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A GALOIS THEORY FOR MONOIDS

Dedicated to Manuela Sobral on the occasion of her seventieth birthday

ANDREA MONTOLI, DTANA RODELO AND TIM VAN DER LINDEN

ABSTRACT. We show that the adjunction between monoids and groups obtained via the
Grothendieck group construction is admissible, relatively to surjective homomorphisms,
in the sense of categorical Galois theory. The central extensions with respect to this
Galois structure turn out to be the so-called special homogeneous surjections.

Introduction

An ACTION of a monoid B on a monoid X can be defined as a monoid homomorphism
B — End(X), where End(X) is the monoid of endomorphisms of X. These actions
were studied in [15], where it is shown that they are equivalent to a certain class of
split epimorphisms, called Schreier split epimorphisms in the recent paper [13]. Some
properties of Schreier split epimorphisms, as well as the closely related notions of special
Schreier surjection and Schreier reflexive relation, were then studied in 2] and [3], where
the foundations for a cohomology theory of monoids are laid. Many typical properties
of the category of groups, such as the Split Short Five Lemma or the fact that any
internal reflexive relation is transitive, remain valid in the category of monoids when,
in the spirit of relative homological algebra, those properties are restricted to Schreier
split epimorphisms and Schreier reflexive relations. When an action B — End(X) factors
through the group Aut(X) of automorphisms of X, the corresponding split epimorphism
is called homogeneous |2|. Some properties of homogeneous split epimorphisms and of
the related notions of special homogeneous surjection and homogeneous reflexive relation
were also studied in [2] and [3].
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The aim of the present paper is to approach the concept of homogeneous split epi-
morphism from the point of view of categorical Galois theory [6, [7]. Recall that the
classical Grothendieck group or group completion construction [10, [11} [12] gives an ad-
junction between the categories Mon of monoids and Gp of groups, which is relevant for
instance in K-theory, where it is used in the definition of K,. We prove that this ad-
junction is admissible in the sense of categorical Galois theory, when it is considered with
respect to the class of surjective homomorphisms both in Mon and in Gp. We further
show that the central extensions with respect to this adjunction are the special homogen-
eous surjections. This gives a positive answer to the question whether homogeneous split
epimorphisms can be characterised in a way which does not refer to the underlying split
epimorphism of sets.

The paper is organised as follows. In Section [1| we recall some basic notions of cate-
gorical Galois theory. In Section [2| we prove that the Grothendieck group adjunction is
part of an admissible Galois structure (Theorem [2.2)). In Section [3] we recall the defini-
tions of Schreier split epimorphism and homogeneous split epimorphism, special Schreier
surjection and special homogeneous surjection together with some of their properties. In
Section 4| we show that the central extensions with respect to the Galois structure under
consideration are exactly the special homogeneous surjections (Theorem |4.3)).

1. Galois structures

We recall the definition of Galois structure and the concepts of trivial, normal and central
extension arising from it, as introduced in [6, |7, [8]. For the sake of simplicity we restrict
ourselves to the context of Barr-exact categories [1].

1.1. DEFINITION. A GALOIS STRUCTURE I' = (¢, %2, H,I,n,¢,&,.%) consists of an

adjunction

I
€T 17X

<
H

with unit n: 1¢ = HI and counit €: [H = 14 between Barr-exact categories ¢ and 2,
as well as classes of morphisms & in ¢ and .% in 2 such that:

1) & and .# contain all isomorphisms;

2) & and % are pullback-stable;

4) H(F)cC &;

(&) <

We will follow [7] and call the morphisms in & and .# FIBRATIONS.

(1)
(2)
(3) & and .Z are closed under composition;
(4)
(5)

5
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1.2. DEFINITION. A TRIVIAL EXTENSION is a fibration f: A — B in % such that the
square

A f HI(A)
fl lHI(f)
B——> HI(B)

is a pullback. A CENTRAL EXTENSION is a fibration f whose pullback p*(f) along some
fibration p is a trivial extension. A NORMAL EXTENSION is a fibration such that its kernel
pair projections are trivial extensions.

It is well known and easy to see that trivial extensions are always central extensions
and that any normal extension is automatically central.
Given an object B in ¥ we consider the induced adjunction

(6 | BYZZ>(F L I(B)),

HB

where we write (& | B) for the full subcategory of the slice category (¢ | B) determined
by morphisms in &; similarly for (# | I(B)). Here I” is the restriction of I, and H?
sends a fibration ¢g: X — I(B) to the pullback

A—— H(X)
HB(Q)lJ lH(g)
B> HI(B)

of H(g) along np.

