↓u) = δAA′ (that is, δA( ) is a cocone
A↓( ) // A). Now let f : B // A be a functor. For each object B of B it induces
a functor B↓B // A↓f (B) (namely, (Y, y) � // (f (Y), f (y)) and j � // f (j)), which we
denote by f↓B. We have (A↓f (v))·(f↓B′) = (f↓B)·(B↓v) (that is, f↓( ) is a morphism
B↓( ) // A↓f (( )) of B-shaped diagrams), and further δAf (B)·(f↓B) = f ·δBB (that is, f↓( )

and f together are a morphism of cocones). Moreover, for each category A and each object
A ∈ A we have 1A↓A = 1A↓A, and for each composable pair of functors C h // B f // A
and each object C ∈ C we have f ·h↓C = (f↓h(C))·(h↓C). A functor f is an (ordinary)
discrete fibration precisely if all the f↓B are invertible. All the functors δAA are discrete
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fibrations.
We are even more interested in categories over Čat, the category made up as follows.

An object A is a (small) represented category, that is, a category together with a dis-
tinguished terminal object, called its representation (abbreviation: repr.) and denoted by
TA. A morphism f : B // A is simply a functor; the unique morphism f (TB) // TA
will be denoted by !f . If !f is an identity, we call f (strictly) repr. preserving . If !f is
merely invertible, that is, if f preserves terminality (as an ordinary functor), we call f
weakly repr. preserving . A strict or weak inverse of a strictly or weakly repr.-preserving
functor (that in addition is an isomorphism or an equivalence) is also strictly or weakly
repr. preserving, respectively.

What has been said about slicing with respect to Cat can be said as well with respect
to Čat, with the following addenda. We view A↓A as being represented by (A, 1A). The
functor δAA is weakly repr. preserving precisely if A is terminal in A, and it is (strictly)
repr. preserving precisely if A is the repr. of A. All the functors f↓B are repr. preserving.

We call a morphism in a category over Čat strictly or weakly repr. preserving if it lies
above a strictly or weakly repr.-preserving functor, respectively. We call a morphism in a
category over Cat a discrete fibration if it is cartesian above an ordinary discrete fibration.
Owing to the projection Čat // Cat (forgetting repr.s), every category over Čat can be
regarded as a category over Cat.

Let (A , P ) be a category over Čat. Let A be an object of A , and let X be an object
of PA. By a slice object of objects over X we mean a cartesian up-to-repr.-preserving-
isomorphism lifting of δPAX for A. Explicitly, this consists of an object A↓X of A , a
morphism δAX : A↓X // A, and a repr.-preserving invertible functor εAX : P (A↓X) ' //

PA↓X with PδAX = δPAX ·εAX , such that for any object B of A , any morphism f : B // A,
and any functor g′ : PB // PA↓X with δPAX ·g′ = Pf , there is a unique morphism
g : B // A↓X with δAX ·g = f and εAX ·Pg = g′. We may also more vividly call A↓X on
its own a slice object and δAX the associated projection; to εAX we continue to refer as the
skewness. The notation introduced here, pretending dependence on just (A and) X, has
to be used with caution: while a slice object of objects over X is unique up to a unique
repr.-preserving (iso-)morphism, we shall encounter situations in which two of them can
differ in a way relevant to us. There always is a slice object of objects over the repr. TPA,
namely (A, 1A, (δ

PA
TPA

)−1).

A slicing site is a category A together with a functor P : A // Čat that admits
cartesian up-to-repr.-preserving-isomorphism liftings of all slice-category projections; in
other words, a category over Čat in which all slice objects exist. If a particular slice object
(A↓X, δAX , εAX) has been singled out for every combination of A ∈ A and X ∈ PA (as is
possible using the axiom of choice), we speak of a global choice of slice objects. If this
has been done such that always (A↓TPA, δATPA , ε

A
TPA

) = (A, 1A, (δ
PA
TPA

)−1), we call the choice
normal .

Let (A , P ) be a slicing site. Given an object A of A and a morphism u : X′ // X in
PA, we define a morphism A↓u : A↓X′ // A↓X by demanding that δAX ·(A↓u) = δAX′ and
εAX ·P (A↓u) = (PA↓u)·εAX′ . Given a morphism f : B // A in A and an object Y of PB,
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we define a morphism f↓Y : B↓Y // A↓Pf (Y) by demanding that δAPf (Y)·(f↓Y) = f ·δBY
and εAPf (Y)·P (f↓Y) = (Pf↓Y)·εBY . All the stated facts on slicing with respect to Čat have

obvious analogues for slicing with respect to (A , P ).
The one example of a slicing site to keep in mind in order to understand the present

work is Čat, viewed as a category over itself by means of the identity functor.

The slice-object factorization

Any functor f : B // A of represented categories can be factored as

B
fT // A↓X δAX // A, (3)

where X = f (TB), and fT is the functor making the assignments Y � // (f (Y), f (!Y))
(where !Y is the unique morphism Y // TB) and v � // f (v). This is another property
passed on to arbitrary slicing sites. Explicitly, for a slicing site (A , P ) any morphism
f : B // A in A can be factored as (3), where X = Pf (TPB), and fT is the morphism
determined by this very factorization and the equation εAX ·PfT = (Pf)T. (In either case
we can alternatively define fT by putting fT := (f↓TB)·(δPBTB

)−1.) We notice that the
right factor δAX is a discrete fibration and the left factor fT is repr. preserving. So every
morphism in a slicing site can be factored into a repr.-preserving morphism and a discrete
fibration.

Do the class of repr.-preserving morphisms and the class of discrete fibrations form a
factorization system? No, not in general: an invertible functor between categories with
more than one terminal object cannot map every potential repr. of the domain to every
potential repr. of the range; and so (F6)l fails to hold true in Čat. This said, we can still
consider the remaining entries in our list. Conditions (F1), (F2), (F3) and (F6)r are easily
verified. The observation that (F4) holds true has initiated this discussion. This leaves
us with (F5). Here we base our verification on a fact that comes in handy at other points
of this work as well.

1.1. Lemma. Let (A , P ) be a category over Cat. Let f and r be two morphisms in A
with common range, the latter a discrete fibration:

B

A.

��
r
��

C
f
//

g
??

(4)

Let Y be an object of PB, and let Z be a terminal object of PC satisfying Pf (Z) = Pr(Y)
in PA. There is precisely one morphism g as shown, rendering the triangle commutative
and satisfying Pg(Z) = Y.

We foremost have in mind the situation in which (A , P ) is a category over Čat and
Z = TPC .

Proof. The statement with the premiss that (A , P ) be a category with slicing is proved
in [9]. Apply this variant to the image of (4) in Cat and then use the cartesianness of r.



SLICING SITES AND SEMIREPLETE FACTORIZATION SYSTEMS 497

The lemma has a symmetric variant, obtained by adding to the premiss that also f
be a discrete fibration and also Y be terminal and to the conclusion that (the unique) g
is invertible. Here is a neat little consequence.

1.2. Corollary. Let (A , P ) be a category over Čat. A morphism f : C // A in A is
the projection associated with a slice object of objects over an object X of PA if and only
if f is a discrete fibration with Pf (TPC) = X. The skewness is uniquely determined.

Proof. The necessity of the condition is clear. As for sufficiency and uniqueness of the
skewness, apply the symmetric variant of the lemma to Pf and δPAX .

We are now ready to verify that a slicing site (A , P ) satisfies (F5). Consider a commut-
ative square (1) in A . Put Y = Ph(TPD). Since Pf (TPC) = Pf ·Pl(TPD) = Pr·Ph(TPD),
we can apply the lemma (existence) to f to obtain g : C // B such that r·g = f and
Pg(TPC) = Y. Since then r·(g·l) = f ·l = r·h and P (g·l)(TPD) = Pg(TPC) = Y =
Ph(TPD), we can apply the lemma (uniqueness) to f ·l = r·h to obtain g·l = h. Now
suppose that g̃ satisfies g̃·l = h and r·g̃ = f . The former equality implies P g̃(TPC) = Y,
which together with the latter shows that we can apply the lemma (uniqueness) to f to
obtain g̃ = g.

Semirepleteness

So the negative answer to our question can be given a positive supplement: apart from
(F6)l all the above conditions on a factorization system are satisfied by the repr.-preserving
morphisms and the discrete fibrations in a slicing site. The search for a vocabulary to
describe what we are seeing has convinced me of the need to redefine the term already
in use (thus extorting an outright positive answer). In the present work, we take ‘fac-
torization system’ to be axiomatized merely by conditions (F1–5). We drop the entire
condition (F6) for self-duality. A factorization system satisfying (F6)l or (F6)r will be
called left semireplete or right semireplete, respectively. A factorization system in the
standard sense (that is, satisfying (F6)l and (F6)r) will be called replete.

In the list of axioms just made official, no entry is entirely superfluous. In each of the
six instances of a closure condition, there is a counterexample that in a certain sense is
universal. The ones for (F1)l, (F2)l, (F3)l are the categories with underlying graphs

•

•

WW ��

UU

JJ ��

,






��GG GG
•

•
•vv
(( ((

((

66 66

��KK KK

SS ����

TT

JJ JJ ��

,
				

•

•
•vv
(( ((

(( ((

66 66

��KK KK

SS ����

TT

JJ ��

.
		

We now have to distinguish between the two morphism classes A × and L ∩ R. As
the reader will have guessed, we call the elements of the latter both-sided morphisms and
represent them graphically by the symbol ‘ // // //’ (as has already happened). The argument
showing that L ∩R ⊆ A × still goes through. Moreover, by the respective halves of (F1)



498 THORSTEN PALM

and (F3) L and R, and therefore L∩R, are closed with respect to inversion. So L∩R is
an all-object subgroupoid of A . By (F3) a morphism g as in the conclusion of (F5)′ has
to be both-sided; so (L,R)-factorizations are unique up to unique both-sided morphisms.
This variant of (F5)′ on its own can in fact replace (F3) and (F5) together in our list of
axioms. (In conjunction with (F1)r and (F1)l it implies (F3)′l and (F3)′r, respectively.)

The inclusions ⊥L ⊆ R and R⊥ ⊆ L are now false in general. Their standard proof
gets stuck after establishing ⊥L ⊆ R·(A × ∩L) and R⊥ ⊆ (A × ∩R)·L. The converses of
these two inclusions quite clearly hold true, so that in fact

⊥L = R·(A × ∩ L) and R⊥ = (A × ∩R)·L. (5)

We call the elements of R⊥ weakly left morphisms and the elements of ⊥L weakly right
morphisms . We have all but seen that also (R⊥,R), (L, ⊥L) and (R⊥, ⊥L) are factoriza-
tion systems; more particularly, a left-semireplete, a right-semireplete and a replete one,
respectively. We may call them the left semirepletion, the right semirepletion and the
repletion of (L,R).