1.3. DEFINITION. A Galois structure I' = (¢, 2", H,I,n,¢,&,.%) is said to be ADMISSI-
BLE when all functors H? are full and faithful.

1.4. PROPOSITION. (9, Proposition 2.4] If T is admissible, then I: € — 2 preserves
pullbacks along trivial extensions. In particular, the trivial extensions are pullback-stable,
so that every trivial extension is a normal extension.

2. The Grothendieck group of a monoid

The GROTHENDIECK GROUP (or GROUP COMPLETION) of a monoid (M, -, 1) is given by
a group Gp(M) together with a monoid homomorphism M — Gp(M) which is universal
with respect to monoid homomorphisms from M to groups |10, 11, |12]. More precisely,
we have

Gp(M) = GN%E\)@,
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where GpF (M) denotes the free group on M and N(M) is the normal subgroup generated
by elements of the form [my][ma][my-m2] ! (from now on, we simply write m;m, instead
of my-ms). This gives us an equivalence relation = on GpF (M) generated by [m;]|[ms] =
[myms] with equivalence classes [mi][ms] = [mimz]. Thus, an arbitrary element in
Gp(M)—an equivalence class of words—can be represented by a word of the form

[ma][ma] " [ma][ma] ™ - [ma]™ or [ma] ™ [ma][ma] ™ [ma] -+ [ma]™,

where ((n) = 1, n € N, my, ..., m, € M and no further cancellation is possible.
Let Mon and Gp represent the categories of monoids and of groups, respectively. The
group completion of a monoid determines an adjunction

Mon~ 1~ Gp, (A)

where Mon is the forgetful functor. To simplify notation, we write Gp(M) instead of
MonGp(M) when referring to the monoid structure of Gp(M). The counit is € = 1¢, and
the unit is defined, for any monoid M, by

nyv: M — Gp(M): m — [m].

2.1. REMARK. It is well known that in general 7,, is neither surjective nor injective. For
example:

- The additive monoid of natural numbers is such that ny: N — Z is an injection. In
fact, nys is injective whenever M is a monoid with cancellation.

- The monoid M = ({0, 1},-,1) has a trivial Grothendieck group and therefore 7,/ is
surjective.

- The product N x M, for M as above, is such that Gp(N x M) = Z (in fact, it
is not difficult to see that the group completion functor preserves products) and
Muxar: N x M — Z is neither surjective nor injective.

By choosing the classes of morphisms & and .# to be the surjections in Mon and Gp,
respectively, we obtain a Galois structure

1jl\lon = (Mon7 Gp7 MOH, Gpv n, €, (ga? ﬁ)

Since this is the only Galois structure we shall consider in detail, without further mention
we take all normal, central and trivial extensions in this paper with respect to I'vion.



202 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN
2.2. THEOREM. The Galois structure I'yion 48 admissible.
PROOF. For any monoid M, we must prove that the functor

Mon™: (F | Gp(M)) — (& | M)

is fully faithful. Given a morphism a: (4, f) — (B, g) in (% | Gp(M)), its image through
Mon™ is defined by the universal property of the front pullback below:

M X Gp(M) A i A
"""-»,Mon]\/[(a) o
A o
M XGp(M) B B
Mon™ (f) (B)
f
Mon™ (g) 7
3 -
M — Gp(M).

First we prove that Mon™ is faithful. Consider morphisms o, 3: (4, f) — (B, g) such
that Mon® () = Mon™(3). For any a € A, we prove that oa(a) = (a) by induction on
the length n (supposing that no cancellations are possible) of the word that represents
the class f(a).

If f(a) = [m], then (m,a) € M xgpy A and

Mon™ () (m, a) = Mon™ (8)(m, a)
implies that a(a) = B(a). If f(a) = [m]~}, then f(a™') = [m] and we find a(a™") =
B(a~1) as in the previous case; hence a(a) = §(a).

Suppose that a(a’) = B(a’) for those @’ € A which have f(a') represented by a word of
length n — 1 or smaller. Suppose that f(a) is represented by a word of length n, n > 2.
It can be written as the product (= concatenation) of a word of length one and a word of
length n — 1. By the surjectivity of f, their corresponding classes can be written as f(a;)
and f(ay'a), for some a; € A. Then

a(a) = aa)a(ar'a) = Blar)B(ar"a) = B(a)

by the induction hypothesis.

Now we have to show that Mon™ is full. The proof goes in two steps: first a proof
by induction in the case when M is a free monoid (Lemma 2.3 below), then an extension
from the free case to the general case (the subsequent Lemma [2.4). ]
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2.3. LEMMA. The functor Mon™ is full for all free monoids M.

PROOF. Let M be a free monoid. To simplify notation, we identify the classes in Gp(M)
with their representatives. Consider group surjections f and ¢ as in Diagram and a
monoid homomorphism

v (M xapony A, MonM(f)) — (M Xgp(m) B,MonM(g)).

We define a group homomorphism «: (A, f) — (B, g) as follows. For any a € A, we define
a(a) by decomposing @ into a product of elements in the image of 74. The main difficulty
lies in proving that the result is independent of the chosen decomposition.

If f(a) = [m] for some m € M, then (m,a) € M xgp) A and we define

a(a) = mp(y(m, a)).
If f(a) =[m] !, then f(a™') = [m] and we define

afa) =mp(y(m.a 1)) .

Suppose that a = aja,* - ai™ such that f(a;) = [my], with m; € M, and n is the

smallest number for which such a decomposition in Gp(M) exists. Then we must put

a(a) = mp(y(my, ar))mp(y(me, a2))_1 - (Y (M, an))L(n)§ (C)

the case a = aj'as - - -a™ can be treated similarly.

To prove that « is a homomorphism, it now suffices to show that it is well defined.
That is to say, if a = zyzy" - -:U;(k) such that f(z;) = [l;], with [; € M, then must
agree with

m5(Y(l, 210))mp(Y(l2y 22)) ™ - wp (I ) .

Since M is free, and hence the group Gp(M) is free, if the words

[ra][me] ' [ma )™ and - [W]l] - [0

are both of minimal length, then £ = n and [; = m;. Thus we only have to prove the
result for decompositions of equal length mapping down to the same word in Gp(M). We
do this by induction on n.

Case n = 1. Suppose that a1 = a = z; and f(a1) = [my] = f(z1) for some m; € M.
Then obviously a(a;) = a(z1). The same happens if a; = a = z; and f(a;) = [m;]™' =
f(z1) for some my € M.

More generally, let a, z € A be such that f(a) = [m] = f(x) for some m € M. Then

flz™la) = [1], so
a(a) = wp(y(m, a)) = mp(y(m, 2))7p(y(1,27"a)) = a(z)a(z™ a)

which implies that
a(z ta) = alr) tala).
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This formula will be useful in the sequel of the proof.

Case n = 2. Now consider a € A such that aja;' = a = 2125 " and f(a;) = [m;] =
f(z;) with m; € M. Then a(z; 'a;) = a(x;)*a(a;) by the formula above. Hence x;'a; =
7, ay implies a(x1) ta(ar) = a(zs)La(as), so that

alar)a(ag) ™ = alr)a(r) .

The case in which a;'ay = a = 2, vy and f(a;) = [m;] = f(z;) is similar.
Case n = 3. Suppose aia;'az = a = x125 ‘x5 such that f(a;) = [m;] = f(x;), with
m; € M. Then
xflalaglag = x;lxg

gives
alaga; tzy) talas) = alxy) ta(zs)

because they both map to the same word [mg]™*[m3]. Similarly,
alagl = xlxglm;;agl

gives

alay)a(ag)™ = a(r))a(azry  zy) ™
because they both map to [m][ms] ™. As a consequence, the equality

CL3.I'3_1.T2 = agaflxl
above the word [mg] of length one gives
afaszy'zy) = alasa; o)
so that a(z) ta(ar)a(as) ™ = a(xs) ta(xs)alasz) ™ and thus
a(ar)afaz) talas) = alz))a(zy) ta(zs).

Again, the case aj'asa;’ = a = 27 7,235" can be treated analogously.

Case n = 4. Suppose that the result holds for all decompositions which map down to
words of minimal length n — 1 or shorter in Gp(M). Suppose that a;a, 'as - - Al =g =
T3y w3 2™ such that fla;) = [mi] = f(z;), with m; € M. Then

(x;lalagl)ag e a”ﬁ(n) — mglx’?’ ... ‘1.:7,(”)
both map to [mg] " - [m,]"™, so by the induction hypothesis we find
alagay ) Lafas) - - - alan)™ = a(z) tales) - - - alz,) .
Furthermore, a(asa; *21) = alas)a(a;)ta(z;) as shown above (case n = 3) so that
alar)alas) tafas) - - - alan)™ = a(z)a(zs) ta(es) - - afz,) ™.

al = g = R Y - 22" being similar, this concludes the proof.