Let us briefly look at a special case. For two classes L and R of morphisms in A , any
two of the conditions ‘R = A ’, ‘L is an all-object subgroupoid’ and ‘(L,R) is a right-
semireplete factorization system’ imply the third. If they all hold true, then the (left
semi-)repletion of (L,R) is (A ×,A ). (Proofs: exercise.) A noteworthy instance of such
an (L,R) is (A 0,A ).

We have seen that in a slicing site, the repr.-preserving morphisms and the discrete
fibrations are the left morphisms and the right morphisms, respectively, for a right-semire-
plete factorization system. Furthermore we can easily check that the associated weakly
left morphisms are the weakly repr.-preserving ones. Now, in dealing with the repletion,
we can ignore repr.s. In other words, instead of Čat we may as well consider the full sub-
category of Cat whose objects are those categories that merely possess terminal objects.
Let us denote this by Cat(×) (following a pattern that will become clearer in section 3).
We infer that Cat(×) carries a replete factorization system whose right morphisms are the
discrete fibrations and whose left morphisms are those functors that preserve terminality.
This is in fact induced by a replete factorization system on the whole of Cat, namely
the one today known as the comprehensive factorization system (and which had its first
public appearance, in the form of its opposite, in [13]): here the right morphisms are the
discrete fibrations and the left morphisms are those functors that are final.

The present concept of a factorization system is perhaps the most reasonable common
generalization of the standard one and that of a strict factorization system, which was
introduced in [4]. Whereas the former has the single additional requirement that the
all-object subgroupoid L ∩ R of A be the largest one, A ×, the latter has the single
additional requirement that that all-object subgroupoid be the smallest one, A 0. We can
safely retain the latter’s name, strictness now being a possible property of a factorization
system.

Remark. It is interesting to see how the same generalization can be achieved with certain
higher-level formulations of the notions. My main reference here is the article [11]. It
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shows strict factorization systems (on small categories) to amount to
• distributive laws of monads in the bicategory of (small) matrices with entries in Set.

In its last section it goes on to describe an adaption of this concept that is accordingly
related to replete factorization systems. To obtain arbitrary factorization systems
we can simply drop the last of the three requirements imposed there.
• strict algebras for the strict monad ( )2 on the 2-category Cat (of which in this

instance only the underlying 1-category is at issue). Shown in the earlier work [7]
was that, in the same manner, replete factorization systems amount to weak algebras
for the same monad. Arbitrary factorization systems in this manner amount to T-
weak algebras for the strict monad ( )2 on the locally stratified 2-category StrCat.
(See the last section of the present work to make sense of this statement.)

Semistrictness

We now know that slicing-site structures induce right-semireplete factorization systems.
What about the converse? That is, is every right-semireplete factorization system induced
by a slicing-site structure? Again the answer starts disappointingly: no, it is not. To see
why, consider the following condition.

(F7)l In a situation C
l0 // //

l1
// // B //r // A, if r·l0 = r·l1, then l0 = l1.

Suppose we have an arbitrary factorization system (L,R). The premiss of (F7)l

amounts to a commutative square

B

A,

��
r
��

C

B

l0 // //

l1 ���� ??
β ?? ??

//
r
//

to which (F5)′ and (F3) apply to yield β as shown, rendering the two triangles commut-
ative. To obtain the conclusion of (F7)l from here, all we need is for β to be the identity.
Thus condition (F7)l is equivalent to a weaker variant of itself:

(F7)′l For a right morphism r : B // // A and a both-sided automorphism β of B, if r·β = r,
then β = 1B.

Applying the uniqueness part of the lemma with Y = TPB, we see that (F7)l holds
true for slicing sites (in fact, for arbitrary categories over Čat). But (F7)l does not hold
true for arbitrary categories with right-semireplete, or even replete, factorization systems.
In fact, under just (F1–5) there is a universal counterexample which also satisfies (F6):
objects are A, B, C; morphisms are 1A : A // // // A, r : B // // A, g : C // A, βs : B // // // B
(s ∈ Z), ls : C // // B (s ∈ Z), 1C : C // // // C; composition is such that 1A, 1C are neutral
and that r·βs = r, r·ls = g, βt·βs = βs+t, βt·ls = ls−t.

A counterexample “occurring in nature” is Cat(×) with the factorization system of
terminality-preserving functors and discrete fibrations. (See above.) Take A to be the
category presented by

X T,x //i
&&

i ◦ i = 1X, x ◦ i = x



500 THORSTEN PALM

(the cyclic group of order 2, suspended, and a terminal object added). Take B to be the
slice category of objects over X, which is presented by

(X, 1X)

(X, i)

i,
��

i
HH

i ◦ i = 1(X,∗)

(the 2-object homogeneous category) and r to be the associated projection. Finally, take
β to be the autofunctor induced by i, which interchanges the two objects of B. Note that
we have selected the objects for minimality in size; all we actually needed was for some
automorphism group in A to be non-trivial.

We may render condition (F7)l by saying that an (L,R)-factorization is (strictly)
determined by its right half. This suggests that we call such a factorization system left
semistrict . Then the dual concept obviously receives the name ‘right semistrict ’. All this
fits quite well with the term ‘strict’ for what is the case that an individual factorization
is (strictly) determined entirely. Strict factorization systems are left and right semistrict,
but the converse of this statement is false.

Another way of rendering condition (F7)l is to say that the right morphisms are monic
relative to the left ones. Thus we instantly see that among the left-semistrict factorization
systems are all those standard (replete) ones where the right morphisms are (absolutely)
monic. It is not true that left semistrictness of a replete factorization system implies for
the right morphisms to be monic. A counterexample dear to me is provided by the slicing
site of polytopes and polytopic maps: polytopes have unique terminal objects, whence
the repleteness; but, for instance, the two polytopic maps to the monogon from the line
segment are discrete fibrations that are not monic, as witnessed by the two polytopic
maps to the line segment from the point. (See [9], section 4.)

From the left half of (5) one easily infers that if all right morphisms are monic relative
to all left ones, then so are all weakly right morphisms. Thus left semistrictness is indeed a
left condition, namely in the technical sense that its satisfaction by a factorization system
depends on the left-morphism class only.

For later reference we note that on any category A there are two extreme instances of
a factorization system that is both right semireplete and left semistrict, namely (A 0,A )
and (A ,A ×).

Remark. An anonymous reviewer has pointed out to me the recent paper [2], in which
the repleteness versions of (F7)′l and (F7)′r make explicit appearances. Its subject belongs
to the realm of abstract homotopy theory. The reader will recall that a Reedy structure
on a small category A allows a certain way of promoting a model-category structure
from a given complete and cocomplete category K to the functor category K A . Put
in present terms, a Reedy structure is a factorization system (L,R) that is strict and
replete (so that the only morphisms invertible in A are the identities), and for which
there are conservative functors Lop // Ω and R // Ω agreeing on objects (Ω being the
well-ordered class of all ordinals). The paper shows how the purpose stated, at least as
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far as cofibrantly generated model categories are concerned, is met under more general
conditions, namely with strictness replaced by right semistrictness.

For the benefit of the reader I wrap up the main results obtained thus far.

1.3. Theorem. For a slicing site, the class of repr.-preserving morphisms and the class
of discrete fibrations form a left-semistrict right-semireplete factorization system.

The converse

If we adjust our question above to take left semistrictness into account, the answer becomes
positive. Explicitly: any left-semistrict right-semireplete factorization system is induced
by a slicing-site structure. We now go about proving this fact.

Let A be a category equipped with a left-semistrict right-semireplete factorization
system (L,R). We are going to construct a functor P : A // Čat that will turn out to
possess all the desired properties.

Let A be an object of A . We consider the category R↓A, the slice category over
the right-morphism category R; by (F3)r it is full as a subcategory of A ↓A, the slice
category over A itself. We further consider both-sided isomorphism as an equivalence
relation among the objects of R↓A. (Two objects (X0, x0) and (X1, x1) are both-sidedly
isomorphic if there is a both-sided isomorphism ξ in A rendering the triangle

A

X0

X1

''x0 ''OOO

77
x1

77ooo

��
ξ ���� (6)

commutative.) We choose a representative system and form the associated full subcat-
egory. (In other words, we choose a skeleton with respect to both-sided isomorphism.) We
define PA to be this category, represented by the only both-sided morphism among its
objects. We use brackets to indicate that an object or morphism of R↓A is considered as
an object or morphism of PA. So a typical object of PA appears as [X, x] (where X ∈ A
and x : X // // A chosen), and a typical morphism [X ′, x′] // [X, x] in PA appears as [u]
(where u : X ′ // // X with x·u = x′).

(The foundationally minded reader will have noticed that this “construction” makes
blatant use of the axiom of choice. We could have avoided this in a fairly obvious way by
expressing PA as a quotient rather than a part of R↓A: by left semistrictness, the ξ as
of (6) are uniquely determined; that is, the both-sided isomorphisms form an essentially
discrete all-object subgroupoid and can therefore be “divided out” by. The disadvantages
of this more cautious approach are the necessity to deal head-on with those issues that
here fall under the caption ‘well-definedness’ and, clinching the matter, the lack of a
generalization as described in section 3.)

The totality of choices made here will become a global choice of slice objects. In the
present context we refer to it as a global choice of right factors .
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Among all factorizations r·l of a given morphism to A that exist by (F4), there is
precisely one for which r appears as an object of PA. Let us call it the preferred fac-
torization. (We have uniqueness of r by construction and, then, uniqueness of l by left
semistrictness.)

Now let f : B // A be a morphism in A ; we wish to exhibit a functor Pf : PB //

PA. For an object [Y, y] of PB, take the preferred factorization x·l of f ·y, visualized by
the commutative square

Y B

X A,

// y //

f
��l ����

//x //

(7)

and put Pf ([Y, y]) := [X, x]. For a morphism [v] : [Y ′, y′] // [Y, y], take the unique
morphism u rendering the wedge

Y ′

Y

B

X ′

X

A

66 y
66mmmm

** y′

**VVVVVVV
��
v ��1

111

f

��
l

����

l′

����

66 x
66mmmm

** x′

**VVVVVVV
��
u ��

(8)

commutative, and put Pf ([v]) := [u]. Clearly these specifications make Pf a functor.
We now have to establish that P itself is a functor A // Čat. We start by examining

the action of the images on objects. For the nullary instance, let A ∈ A and [X, x] ∈ PA.
The preferred factorization of 1A·x has to be x·1X ; thus P1A([X, x]) = [X, x]. For the
binary instance, let C h // B f // A ∈ A and [Z, z] ∈ PC. Consider the preferred
factorizations y·n of h·z and x·l of f ·y, visualized by the stack of two commutative squares

C

B

A.

Z

Y

X

h
��

f
��

n ����

l ����

// z //

// y //

//x //

(9)

The preferred factorization of (f ·h)·z has to be x·(l·n); thus P (f ·h)([Z, z]) = [X, x] =
Pf ([Y, y]) = Pf ·Ph([Z, z]). The excess information, concerning the left halves of the pre-
ferred factorizations in question, has its use in the examination of the action on morphisms,
which, this said, can be considered done.

Before we investigate whether the functor P constitutes a slicing-site structure, we
show that it induces the correct morphism classes. We can readily see that the left
morphisms are precisely the repr.-preserving ones: if in (7) y is left, then so is x precisely
if so is f . More work is involved in showing that the right morphisms are precisely the
discrete fibrations.
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As for the forward implication, suppose that f : B // A is a right morphism.
We first show that Pf is a discrete fibration. So let [Y, y] ∈ PB, and let [u] : [X ′, x′] //

[X, x] = Pf ([Y, y]) ∈ PA:

Y

B

X ′

X

A.

66 y
66mmmm

f

��
l

���� 66 x
66mmmm

** x′

**VVVVVVV
��
u ��1

111

We have to show that there is a unique way of completing this figure to become (8).
Suppose temporarily the completion carried out. Since f is right, l and l′ are both-
sided. So v = l−1·u·l′, and y′·l′−1 is the preferred factorization of y·l−1·u. This verifies
uniqueness, and it yields the construction that all but immediately verifies existence.

Now we show that f is cartesian with respect to P . Let g : C // A ∈ A , and let
h′ : PC // PB ∈ Čat with Pf ·h′ = Pg. Consider the repr. TPC =: [Z, z] of PC. Put
h′(TPC) =: [Y, y]; then Pf ([Y, y]) = Pg(TPC) =: [X, x]:

C

B

A.

Z

Y

X

// z // //

// y //

//x //

��
f
��

��
l ����

h
��

n ����

g

��
m
����

Let h : C // B with Ph = h′ and f ·h = g. The former equation, applied to TPC ,
yields n ∈ L with y·n = h·z, and from the latter equation we further infer using left
semistrictness that l·n = m. Thus n = l−1·m and h = y·n·z−1. This verifies uniqueness.
Conversely, suppose n and h given by these equations. Then firstly f ·h = x·m·z−1 = g.
Secondly Ph(TPC) = [Y, y], and applying the lemma (uniqueness) to Čat we obtain Ph =
h′. This verifies existence.

As for the backward implication, suppose that g : C // A is a discrete fibration.
Consider its preferred factorization C h // // B //f // A. By what we have already shown, f is
a discrete fibration as well, and h is repr. preserving, whence Pg(TPC) = Pf (TPB). We
now apply the symmetrization of the lemma to find that h is invertible. Thus h is a right
morphism, and hence so is f ·h = g.

We can now quickly show that (A , P ) is indeed a slicing site. Let A be an object of
A , and let [X, x] be an object of PA. By the corollary to the lemma all we have to do is
to exhibit a discrete fibration f : B // // A such that Pf (TPB) = [X, x]. Here it is: take
B = X and f = x.

Well-poweringness

The reader will object that we have neglected the question of size: the represented cat-
egories PA have to be small in order to belong to Čat. In my response I am going to go
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slightly afield. We are working on the basis of some form of set theory, ‘small’ signifying
membership in a universe U singled out at the beginning. Now, practically this entire
paper can be reinterpreted by detaching the term ‘small’ from any condition (so that it
becomes redundant). Then a category of all small things of a given kind, such as Cat or
Čat, will not exist barring the use of proper classes; but neither does it have to, since
what we wish to distinguish among are functors to it (from necessarily small categories),
and these can be appropriately defined and then handled just as they are otherwise. Thus
we obtain a purely structural concept of a slicing site. All size-related snags can simply
be ignored; the disputed argument will go through as stated. If I have eschewed this
interpretation, this is mostly because I wish to retain the correspondence with categories
with slicing, which (except for the trivial one) cannot be small either. Then of course the
reader’s objection is valid; it will be addressed shortly.

In the meantime we note a genuine point of the foregoing considerations. We may look
at both concepts of a slicing site in parallel; let us use the terms ‘slicing site relative to U’
and ‘absolute slicing site’ for distinction. Since U is closed with respect to the formation
of slice categories, a slicing site relative to U is precisely an absolute slicing site whose
structural functor maps into U. This will be useful on certain occasions, when a requisite
smallness can be established via a partial ‘everything small’ reinterpration.

The promised treatment of the size question consists in a definition. If indeed all the
PA are small we call (L,R) well-powering . Several remarks have to be annexed. To
account for the option of relabelling elements we take ‘small’ in this context to mean:
being isomorphic to (rather than itself being) a member of U. Then it is clear that we
have well-definedness; the condition is equivalent to the R↓A having small-many (right)
morphisms between each two objects and small-many both-sided-isomorphism classes.
All the statements actually involved in this definition apply to arbitrary (not just left-
semistrict right-semireplete) factorization systems. A final comment concerns the name.
This is based on the one in use for the paradigmatic case of a replete factorization system
(L,R), namely with R the class of monomorphisms: here if the condition is satisfied the
carrying category A is called well-powered .

For any category A whatsoever the factorization system (A ,A ×) (for which PA ' 1)
is well-powering. In order that all factorization systems on a given category A be well-
powering it is sufficient, and because of the instance (A 0,A ) (for which PA ' A ↓A) also
necessary, that A be initially small , meaning that all slice categories over A are small.

For A to be initially small it suffices that the object sets of the A ↓A be small, that
is, that there be only small-many morphisms to each object. More generally, for a left-
semistrict factorization system (L,R) on A to be well-powering it suffices that that the
object sets of the associated PA be small , that is, that there be only small-many both-
sided-isomorphism classes of right morphisms to each object. Let us prove this from first
principles. Assuming the object set of every PA small, we have to show that every hom-set
of every PA is small as well. In fact, given A ∈ A and [X, x], [X ′, x′] ∈ PA we show that
the evident map from the set of morphisms [X ′, x′] // [X, x] to the set of objects of PX is
injective: any two elements [u0] and [u1] of the former agree if qua (X ′, u0), (X ′, u1) ∈ R↓X
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they are represented by the same element of the latter. Indeed, there then is a both-sided
automorphism ξ′ of X ′ such that u1·ξ′ = u0; hence x′·ξ′ = x·u1·ξ′ = x·u0 = x′; hence by
left semistrictness ξ′ = 1X′ ; hence u1 = u0.

This subsection closes with some more assorted facts. Well-poweringness is another left
condition: by the left half of (5) any object of ⊥L↓A has a left isomorphism to some object
of R↓A, so that in fact PA, up to repr.-preserving isomorphism, does not depend on the
R accompanying L. The factorization system associated with a slicing site (theorem 1.3)
is well-powering: this will follow from the ‘everything small’ interpretation of the proof
of theorem 1.4 (uniqueness). If a factorization system (L,R) is well-powering, and the
connected components of its both-sided-isomorphism groupoid L∩R are small, then, and
only then, its right-morphism category R is initially small.

Here is the whole of what we are intending to show.

1.4. Theorem. Any well-powering left-semistrict right-semireplete factorization system
is induced in the manner of theorem 1.3 by a slicing-site structure, unique up to a unique
repr.-preserving (invertible) natural transformation.

The existence part has been dealt with. Uniqueness will be established in the course
of a more general examination; a strategy that will become subject to iteration.

Note that the uniqueness statement is the best one can hope for, considering the rather
evident fact that if P is a slicing-site structure inducing (L,R), then so is every functor
repr.-preservingly isomorphic to P .

Higher-cell lemmata

1.5. Lemma. Let (A , P ) be a slicing site, and let Q be an arbitrary functor A // Čat.
There is a laxly natural transformation P // Q that is weakly repr. preserving and weakly
natural on discrete fibrations. It is unique up to a unique (invertible) modification.

The reader will have noticed that this is the first major reference to the 2nd dimension of
Čat (or Cat for that matter), which is made up of all pertinent natural transformations.
The meaning of ‘weakly repr. preserving’ here is governed by the stipulation that an
adjective describing a transformation and not otherwise defined is to be understood with
the addition ‘on objects’ and thus refers to the 1-dimensional components. (So for χ :
P // Q to be strictly or weakly repr. preserving is for all χA : PA // QA to be strictly
or weakly repr. preserving, respectively.)

Proof. Having made a global choice of slice objects, we construct a transformation χ as
announced.

First, let A be an object of A ; we have to exhibit a weakly repr.-preserving functor
χA : PA // QA. For X ∈ PA, we put χA(X) := QδAX (TQ(A↓X)) ∈ QA. For u : X′ //

X ∈ PA, we put χA(u) := QδAX (!Q(A↓u)) : QδAX′ (TQ(A↓X′)) // QδAX (TQ(A↓X)) ∈ QA. The
functoriality of χA is evident. If X = TPA, then δAX is invertible, and hence χA(X) is
terminal; thus, χA is weakly repr. preserving.
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Second, let f : B // A be a morphism in A ; we have to exhibit a natural transform-
ation χf : Qf ·χB // χA·Pf :

PB

PA

QB

QA.

χB //

χA //

Pf
��

Qf
��

χf
�����

For Y ∈ PB, say with Pf -image X ∈ PA, we wish to define a morphism χf (Y) between
the two objects

Qf ·χB (Y) = Qf ·QδBY (TQ(B↓Y)) = QδAX ·Q(f↓Y)(TQ(B↓Y))

and
χA·Pf (Y) = χA(X) = QδAX (TQ(A↓X));

we do so by putting χf (Y) := QδAX (!Q(f↓Y)). For v : Y′ // Y ∈ PB, say with Pf -image
u : X′ // X ∈ PA, we have

χA·Pf (v) ◦ χf (Y′) = χA(u) ◦QδAX′ (!Q(f↓Y′))

= QδAX (!Q(A↓u)) ◦QδAX ·Q(A↓u)(!Q(f↓Y′))

= QδAX (!Q(A↓u)·Q(f↓Y′))

= QδAX (!Q(f↓Y)·Q(B↓v))

= QδAX (!Q(f↓Y)) ◦QδAX ·Q(f↓Y)(!Q(B↓v))

= QδAX (!Q(f↓Y)) ◦Qf ·QδBY (!Q(B↓v))

= χf (Y) ◦Qf ·χB (v);

this shows naturality. If f is a discrete fibration, then f↓Y is invertible, hence so is !Q(f↓Y),
hence so is χf (Y).