11
The case a; “asag " --
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2.4. LEMMA. The functor Mon™ is full for all monoids M.

PROOF. As in the previous lemma, we simplify notation by identifying the classes in
Gp(M) with their representatives.
Consider group surjections f and g as in Diagram as well as a group homomorph-
ism
v (M xgpan A, Mon™ (f)) — (M xgpary B, Mon™ (g)).
We cover the monoid M with the free monoid F(M) on M, then apply the Grothendieck
group functor to obtain the following commutative diagram with exact columns:

Ker(ry ) — N(M)

I I

NE(M)

F(M)>—— GpF(M)

T]Wl/ lql\/f
\4

M ———— Gp(M).

s

We pull back Mon™ (f), Mon™(g) and the morphism + between them along the surjection
rar- We thus obtain a diagram

M XGp(m)la

F(]V[) XGp(Al) A M XGp(]W) A A A

M X Al T
F(M) apn) B Mooean B M X apn B 5 B
r¥ (Mon™ (f)) Mon™ (f) f
¥, (Mon™ (g)) Mon™ (g) g
= \L £
F(M) M — Gp(M).

Since nyry = qunrFrn, the left hand side triangle of this diagram can also be obtained
by taking the pullbacks of f and g along qamran:

Nr(M)XGp(m)la

F(M) XGp(M) A GpF(M) XGp(]\,j) A Pa >A
Neean X Gol v 1 s
F(M) xappan) B2 GpF(M) X gpany B —22 > B
v (Mon™ () gk () f
7k (Mon™ (g)) a1 (9) I
£ N\ £
F(M) CGpF(M) — >Gp(M).

e (M)

Since the functor Mon" ™ is full by Lemma , we find a morphism [ given by the dotted
arrow above. It suffices to show that § keeps the elements of the kernel N(M) (of gy,
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thus also) of p4 and pp fixed, because then it induces the needed «a: (A, f) — (B, g) by
the universal property of ps as a cokernel of its kernel.
The group N(M) is generated by words [m;][ms][mims]™" as a normal subgroup of
GpF(M). Hence it suffices to prove for elements of the type
([ma][ma][mima] ™, 1)
in GpF(M) X Gp(M) A that
B(lma]lme][mamo] ;1) = ([ma][mo][mamo] ', 1) € GpF (M) xcpar) B.

Since f is a surjection, there exists an element a € A such that

(rar Xapay La)([ma][ma], a) = (mima, a) = (rar Xapan 1a)([mims], a).

For some b € B we have v(mims,a) = (mims,b), so using the commutativity of the
second diagram, we see that

(N ([ma]lme], a) = ([ma][mo], b)
and
rau (V) ([mime], a) = ([mime], b).
On the other hand, using the commutativity of the third diagram we find

B(lmu]lma], @) = B(nry X oy 1a)([ma][m2], a)
= (M) *capry 1) (rar(7) ([ma][mea], a))
= ([m1][m2],b)

and, similarly, 8([mims],a) = ([mimsz],b), for some b € B as above. Since [ is a group
homomorphism, we obtain

B([mallme][mims]~", 1) = B([ma][ms], a) B([mims], a) ™"
my], b)([myma] 4, 07)

ma|[mims] ", 1)
which concludes the proof. [

2.5. REMARK. We can restrict the group completion to commutative monoids: it is easily
seen that then 'y, restricts to an admissible Galois structure

I_\CMon = (CMOH, Abu CMOH7 Gp|CMon7 77/7 EIJ éa/u Lg./)

induced by the (co)restriction

Gp|CMon

CMon _ L~ Ab,
CMon

of the adjunction to commutative monoids and abelian groups.
We end this section with an example showing that the adjunction (A)) is not SEMI-

LEFT-EXACT [5]: it is not admissible with respect to all morphisms, instead of just the
surjections [4].
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2.6. EXAMPLE. Consider ny2: N> — Z? with morphisms f and ¢ as in Diagram (B),
where A is the subgroup of Z? generated by (1, —1), f is determined by f(1,—-1) = (1, —1)
and

g: 2> - 7% (k,l,m) — (k,I).