Third and last, we have to verify compatibility with composition preservation. As for
the nullary instance, let A be an object of A . For X ∈ PA we find

1χA (X) = 1χA(X) = 1QδAX (TQ(A↓X))
= QδAX (!Q1A↓X) = QδAX (!Q(1A↓X)) = χ1A(X).

As for the binary instance, let C h // B f // A be a composable pair of morphisms in A .
We have to show that

PC QC

PA QA

χC //

χA //

PB QB
χB //

Ph
��

Qh
��

Pf
��

Qf
��

χh
�����

χf
�����

PC QC

PA QA.

χC //

χA //

P (f ·h)
��

Q(f ·h)

��

χ(f ·h)

������=
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For Z ∈ PC we set Ph(Z) =: Y and Pf (Y) =: X and find

(χf ·Ph ◦Qf ·χh)(Z) = χf ·Ph(Z) ◦Qf ·χh(Z)

= χf (Y) ◦Qf ·QδBY (!Q(h↓Z))

= QδAX (!Q(f↓Y)) ◦QδAX ·Q(f↓Y)(!Q(h↓Z))

= QδAX (!Q(f↓Y)·Q(h↓Z))

= QδAX (!Q(f ·h↓Z))

= χ(f ·h)(Z).

We now encounter the “iteration” mentioned above.

1.6. Lemma. Let (A , P ) be a slicing site; let Q be a functor A // Čat; let φ and
ψ be two laxly natural transformations P // Q, the former weakly natural on discrete
fibrations, the latter weakly repr. preserving. There is a unique modification φ // ψ.

The symmetric variant of this lemma (with respect to φ and ψ) is the uniqueness part
of the one we are proving.

Proof of lemma 1.6. We first show uniqueness; hence we obtain the construction to
show existence.

Let m : φ // ψ be a modification; we wish to exhibit a formula expressing its com-
ponents in terms not involving itself. Let A be an object of A . Since by assumption ψA is
weakly repr. preserving, ψA(TPA) is terminal in QA, and so there is precisely one morph-
ism φA(TPA) // ψA(TPA); thus mA(TPA) is determined. To have some handy notation,
let us, for morphisms f0 and f1 in Čat with the same range and with the latter weakly
repr. preserving, put (!f1)

−1 =: !f1 and !f1 ◦ !f0 =: !f1f0 ; we just saw that mA(TPA) = !ψAφA . An

arbitrary object X ∈ PA comes about as PδAX (TP (A↓X)). The compatibility-with-naturality
condition on m, applied to δAX : A↓X // A, reads

mA·PδAX ◦ φδAX = ψδAX ◦QδAX ·mA↓X.

We precompose with the inverse of φδAX , which exists by assumption, and evaluate at
TP (A↓X), to obtain

mA(X) = ψδAX (TP (A↓X)) ◦QδAX (!
ψA↓X
φA↓X

) ◦ (φδAX )−1(TP (A↓X)). (10)

Thus we have indeed “solved for m”.
Conversely, let mA(X) : φA(X) // ψA(X) be given by (10).
We first have to show that each mA is a natural transformation φA // ψA. An

arbitrary morphism u : X′ // X ∈ PA comes about as PδAX (!P (A↓u)). We have to verify
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commutativity of the outer rectangle of the diagram

φA(X′) ψA(X′)

φA(X) ψA(X)

Qx·φX (TPX) Qx·ψX (TPX)

Qx′·φX′ (TPX′) Qx′·ψX′ (TPX′)

Qx·φX ·Pu(TPX′) Qx·ψX ·Pu(TPX′)

mA(X′) //

mA(X)
//

φA(u)

��

ψA(u)

��

(φx)−1·Pu(TPX′ )
AAAAAAA

  AAAAAAA ψx·Pu(TPX′ )}}}}}}}

>>}}}}}}}

(φx′)−1(TPX′ )

,,XXXXXXXXXXXXXXXXX
ψx′(TPX′ )

22fffffffffffffffff

(φx)−1(TPX)

44iiiiiiiiiiiiii ψx(TPX) **UUUUUUUUUUUUUU

Qx·(φu)−1(TPX′ )

88rrrrrrrrr Qx·ψu(TPX′ ) &&LLLLLLLLLQx′(!
ψX′
φX′

)

//

Qx(!
ψX
φX

)
//

Qx·φX (!Pu)

��5555555555

Qx·ψX (!Pu)

��										

in QA, where we use the abbreviations (A↓X, δAX ) =: (X, x), (A↓X′, δAX′) =: (X ′, x′) and
A↓u =: u. The top and bottom quadrangles commute by definition of mA; the left
and right quadrangles commute by naturality of, respectively, φx and ψx; the top left
and right triangles commute by compatibility of, respectively, φ and ψ with composition
preservation; and the inner hexagon commutes since both paths yield Qx(!ψXφX ·Pu).

Now we have to show that m as a whole is compatible with the (lax) naturality of φ
and ψ. So let f : B // A be a morphism in A , and let Y be an object of PB. We have
to verify commutativity of the outer rectangle of the diagram

Qf ·φB (Y) Qf ·ψB (Y)

φA·Pf (Y) ψA·Pf (Y)

Q(f ·y)·φY (TPY ) Q(f ·y)·ψY (TPY )

Qx·φX (TPX) Qx·ψX (TPX)

Qf ·mB (Y) //

mA·Pf (Y)
//

φf (Y)

��

ψf (Y)

��

Qf ·(φy)−1(TPY )

))RRRRRRRRR Qf ·ψy(TPY ) 55lllllllll

(φx)−1(TPX)

55lllllllll ψx(TPX) ))RRRRRRRRR

Q(f ·y)(!
ψY
φY

)
//

Qx(!
ψX
φX

)

//

Qx·φl(TPY )

��

Qx·ψl(TPY )

��

in QA, where we use the abbreviations (B↓Y, δBY ) =: (Y, y), (A↓Pf (Y), δAPf (Y)) =: (X, x)
and f↓Y =: l. The top and bottom quadrangles commute by definition of m; the left and
right quadrangles commute by compatibility of, respectively, φ and ψ with composition
preservation; and the inner rectangle commutes since both paths yield Qx(!ψXQl·φY ).

Addenda to lemma 1.5

According to the uniqueness part of lemma 1.5 the transformation χ constructed in the
proof of the existence part is “weakly independent” of the global choice of slice objects
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made there. The reader will have noticed that we could have reduced the remaining lee-
way by insisting that this choice be normal: then χ would have come out strictly repr.
preserving. However, while this refinement would indeed strengthen the result, it would
also destroy the “symmetry” between the two properties of χ. The point will be made
clearer by the following addendum.

1.7. Proposition. For the construction in the proof of lemma 1.5, the following six
conditions are equivalent.

(i) Q respects repr.-preserving isomorphisms.
(ii) χ is (strictly) independent of the global choice of slice objects.
(iii) χ is (strictly) repr. preserving for all global choices of slice objects.
(iv) χ is (strictly) natural on discrete fibrations for all global choices of slice objects.
(v) χ is repr. preserving and natural on discrete fibrations for some global choice of slice

objects.
(vi) There is some laxly natural transformation P // Q that is repr. preserving and

natural on discrete fibrations.
Moreover, the transformation of (vi) is unique (and therefore equal to χ).

Proof. The equivalence segment follows the scheme

(i)

(ii)

(iii) (iv)

(v)

(vi)
{� ����
;C����

[c???? �#
???? ;C���� �#

????

{� ����[c????
(11)

clockwise, starting and finishing inside the bottom notch. Note that since every functor
respects isomorphisms, in order for (i) to hold true it suffices that the image of a repr.-
preserving isomorphism under Q is itself repr. preserving.

(i)⇒ (ii). As we are going to see, the assumption yields (iii) and (iv), and these two
properties determine χ.

(ii)⇒ (i). Let x : X // // // A be a repr.-preserving isomorphism. Make two global
choices of slice objects, one with (A↓TPA, δATPA) = (X, x), one with (A↓TPA, δATPA) =
(A, 1A). By assumption they lead to the same laxly natural transformation χ, and so
Qx(TQX) = χA(TPA) = TQA.

(i)⇒ (iii). δATPA is a repr.-preserving isomorphism, hence by assumption QδATPA is repr.
preserving, hence χA(TPA) = QδATPA (TQ(A↓TPA)) = TQA.

(iii)⇒ (i). Let x : X // // // A be a repr.-preserving isomorphism. Make a global choice
of slice objects with (A↓TPA, δATPA) = (X, x). We have Qx(TQX) = χA(TPA) = TQA, the
first equality by definition of χ, the second equality by assumption.

(i)⇒ (iv). Let f : B // // A be a discrete fibration. Then each f↓Y is a repr.-preserving
isomorphism, whence by assumption each Q(f↓Y) is repr. preserving, whence each !Q(f↓Y)

is an identity, whence so is each χf (Y) = QδAPf (Y)(!Q(f↓Y)).

(iv)⇒ (v) follows from our introductory remark.
(v)⇒ (vi) is tautological.
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(vi)⇒ (i). Denote the transformation assumed to exist by χ̃. Let f : B // // // A be
a repr.-preserving isomorphism. In particular f is a discrete fibration, and so Qf ·χ̃B =
χ̃A·Pf by assumption. The factors Pf , χ̃A and χ̃B are repr. preserving, the last two by
assumption, and hence so is Qf .

As for the uniqueness claim, we inspect the construction in the proof of lemma 1.6: if
both φ and ψ have the properties stated in (vi), then both (φδAX )−1 and ψδAX are identity
natural transformations, and both !φA↓X and !ψA↓X are identity morphisms in Q(A↓X); and
so m (defined by (10)) is an identity modification.

The part of the proof that follows the right-hand cycle of (11) has two analogues, left
for the reader to spell out, that yield the following results.