Then N2 x22 A = 0 while N2 x22 Z3 = N2 x Z, so that the functor Mon? is not faithful:
it maps, for instance, both A — B: (1,—1) — (1,—1,0) and (1,—1) — (1,—1,1) to the
zero morphism 0 — N? x Z.

3. Schreier split epimorphisms and homogeneous split epimorphisms

In this section we recall some definitions and results from [2] and [3]. We work in the
category Mon of monoids.

3.1. DEFINITION. Consider a split epimorphism (f, s) with its kernel:

f

N—=> XY (D)
S

It is called a SCHREIER SPLIT EPIMORPHISM when, for any x € X, there exists a unique

n € N such that x = n sf(x).

Note that when we say “split epimorphism” we consider the chosen splitting as part of
the structure; and for the sake of simplicity, we take canonical kernels—so N is a subset
of X.

3.2. DEFINITION. The split epimorphism @ is said to be RIGHT HOMOGENEOUS when,
for every element y € Y, the function u,: N — f(y) defined through multiplication
on the right by s(y), so p,(n) = ns(y), is bijective. Similarly, by duality, we can define
a LEFT HOMOGENEOUS split epimorphism: now the function N — f='(y): n — s(y)n
must be a bijection for all y € Y. A split epimorphism is said to be HOMOGENEOUS when
it is both right and left homogeneous.

3.3. PROPOSITION. |2, Propositions 2.3 and 2.4] Consider a split epimorphism (f,s) as
n @ The following statements are equivalent:

(i) (f,s) is a Schreier split epimorphism;
(ii) there exists a unique function q: X — N such that q(x)sf(z) = x, for all x € X;

(iii) there exists a function q: X — N such that q(x)sf(z) = x and q(n s(y)) = n, for
allne N, xe X andyeY;

(iv) (f,s) is right homogeneous.
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3.4. DEFINITION. Given monoids Y and N, an ACTION of Y on N is a monoid homo-
morphism ¢: Y — End(N), where End(/N) is the monoid of endomorphisms of N.

Actions correspond to Schreier split epimorphisms via a semidirect product construc-
tion:

3.5. SEMIDIRECT PRODUCTS. It is shown in [13] that any Schreier split epimorphism (DJ)
corresponds to an action ¢ of Y on N defined by

o(y)(n) ="n = q(s(y) n)

for y e Y and n € N. Thus (f, s) is isomorphic, as a split epimorphism, to

N—>N x YHY,
1,0 {0,1)

where N x, Y is the semidirect product of NV and Y with respect to ¢: the cartesian
product of sets N x Y equipped with the operation

(mlayl) ’ ('T27y2) = (xl Py (x2)7y1y2)7
where ¢, = ¢(y1) € Aut(NV). See [13], [2] or Chapter 5 in [3] for more details.

3.6. PROPOSITION. |2, Proposition 3.8] A Schreier split epimorphism @ s homogen-
eous if and only if the corresponding action ¢:Y — End(N) factors through the group
Aut(N) of automorphisms of N.

3.7. LEMMA. (2, Lemma 4.1] Consider the morphism of Schreier split epimorphisms

X$>Y

1

Nl<__Xl_>>Y/

| Q

and their kernels, and the restriction u of u to N. Then the left hand side square consisting
of the functions q and ¢' also commutes: ¢'u = 1gq.

This lemma has the following useful consequence.

3.8. COROLLARY. Gwen a morphism of Schreier split epimorphisms as in Lemma
the homomorphism @ preserves the action of the object Y on N: for allyeY andne N,

u(¥n) = ”(y)ﬂ(n).

PROOF. U(n) = Uq(s(y) n) = ¢'u(s(y) n) = ¢'(us(y) u(n)) = ¢'(s'v(y) @(n)) = "@i(n) =
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We now extend these concepts to surjections which are not necessarily split.

3.9. DEFINITION. Given a surjective homomorphism ¢ of monoids and its kernel pair

Eq(g)<a=X Y, (E)

2

g is called a SPECIAL SCHREIER SURJECTION when (71, A) is a Schreier split epimorphism.
It is called a SPECIAL HOMOGENEOUS SURJECTION when (71, A) is a homogeneous split
epimorphism.

As a consequence of Theorem 5.5 in |2|, if g is a special Schreier surjection, then its
kernel is necessarily a group.