1.8. Proposition. For the construction in the proof of lemma 1.5, the following four
conditions are equivalent.

(i) Q preserves weak repr. preservation.
(iv) χ is weakly natural (on all of A ) for all global choices of slice objects.
(v) χ is weakly natural (on all of A ) for some global choice of slice objects.

(vi) There is some weakly repr.-preserving weakly natural transformation P // Q.

1.9. Proposition. For the construction in the proof of lemma 1.5, the following four
conditions are equivalent.

(i) Q preserves (strict) repr. preservation.
(iv) χ is natural for all global choices of slice objects.
(v) χ is repr. preserving and natural for some global choice of slice objects.

(vi) There is some repr.-preserving natural transformation P // Q.
Moreover, the transformation of (vi) is unique.

The latter proposition is of particular importance, as it allows us to swiftly complete
the proof of theorem 1.4. If the functor Q is a slicing-site structure inducing the
same factorization system on A , then in particular it preserves repr. preservation. So
there then is a unique repr.-preserving natural transformation P // Q.

We close this section with a summary of its main results.

1.10. Theorem. On any category the repr.-preserving-isomorphism classes of slicing-site
structures are in a specific one-to-one correspondence with the well-powering left-semistrict
right-semireplete factorization systems. Hence, on an initially small category the repr.-
preserving-isomorphism classes of slicing-site structures are in a one-to-one correspond-
ence with all left-semistrict right-semireplete factorization systems.

The word ‘specific’ is intended not just to refer to the construction given, but also to
convey independence of the choices made in its course. Thus the question of naturality
is evoked; it will be implicitly dealt with in the first half of the following section. The
answer to it is predictably positive, but first it has to be given a definite meaning. That is,
the two structure sets, one containing the classes of appropriate P , the other containing
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the appropriate (L,R), have to be interpreted as the respective values of two functors
at the given category A as object of the domain. The morphisms of this domain will
be the Grothendieck fibrations: they admit the pulling back of all slicing-site structures
by precomposition and of all left-semistrict right-semireplete factorization systems in the
manner of proposition 2.1; and they are the only functors to do the former.

2. Higher cells

The typical kind

We have seen how a slicing-site structure can be given as a left-semistrict right-semireplete
factorization system. The article [9] introduces not only slicing sites as individual entities,
but also the structure governing the totality of all slicing sites, which is a 2-category. In
this section we are going to see how the higher cells can be given directly in terms of the
factorization systems.

We start by reproducing the definitions. Let (A , P ) and (A ′, P ′) be two slicing sites.
A 1-cell from (A , P ) to (A ′, P ′) is a functor S : A // A ′ that preserves the cartesianness
of the slice-object projections in its domain, together with a repr.-preserving isomorphism
σ : P ' // P ′S:

Čat

A A ′.
S //

P
��44444444

P ′

��







σ
'
88ppp

Note that by proposition 1.9 (with Q = P ′S), σ is determined by S. Now let (S, σ) and
(T, τ) be two 1-cells from (A , P ) to (A ′, P ′). A 2-cell from (S, σ) to (T, τ) is a natural
transformation ν : S // T such that P ′ν·σ = τ :

Čat

A A ′
T

++

P
��44444444

P ′

��







S

33

σ
' 88ppp

ν
OO

Čat

A A ′.
T

++

P
��44444444

P ′

��







τ
'
88ppp= (12)

Since σ and τ are repr. preserving, so is ν. Conversely, again by proposition 1.9 (this time
with Q = P ′T ), any repr.-preserving natural transformation ν : S // T satisfies (12).
The task for 2-cells is thus already completed; on the 1-cells we have to dwell a bit longer.

Fix a 1-cell (S, σ) : (A , P ) // (A ′, P ′); we are going to derive further properties of
S.

By theorem 1.4 (uniqueness), the factorization system on A is determined by the one
on A ′ and the functor S. How can we describe it directly in these terms?

Regarding just leftness we have the following. The presence of the repr.-preserving
isomorphism σ implies that S preserves and reflects repr. preservation (the former by
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proposition 1.9, if you like): a morphism in A is repr. preserving precisely if so is its
image under S in A ′.

Regarding rightness we could now use the right semirepleteness of A ; instead we seek
a statement as similar as possible to the one just obtained. First note that the presence of
the isomorphism σ also implies that S preserves and reflects the property of lying above
a discrete fibration in Čat. This leaves us with the question of cartesianness. On the
one hand, we have seen that in a slicing site every discrete fibration plays the role of
a slice-object projection, the cartesianness of which we are demanding to be preserved.
Thus S respects discrete fibrations. (By corollary 1.2 it amounts to the same to say that
S respects slice-object projections. But we can say even more: owing to its preserving
repr., the natural transformation σ conveys the object “at which the slicing takes place”.
Explicitly, if (X, x) is a slice object of objects over X in A, then (SX, Sx) is a slice object
of objects over σA(X) in SA. This is a key feature of 1-cells.) On the other hand, it is
well known that the class of those functors with respect to which a given morphism is
cartesian has the “right” closure properties of section 1, in particular (F2)r and (F3)r. Put
precisely, in the situation A S // A ′ S′ // A ′′ a morphism in A whose image under S is
cartesian with respect to S ′ is itself cartesian with respect to S precisely if it is cartesian
with respect to S ′S (or any functor isomorphic to S ′S). Applied to our situation (take
A ′′ = Čat and S ′ = P ′) this yields that a morphism in A whose image under S is a
discrete fibration is one itself precisely if it is cartesian with respect to S. Taking into
account the preservation result, we conclude that a morphism in A is a discrete fibration
precisely if it is cartesian with respect to S above a discrete fibration in A ′.

From the cited closure properties it also follows that S admits cartesian up-to-repr.-
preserving-isomorphism liftings of discrete fibrations: for A ∈ A and f ′ : B′ // // SA ∈ A ′,
a cartesian up-to-repr.-preserving-isomorphism lifting of P ′f ′ along P is also a cartesian
up-to-repr.-preserving-isomorphism lifting of f ′ along S.

It will turn out that the factorization-related properties we have discovered character-
ize the functors we are interested in. In order to make this statement precise, we introduce
some terminology. Along the way we obtain a related result.

Let A and A ′ be two categories, the latter equipped with an (arbitrary) factorization
system. By a semifibration A // A ′ we shall mean a functor that admits cartesian
up-to-both-sided-isomorphism liftings of right morphisms. For instance, a Grothendieck
fibration to A ′ is precisely a semifibration with respect to (A ′0,A ′), and a Street fibration
to A ′ is precisely a semifibration with respect to (A ′×,A ′). In fact, a Grothendieck
fibration is a semifibration with respect to any factorization system on its range, and a
Street fibration is a semifibration with respect to any replete factorization system on its
range.

2.1. Proposition. Let A ′ be equipped with a factorization system (L′,R′), and let S :
A // A ′ be a semifibration. Take L to be the class of morphisms above those in L′, and
take R to be the class of morphisms cartesian above those in R′. (L,R) is a factorization
system on A . If (L′,R′) is left semireplete, right semireplete, left semistrict or well-
powering, then, respectively, so is (L,R).
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As far as replete factorization systems without additional properties are concerned,
the result is part of the category-theoretic “folklore”.

Proof. With the exception of (F4), all properties for a pair of morphism classes high-
lighted in section 1 carry over individually from (L′,R′) to (L,R), even without any
assumption on the functor S. I can safely leave the verification of these implications to
the reader. Nevertheless, as a sign of good will I consider explicitly the less familiar prop-
erty (F7)l. Suppose r·l0 = r·l1 in A with l0, l1 ∈ L and r ∈ R. Then Sr·Sl0 = Sr·Sl1 in
A ′, where Sl0, Sl1 ∈ L′ and Sr ∈ R′. So Sl0 = Sl1. By cartesianness of r it follows that
l0 = l1.

Next we consider (F4). Let g : C // A be a morphism in A . Its image Sg in A ′

has a factorization SC l′ // // B′ //r
′ // SA. Since S is a semifibration, r′ has a cartesian

up-to-both-sided-isomorphism lifting for A; that is, there are a cartesian r : B // A and
a β′ : SB // // // B′ such that r′·β′ = Sr. Cartesianness of r further yields an l : C // B
such that r·l = g and Sl = β′−1·l′. Since r′·β′ ∈ R′ and β′−1·l′ ∈ L′ we further conclude
that r ∈ R and l ∈ L.

Well-poweringness also carries over without any assumption on S: the reader will
easily construct a certain (repr.-preserving) functor σA : PA // P ′SA and show it to
be injective on objects (and full) and faithful. (Under the assumption stated it is in fact
invertible and could be obtained methodically via the ‘everything small’ interpretation
of what would supersede the following proposition in section 3. That proposition itself
covers the case of left semistrictness; right semirepleteness can be assumed without loss
of generality.)

The factorization system on A described here will be referred to as the one induced
by S.

Proposition 2.1 gives rise to an alternative proof of theorem 1.3, founded on having
already established the factorization system on Čat itself: slicing-site structures are pre-
cisely the semifibrations to Čat, and the associated factorization system of the theorem
is the induced one.

We can now present our result in a concise form.

2.2. Proposition. A functor between two slicing sites gives rise to a 1-cell as defined
above if and only if it is a semifibration inducing the factorization system of its domain.

Proof. Continue using the above notation, where now S is an arbitrary functor A //

A ′. We have seen that the condition is necessary. As for its sufficiency, note that it
implies (consider the preceding remark) that P ′S is a slicing-site structure inducing the
same factorization system on A as does P . Thus, by theorem 1.4, there is a repr.-
preserving isomorphism P ' P ′S.

Altogether we have obtained the following embellishment for theorem 1.10.

2.3. Theorem. There is a specific equivalence over Cat between the following two 2-
categories: that of slicing sites and higher cells as defined above; that of categories with
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well-powering left-semistrict right-semireplete factorization systems, semifibrations indu-
cing the factorization systems of their domains, and left natural transformations.

The all-inclusive kind

There will be little contention to the claim that the above definitions of higher cells of
slicing sites are “correct” according to category-theoretic principles. Nevertheless, in [10]
I shall have occasion to consider more general kinds of cells. Here is the salient example.
Let A be an arbitrary slicing site. Take A ′ to be the same category equipped with the
factorization system (A 0,A ), and take S to be the identity functor A // A ′. This
functor is of interest as it corresponds to the canonical embedding of the category with
slicing associated with A in a presheaf category. Yet it is a 1-cell in the above sense only
if A as well carries the factorization system (A 0,A ). In general it does not even have
the seemingly desirable property of preserving both-sidedness. The following paragraphs
deliver some thoughts on a class of cells that I hope contains all of the ones we shall ever
encounter.

In this subsection we take ‘slicing site’ to mean: category equipped with a well-
powering left-semistrict right-semireplete factorization system. For a slicing site A in
this sense, we have the actual slicing-site structure (in the sense conveyed elsewhere)
constructed towards theorem 1.4. Here we denote it by PA .

Let A and A ′ be two slicing sites. A 1-cell A // A ′ should be an arbitrary functor
S together with something that fills the 2-dimensional gap in

Čat

A A ′.
S //

PA

��44444444

PA ′

��








xx
? 88

But there is an outstanding such thing, namely the laxly natural transformation PA //

PA ′S, weakly left and weakly natural on right morphisms, constructed in the proof of
lemma 1.5. Here we denote it by χS. In fact, the construction depends on a global choice
of slice objects for (A , PA ); but this we take to be the global choice of right factors for A
already made in the construction of PA . Let me indicate the action of χS: for an object
A of A and an object [X, x] of PAA, take the preferred factorization of Sx, as displayed
in the diagram

SX

(S)X

SA;Sx //

`Sx
)) ))RRRRR

44 (S)x

44hhhhhhhhh

we have χSA([X, x]) = [(S)X, (S)x]. Note that replacing ‘Q’ and ‘χ’ with ‘S’ and ‘χS’ in
propositions 1.7, 1.8 and 1.9 leaves the statements valid.

Now let S and T be two functors A // A ′. Most generally, a 2-cell S // T should be
an arbitrary natural transformation ν together with something that fills the 3-dimensional
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gap in

Čat

A A ′
T

++

PA

��44444444

PA ′

��







S

33

χS

88ppp

ν
OO

Čat

A A ′.
T

++

PA

��44444444

PA ′

��







χT 88pppoo ? //

But, as before, there is an outstanding such thing. Since ν is natural, the left-hand side
inherits weak naturality on right morphisms from χS, and so by lemma 1.6 there is a
unique modification PA ′ν·χS // χT . We denote it by mν . It acts as follows: for an
object A of A and an object [X, x] of PAA, take the unique morphism ξ′ rendering the
diagram

SX

(S)X

SA

TX

(T )X

TA
(ν)X

Sx //

Tx //

`Sx
)) ))RRRRR

`Tx
)) ))RRRRR

44 (S)x

44hhhhhhhhh

44 (T )x

44hhhhhhhhh

νX

��

νA

��

����
--

(ν)x
--ZZZZZZZZZ

��ξ′ ��

commutative; we have mν
A([X, x]) = [ξ′] : [(ν)X, (ν)x] // [(T )X, (T )x]. From this we can

draw the following two conclusions:
• mν is invertible if and only if ν is weakly left;
• mν is an identity if and only if ν is left.

The former can also be derived more directly from the symmetrization of lemma 1.6. (The
same would be true for the latter and proposition 1.7, if we were assuming that T respect
both-sided isomorphisms. Without this assumption we depend on our global choice of
slice objects for A being the same in the constructions of χS and χT .)

How do the assignments P ( ), χ( ) and m( ) together behave towards composition? Let
A S // A ′ S′ // A ′′ be a composable pair of functors between slicing sites. We want
to compare the transformation associated with the composite with the composite of the
associated transformations:

Čat

A A ′ A ′′S // S′ //

PA

##GGGGGGGGGGG

PA ′′
{{wwwwwwwwwww

χS
′S

44jjjj

Čat

A A ′ A ′′.
S // S′ //

PA

##GGGGGGGGGGG

PA ′′
{{wwwwwwwwwww

PA ′

��

χS ??���
χS
′
44jjjjoo ? //

Again we can apply lemma 1.6: the right-hand side inherits weak leftness from χS and
χS
′
, and so there is a unique modification χS

′S // χS
′
S·χS. We denote it by cS,S

′
. It acts

as follows: cS,S
′

A maps an object [X, x] of PAA to the morphism [ξ′′] : [(S
′S)X, (S′S)x] //
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[(S
′)(S)X, (S′)(S)x] that arises as can be gathered from the diagram

S ′SX

S ′ (S)X
(S′)(S)X

(S′S)X

S ′SA.
S′Sx //

S′`Sx
-- S′ (S)x

22

`
S′ (S)x

.. .. 00
(S′)(S)x

44

`S′Sx ** ** 00
(S′S)x

88

44ξ
′′ 66

(13)

We have thus obtained a nullarily strict op-lax functor A � // (A , PA ) (etc.) over Cat
between two (by themselves rather insignificant) 2-categories. In the domain an object is
a slicing site, a 1-cell is a functor, and a 2-cell is a natural transformation. (As a mere
2-category over Cat the domain is equivalent to CAT itself.) In one possible range an
object is a category A together with a functor P : A // Čat, a 1-cell (A , P ) // (A ′, P ′)
is a functor S : A // A ′ together with a laxly natural transformation σ : P // P ′S,
and a 2-cell (S, σ) // (T, τ) is a natural transformation ν : S // T together with a
modification n : σ // P ′ν·τ . The various equalities making up the op-lax functoriality of
A � // (A , PA ) all are instances of the uniqueness part of lemma 1.6. By way of example,
let us look at naturality in the (diagrammatically) right argument of 0-composition. We
have to verify the equation mν′S·χS ◦ PA ′′ν ′S·cS,S′ = cS,T

′ ◦mν′S of modifications

Čat

A A ′ A ′′S //
T ′ ++

PA

##GGGGGGGGGGG

PA ′′
{{wwwwwwwwwww

S′
33

χS
′S

44iiii

DD

 ν′

Čat

A A ′ A ′′.
S //

T ′ ++

PA

##GGGGGGGGGGG

PA ′′
{{wwwwwwwwwww

PA ′

��

χS ??���
χT
′
44jjjj//

The source is weakly natural on right morphisms, while the target is weakly left.

If we want A � // (A , PA ) to be weak, so that we can obtain a bicategorical equival-
ence extending the 2-categorical one of theorem 2.3, we have to be more selective with
regard to 1-cells. There are two principal options: either we demand preservation of weak
leftness, or we demand preservation of rightness. This is made apparent by the following
two propositions.

2.4. Proposition. Let S ′ : A ′ // A ′′ be a functor between slicing sites. The following
three conditions are equivalent.

(i) S ′ respects weakly left morphisms.
(ii) cS,S

′
is invertible for all slicing sites A and all functors S : A // A ′.

(iii) cS,S
′

is invertible for all slicing sites A and all functors S : A // A ′ respecting
weakly left morphisms.

Proof. (ii)⇒ (iii) is tautological. If S ′ respects weakly left morphisms, then by pro-
position 1.8 χS

′
S is weakly natural; hence (i)⇒ (ii) follows from the symmetrization of

lemma 1.6. Now for (iii)⇒ (i). We are assuming that in (13) ξ′′ is invertible whenever S
preserves weak leftness. Take A to be 〈 • // x // • 〉, the free category on a single morphism,



SLICING SITES AND SEMIREPLETE FACTORIZATION SYSTEMS 517

declared right and denoted by x. Given a weakly left morphism f ′ in A ′, take S to be
the functor with Sx = f ′. Then the right factor (S)x is invertible; hence so is the image
S ′ (S)x; hence so is the right factor (S′)(S)x; hence so is the composite (S′)(S)x·ξ′′ = (S′S)x;
hence S ′f ′ = S ′Sx = (S′S)x·`S′Sx is a weakly left morphism.

2.5. Proposition. Let S : A // A ′ be a functor between slicing sites. Of the following
three conditions, each except the last implies the next. For initially small A ′ they are
equivalent.

(i) S respects right morphisms.
(ii) cS,S

′
is invertible for all slicing sites A ′′ and all functors S ′ : A ′ // A ′′.

(iii) cS,S
′

is invertible for all slicing sites A ′′ and all functors S ′ : A ′ // A ′′ respecting
right morphisms.

Proof. (ii)⇒ (iii) is tautological. If S respects right morphisms, then χS
′
S is weakly

natural on right morphisms; hence (i)⇒ (ii) follows from the symmetrization of lemma 1.6.
Now for (iii)⇒ (i). We are assuming that A ′ is initially small and that in (13) ξ′′ is
invertible whenever S ′ preserves rightness. Take A ′′ to be the category A ′ together
with the factorization system (A ′0,A ′), and take S ′ to be the identity functor. Let
f : B // // A be a right morphism in A ; we wish to show that Sf is a right morphism in
A ′. Consider the preferred factorization x·`f of f . Since the left factor `f , being right as
well, is invertible, so is S`f . Since Sf = Sx·S`f , this leaves us having to show that Sx is
a right morphism. `S′Sx and `S′ (S)x are identities, whence `Sx = S ′`Sx = ξ′′ is invertible,

whence Sx = (S)x·`Sx is right indeed.

I have not managed to prove any of the backward implications under a sensible weaker
assumption, such as for A ′ to be locally small. In general (ii)⇒ (i) is false, as shown by
the following counterexample. There is a category D (not locally small) with a morphism
i that itself is not invertible, but whose image under any functor to Set is. Hence its
image under any functor to any locally small category, in particular Čat, is invertible;
hence its image under any functor to a slicing site is weakly left. Take A ′ to be D with
the factorization system (D ,D×). Take A to be 〈 • // x // • 〉, and take S to be the functor
sending x to i. Then clearly S does not preserve rightness, and the reader will check that
in (13) ξ′′ is always invertible.

If we want A � // (A , PA ) to be strict, so that we can extend the 2-categorical
equivalence of theorem 2.3 as such, there are again two principal options: either we
demand preservation of strict leftness, or we demand preservation of rightness and both-
sidedness . The propositions accompanying this assessment are somewhat less appealing.

2.6. Proposition. Let S ′ : A ′ // A ′′ be a functor between slicing sites that respects
both-sided morphisms. The following three conditions are equivalent.

(i) S ′ respects left morphisms.
(ii) cS,S

′
is an identity for all slicing sites A and all functors S : A // A ′.

(iii) cS,S
′

is an identity for all slicing sites A and all functors S : A // A ′ respecting
left morphisms.
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(In fact, the premiss that S ′ preserve both-sidedness can be replaced with the weaker
but bulkier condition that S ′ preserve the both-sidedness of just those morphisms chosen
as the repr.s of the PAA. The latter holds true automatically provided the global choice
of right factors for A ′ is normal; so by making normality obligatory we could obtain a
perfect analogue of proposition 2.4.)

Proof. (ii)⇒ (iii) is tautological. If S ′ respects left morphisms, then S ′`Sx is left, whence
so is ξ′′; this shows (i)⇒ (ii). The proof of (iii)⇒ (i) is analogous to the one for proposi-
tion 2.4.

2.7. Proposition. Let S : A // A ′ be a functor between slicing sites. Of the following
three conditions, each except the last implies the next.

(i) S respects right morphisms.
(ii) cS,S

′
is an identity for all slicing sites A ′′ and all functors S ′ : A ′ // A ′′ respecting

both-sided morphisms.
(iii) cS,S

′
is an identity for all slicing sites A ′′ and all functors S ′ : A ′ // A ′′ respecting

right as well as both-sided morphisms.

Proof. For a last time (ii)⇒ (iii) is tautological. If S respects right morphisms, then
Sx is right, whence `Sx is both-sided. If in addition S ′ respects both-sided morphisms,
then S ′`Sx is both-sided, hence left, whence so is ξ′′. This shows (i)⇒ (ii).

A proof of a qualified (iii)⇒ (i) analogous to the one for proposition 2.5 is not available.
The obvious idea is to use (L′′,R′′) = (L′ ∩ R′,A ′) as the factorization system on A ′′,
where (L′,R′) is the given factorization system on A ′. It fails just because this (L′′,R′′)
in general is not left semistrict.

3. De-strictification

The generality of cells we considered in the latter half of section 2 rests on the 2nd di-
mension of Čat — except for that of the objects. It suggests itself to try to extend the
concept of a slicing site (A , P ) in a way that allows for P to be a weak functor. Of course
in doing so we should like to accordingly extend the little theory developed so far. And
this can indeed be done, as we shall see in this last section.

Working out this extension is a largely straigtforward task, albeit a tedious one; the
one difficulty is to find the proper set-up. A näıve approach, which will be considered in
a preliminary stage, leads to a theory that is merely analogous to the prior one and has
a defect of its own. The actual generalization will include the two as its extreme cases.

I am going to be terse on the formalities, leaving explicit proofs entirely to the reader.
I shall, on the other hand, devote considerable attention to the rationale behind the
definitions.



SLICING SITES AND SEMIREPLETE FACTORIZATION SYSTEMS 519

Weakness

The necessary adjustments in the shift from ‘strict’ to ‘weak’ can be subsumed by say-
ing that we have to give up our ‘up to isomorphism’ view on the underlying categories
in favour of an ‘up to equivalence’ one. Alas, we have actually been adopting an ‘up
to repr.-preserving isomorphism’ view, which should get supplanted by an ‘up to repr.-
preserving equivalence’ one, except that the latter notion is apparently ill-conceived, as a
weak inverse of a repr.-preserving functor is not necessarily repr. preserving itself. Thus
we see ourselves obliged to disregard repr.s altogether, putting all terminal objects on
equal footing; said shift will as well concern repr. preservation. The place of Čat can be
taken by the equivalent 2-category Cat(×).

This change of course squashes an important feature of our prior theory. If we nev-
ertheless follow the present line of thought, rather than rectify it at its origin, we do so
not least because the results it leads to have a special relevance: on the other side of the
correspondence left semistrictness is traded for left semirepleteness, so that what arises
are precisely factorization systems in the standard sense.

We proceed by adjusting the remaining ingredients in turn.

Cartesianness. For an ordinary functor P : A // K of categories, a morphism
f : B // A in A is cartesian precisely if for each g : C // A the induced map

(A ↓A)((C, g), (B, f)) // (K ↓PA)((PC, Pg), (PB, Pf)) (14)

is bijective. Accordingly, for a strict/weak functor P : A // K of 2-categories we call a
1-cell f : B // A strictly/weakly cartesian if for each g : C // A the induced functor (14),
with ‘↓’ replaced by ‘⇓0’/‘⇓×’, standing for the operation of forming the strict-/weak- slice
2-category, is strictly/weakly invertible (that is to say: is an isomorphism/equivalence).
(There being no general implication from strict to weak cartesianness, we had better speak
of, respectively, 2-categorical and bicategorical cartesianness, except that this terminology
later yields an even bigger mouthful.)

Let us make this condition explicit, restricting ourselves to the pertinent case of a
1-category A . Denote by K ◦α, where α is the symbol ‘0’/‘×’, the sub-2-category of
identity/invertible 2-cells in K . The strict/weak functor P has “composition preservat-
ors” with components P (0)

A : P1A // 1PA (A ∈ A ) and P (2)(h, f) : P (f ·h) // Pf ·Ph
(C h // B f // A ∈ A ) belonging to K ◦α. A morphism f : B // A in A is strictly/weakly
cartesian precisely if for each object C of A the following two conditions are satisfied.

(C1)α For any morphism g : C // B in A , any 1-cell h′ : PC // PB in K and any
2-cell v : Pg // Pf ·h′ in K ◦α there are, uniquely, a morphism h : C // B in A
with f ·h = g and a 2-cell w : Ph // h′ in K ◦α with Pf ·w ◦ P (2)(h, f) = v:

PA

PBPC

h′
))

Pg
!!BBBBBBBBBBB

Pf

��

Ph
11
<<zzz

XX11w

PA.

PBPC

h′
))

Pg
!!BBBBBBBBBBB

Pf

��

v EE���=
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(C2)α For any two 1-cells h′0 and h′1: PC // PB and any 2-cell w : h′0 // h′1 in K , if
Pf ·w is in K ◦α, then so is w itself.

Note that, firstly, (C1)α does not involve K as a whole, just its sub-2-category K ◦α, and,
secondly, (C2)α does not involve f itself, just its image Pf . Condition (C1)0 amounts
to f being cartesian with respect to P as an ordinary functor (to K ◦0, the 1-category
underlying K ).

In the case we have been studying both these 2-dimensional concepts can stand in for
the old 1-dimensional one. In order to make a general statement, we need the concept
of a discrete fibration in an arbitrary 2-category, which is inherited via covariant rep-
resentation: a 1-cell f ′ : B′ // A′ is a discrete fibration in K provided each functor
K (C ′, f ′) : K (C ′, B′) // K (C ′, A′) (C ′ ∈ K ) is an ordinary discrete fibration. If K
is a 2-category, A a 1-category, P : A // K a strict functor, and f a morphism in
A sent by P to a discrete fibration in K , then the following three conditions on f are
equivalent: weak cartesianness; strict cartesianness; cartesianness with respect to P as
an ordinary functor. It is interesting to note still a forth equivalent condition, namely
the conjunction of (C1)1 and (C2)1, with K ◦1 denoting K itself. Let me call it op-
lax cartesianness, as its evident generalization to arbitrary op-lax functors P is sensible.
(Thus the selection of directions for the invertible cells in the foregoing statements is
exposed as deliberate.) There does not, however, appear to be a sensible generalization
to arbitrary 2-categories A .

Remark. Strict cartesianness was considered in [5], under the name ‘2-cartesian’. Weak
cartesianness appears to be a new concept.

Skewness of liftings. For a functor P : A // K of categories, an up-to-isomorphism
lifting of f ′ : B′ // PA ∈ K for A ∈ A is precisely an object (B, f) of A ↓A together
with an isomorphism β′ : (P↓A)(B, f) ' // (B′, f ′) in K ↓PA. Accordingly, for a weak
functor P : A // K of 2-categories we call an up-to-equivalence lifting of f ′ for A an
object (B, f) of A ⇓×A together with an equivalence (β′, u) : (P⇓×A)(B, f) ≈ // (B′, f ′)
in K ⇓×PA, that is, an equivalence β′ : PB ≈ // B′ in K together with an invertible
2-cell u : Pf ' // f ′·β′.

Rightness of underlying functors. In accordance with the weakening of the lifting
requirements, the right-functor class has to be closed with respect to precomposition with
equivalences and locally saturated with respect to isomorphism. Applied to the class of
discrete (Grothendieck) fibrations the former operation forestalls the latter, as in fact all
desirable closures, yielding the class of essentially discrete (Street) fibrations, that is, of
those functors f : B // A for which all the induced functors f↓Y : B↓Y // A↓f (Y)
are equivalences. We note that above an essentially discrete fibration, weak and op-lax
cartesianness with respect to a weak functor on a 1-category are equivalent.

The main definition reads as follows. A weak slicing site is a category together
with a weak functor to Cat(×) admitting weakly cartesian up-to-equivalence liftings of
slice-category projections. A morphism there is called repr. preserving if it lies above a
terminality-preserving functor, and it is called a discrete fibration if it is weakly cartesian
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above an essentially discrete fibration. (We keep the names of the prior theory for sim-
plicity.)

3.1. Theorem. (Analogous to theorem 1.3.) For a weak slicing site, the class of repr.-
preserving morphisms and the class of discrete fibrations form a replete factorization sys-
tem.

One part of the proof strays from the path of analogy, namely the verification of (F5).
We had best start by establishing the relevant bicategorical orthogonality in Cat(×): for
any terminality-preserving functor l : D // C and any essentially discrete fibration
r : B // A, the commutative square

A (C,B) A (C,A)

A (D,B) A (D,A)

A (l,B)
��

A (l,A)
��

A (C,r)
//

A (D,r)

//

(15)

in Cat, where A := Cat(×), is a bicategorical pullback; that is, the canonical functor
g � // (g·l, r·g, 1r·g·l) from the category of all functors g : C // B to the category of all
(h, f, i) consisting of two functors h : D // B and f : C // A and an invertible natural
transformation i : f ·l ' // r·h : D // A, is an equivalence. (Taking D = 1 hence yields
an analogue of a preliminary version of lemma 1.1.) Terminality-preserving functors and
essentially discrete fibration in fact form a (replete) bicategorical factorization system (the
definition of this concept can be found in section 1 of [3] with some detail and in section 5
of [12] with full generality) on Cat(×). This is induced by one on the whole of Cat, formed
by final functors and essentially discrete fibrations. To conclude the proof we could provide
and use a bicategorical generalization of the folklore version of proposition 2.1.

3.2. Theorem. (Analogous to theorem 1.4.) Any well-powering replete factorization
system (L,R) is induced in the manner of theorem 3.1 by a weak-slicing-site structure,
unique up to a (weakly invertible) weakly natural transformation, unique up to a unique
(invertible) modification.

To obtain an existence proof analogous to that of theorem 1.3 we have to take picks
for the left halves in what to call the preferred factorizations. Then, in the argument
surrounding diagram (9) the preferred factorization x·m (say) of (f ·h)·z comes with no
guarantee that m = l·n; all we can say is that there is a unique both-sided automorphism
ξ of X such that ξ·m = l·n and x·ξ = x. By taking P (2)(h, f)([Z, z]) := [ξ] we obtain a
weak functor P with the desired properties. This P in fact has an additional property, not
adhering to the ‘up to equivalence’ paradigm, namely that each category PA is skeletal.

A fairly evident alternative construction offers a perhaps more interesting additional
property. We take each object image PA to be the entire slice category R↓A, deferring
the use of choice to the definition of the morphism images: for each f : B // A and each
(Y, y) ∈ R↓B we pick a factorization Y l // // X //x // A of f ·y and put Pf ([Y, y]) := [X, x].
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Here we have to make the stronger assumption that the right-morphism subcategory R
is initially small. In the case that each object of A has only small-many automorphisms
we can do so without loss of generality: first we replace A with an equivalent category
whose isomorphism classes are small. By picking l to be the identity whenever f is right
we can achieve that P has the strictness to make R a (strict) slicing site.

Uniqueness is dealt with by analogues of lemmata 1.5 and 1.6. (We also have an
analogue of proposition 1.8, while propositions 1.7 and 1.9 in this respect suffer from
references to strictness.)

3.3. Theorem. (Analogous to theorem 1.10.) On any category the equivalence classes
of weak-slicing-site structures are in a specific one-to-one correspondence with the well-
powering replete factorization systems. Hence, on an initially small category the equi-
valence classes of weak-slicing-site structures are in a one-to-one correspondence with all
replete factorization systems.

T-weakness

To see what is needed for the general theory we had best approach the issue from the
other side. It suggests itself to consider an arbitrary right-semireplete factorization system
(L,R) on A . We get a weak-slicing-site structure P by taking PA to be R↓A and so
on, as mentioned above. But how will we be able to distinguish the structures resulting
from different factorization systems whose (replete) right-morphism classes agree? The
left-morphism classes can be included in one another, so that the choice of factorizations
made for the smaller one works for the larger one as well. The answer is that we have to
keep track of the traces of leftness, namely those morphisms in the R↓A stemming from
both-sided morphisms in A . They are to form the “strata” of the PA in what follows.

To start with, we replace Cat with StrCat, the category made up as follows. An object
of StrCat is a (small) stratified category, that is, a category together with a distinguished
all-object subgroupoid, to be called the stratum. The (iso-)morphisms in the stratum
will be called T-isic or the T-(iso-)morphisms. (The ‘T’ was the symbol for repr.s and
is hence to allude to repr. preservation. Often I think of ‘T-isomorphism’ as a shorthand
for ‘true isomorphism’; unfortunately this phrasing of ‘T-’ is less elucidating in most of
the other compounds.) The connected components of the stratum will be called the T-
connected components. A morphism in StrCat is a stratified functor, that is, a functor
that preserves T-isicity, thus inducing a functor, also to be called the stratum, of the
strata of domain and range.

We have the functor StrCat // Cat forgetting strata, which we denote by ∂. Con-
versely, we have two functors Cat // StrCat, one imagining strata consisting of identities
only, one imagining strata consisting of all isomorphisms. The two are, respectively, a left
adjoint and a right adjoint of ∂. We can use either to embed Cat in StrCat, eventually
making clear how the work of, respectively, section 1 and the previous subsection fit into
the new context.

A morphism in StrCat is cartesian with respect to ∂ precisely if it not just preserves,
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but also reflects T-isicity among invertible morphisms. ∂ admits unique cartesian liftings
of all Cat-morphisms. We use this fact for the case of slice-category projections to in-
troduce slicing in StrCat. Explicitly, given a stratified category A and an object X ∈ A,
we stratify the category A↓X with those morphisms stemming from the stratum of A;
thus the functor δAX becomes ∂-cartesianly stratified. (In fact, (StrCat, ∂) is yet another
example of a category with slicing.)

StrCat is cartesian closed, thus self-enriched. All limits are created by ∂ in the
evident manner. The exponential object AB has objects the stratified functors B // A
and morphisms the natural transformations between these; the T-isomorphisms of AB

are those natural transformations all of whose components are T-isomorphisms of A. A
StrCat-enriched category is precisely a (locally small) locally stratified 2-category, that
is, a 2-category together with a distinguished all-1-cell sub-2-category consisting of hom-
groupoids. In what follows we could more generally consider locally stratified bicategories,
which are defined analogously.

In a locally stratified 2-category we have the concept of a T-equivalence: a morphism
that is T-weakly invertible, or, equivalently, either half of an adjunction whose unit and
op-unit are T-isic. In StrCat a T-equivalence is an ordinary equivalence with a stratum
that is an equivalence as well, or, equivalently, a functor that is full and faithful, preserves
and reflects T-isicity, and is surjective on T-connected components.

Now we replace Čat or Cat(×) with StrCat(�): an object of StrCat(�) is a (small)
stratified category that is (T-weakly) represented, in the sense that it comes equipped
with a distinguished T-connected component of terminal objects, called its (T-weak) repr.;
a morphism in StrCat(�) is simply a stratified functor. It is evident what it will mean
for a stratified functor between represented stratified categories to be (T-weakly) repr.
preserving. The left adjoint and the right adjoint of ∂ induce embeddings of Čat and
Cat(×), respectively. The category StrCat(�) inherits from StrCat the structure to make
it a locally stratified 2-category.

We can now redo the first half of this section. Rather than looking at Cat(×)-valued
weak functors, we have to look at StrCat(�)-valued T-weak functors, that is, weak functors
whose composition preservators are T-isomorphisms. And rather than looking at the
underlying categories up to equivalence, we have to look at the underlying stratified
categories up to T-equivalence. We happily note that a T-weak inverse of a repr.-preserving
stratified functor is repr. preserving as well.

Associated with a T-weak locally stratified functor P : A // K of locally stratified 2-
categories are the concepts of T-weak (better: locally-stratified-bicategorical) cartesianness
and of an up-to-T-equivalence lifting. A 1-cell f : B // A ∈ A is T-weakly cartesian
precisely if the functors (14), with ‘↓’ replaced by the symbol ‘⇓� ’, which is to stand for
the operation of forming the T-weak-slice locally stratified 2-category, are T-equivalences.
Or, in the case of a 1-category A , if conditions (C1)� and (C2)� are satisfied, with
K ◦� denoting the sub-2-category of T-isic 2-cells. An up-to-T-equivalence lifting of
f ′ : B′ // PA ∈ K for A ∈ A is precisely an object (B, f) of A ⇓�A together with a
T-equivalence (β′, u) : (P⇓�A)(B, f) ≈ // (B′, f ′) in K ⇓�PA.
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What about functor rightness? The role of discrete fibrations is played by the discrete
T-fibrations, that is, those stratified functors f : B // A for which all the induced
(stratified) functors f↓Y : B↓Y // A↓f (Y) have stratified inverses (or, equivalently,
those discrete fibrations that preserve and reflect T-isicity; or, equivalently, those discrete
fibrations having strata that are discrete fibrations as well). Above a discrete T-fibration
all our concepts of cartesianness with respect to a strict functor on a 1-category are
equivalent. Closing off appropriately we obtain the T-essentially discrete T-fibrations,
that is, those stratified functors f for which all the f↓Y are T-equivalences. Above a
T-essentially discrete T-fibration the concepts of T-weak, weak and op-lax cartesianness
with respect to a T-weak functor on a 1-category are equivalent.

Here is the new main definition. A T-weak slicing site is a category together with
a T-weak functor to StrCat(�) admitting T-weakly cartesian up-to-repr.-preserving-T-
equivalence liftings of slice-stratified-category projections. A morphism there is called
repr. preserving if it lies above a repr.-preserving stratified functor, and it is called a
discrete fibration if it is T-weakly cartesian above a T-essentially discrete T-fibration.

3.4. Theorem. (Superseding theorems 1.3 and 3.1.) For a T-weak slicing site, the class
of repr.-preserving morphisms and the class of discrete fibrations form a right-semireplete
factorization system.

We can define a (not necessarily replete) locally-stratified-bicategorical factorization
system on a locally stratified 2-category A to consist of two 1-cell classes L and R,
locally saturated with respect to T-isomorphism, that fulfil conditions (F1–4) as well as the
appropriate generalization of condition (F5): for any l : A // B in L and any r : C // D
in R the commutative square (15) of stratified categories and stratified functors is a
locally-stratified-bicategorical pullback; that is, the canonical stratified functor g � //

(g·l, r·g, 1r·g·l) from A (C,B) to the stratified category of all (h, f, i) consisting of h ∈
A (D,B), f ∈ A (C,A), i : f ·l // r·h ∈ A ◦� (D,A), is a T-equivalence. We can further
call such a factorization system left or right semireplete provided L or R, respectively,
contains all the T-equivalences of A . This will put us in a position to proclaim that
StrCat(�) carries a right-semireplete factorization system whose right 1-cells are the T-
essentially discrete T-fibrations and whose left 1-cells are the those stratified functors
that are repr. preserving, and that StrCat carries a replete factorization system whose
right 1-cells are the T-essentially discrete T-fibrations and whose left 1-cells are the those
stratified functors that (as mere functors) are final.

3.5. Theorem. (Superseding theorems 1.4 and 3.2.) Any well-powering right-semire-
plete factorization system (L,R) is induced in the manner of theorem 3.4 by a T-weak-
slicing-site structure, unique up to a repr.-preserving (T-weakly invertible) T-weakly nat-
ural transformation, unique up to a unique T-isic modification.

As regards existence, the extra step in the proof was mentioned at the beginning of this
subsection. As regards uniqueness, the proof machinery of section 1 can be adjusted in its
entirety: not just the two higher-cell lemmata, but also all three addenda to lemma 1.5
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(‘strict’ and unqualified ‘unique’ to be replaced with ‘T-weak’ and ‘unique up to a unique
T-isomorphism’, respectively).

3.6. Theorem. (Superseding theorems 1.10 and 3.3.) On any category the repr.-pre-
serving-T-equivalence classes of T-weak-slicing-site structures are in a specific one-to-one
correspondence with the well-powering right-semireplete factorization systems. Hence, on
an initially small category the repr.-preserving-T-equivalence classes of T-weak-slicing-
site structures are in a one-to-one correspondence with all right-semireplete factorization
systems.
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