3.10. REMARK. The name Schreier extension was used in [16] [L4] to describe a different,
but closely related concept.

3.11. REMARK. A special Schreier (resp. homogeneous) surjection which is a split epi-
morphism is always a Schreier (resp. homogeneous) split epimorphism. Yet a Schreier
(resp. homogeneous) split epimorphism is not necessarily a special Schreier (resp. ho-
mogeneous) surjection. Indeed, according to Proposition 3.1.12 in [3], a Schreier (resp.
homogeneous) split epimorphism is a special Schreier (resp. homogeneous) surjection if
and only if its kernel is a group. In fact, by Proposition 2.3.4 in |3|, taking the kernel pair
of a Schreier split epimorphism (f, s) as in @, we do obtain a Schreier split epimorphism
(m1,{sf,1x)). Nevertheless, the split epimorphism (71, A) need not be Schreier.

As a consequence of Theorem 5.5 in [2| and of the remark above we have:

3.12. COROLLARY. A surjective homomorphism g as in is a special Schreier (resp.
special homogeneous) surjection if and only if the kernel pair projection m is a special
Schreier (resp. special homogeneous) surjection.

3.13. PROPOSITION. (4, Proposition 7.1.4] Special Schreier and special homogeneous sur-
jections are stable under products and pullbacks.

3.14. PROPOSITION. /5, Proposition 7.1.5] Given any pullback

X -4 X/
b

Y —> Y’
with g and h surjective homomorphisms, if f is a special Schreier (resp. special homogen-
eous) surjection, then so is f'.

3.15. PROPOSITION. [2, Proposition 3.4] Any split epimorphism (D)) such that Y is a
group is a homogeneous split epimorphism.



210 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN

3.16. REMARK. According to the proposition above and to Remark [3.11] a split epi-
morphism @ such that Y is a group is a special homogeneous surjection if and only if
its kernel N is a group. Furthermore, in that case also X is a group |3, Corollary 2.2.5]|.
Conversely, every surjective homomorphism between groups is a special homogeneous
surjection.

4. Normal extensions and central extensions

In this section we characterise the trivial split extensions, the central and the normal
extensions in the Galois structure I'y,n. The central extensions turn out to be precisely
the special homogeneous surjections, while a split epimorphism of monoids is a trivial
extension if and only if it is a special homogeneous surjection. This gives a characterisation
which does not refer to the underlying split epimorphism of sets: Definition in terms
of elements, Proposition where the splitting ¢ is a function rather than a morphism
of monoids.

4.1. LEMMA. Any morphism of homogeneous split epimorphisms and their kernels

f
Nets X—>V

| ul ,

N'b—> X' == Gp(Y)

factors into the composite

f
NDLXﬁY

S
| e
fl/

ND?X” —=Gp(Y

S//
\V 1!

N'>— X' == Gp(Y

of morphisms of homogeneous split epimorphisms and their kernels, where ¢ is as in
Proposition and X" = N x5 Gp(Y) for p: Gp(Y) — Aut(N), the unique group ho-
momorphism satisfying ¢ = pny.

PROOF. As mentioned above, we have X = N x,Y for p: Y — Aut(N). By adjointness,
this monoid morphism ¢ gives rise to a unique group homomorphism @: Gp(Y') — Aut(N)
for which ©ny = . Note that P is necessarily given by

P(yillyel ™ - [yal ™) = gy 0, - 0™ € Aut(N) (F)

and

Pyl ye] - - [l ™) = 9, 04 - 0 € Aut(N). (G)
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Via the functoriality of the semidirect product construction this already yields the upper
part of the diagram, where 7y = 15 x ny. This leaves us with finding u: X" — X'

The needed morphism @: N x5 Gp(Y) — N’ xy Gp(Y'), where ¢ is the action for
which X’ = N’ %, Gp(Y), is induced once we prove that @ is a morphism of Gp(Y')-
actions. More precisely, we have to show that

u(p.(n)) = ¥=(u(n))

for all 2 € Gp(Y) and n € N. Corollary [3.8] and the fact that ¢ = pny tell us precisely
that this equality holds for generators z = ny (y) of Gp(Y'), so it suffices to check that it
extends to all elements of Gp(Y'). This needs a straightforward verification based on

and (GJ). n

4.2. PROPOSITION. Consider a split epimorphism (f,s) as in (D). The following state-
ments are equivalent:

(i) f is a trivial extension;
(ii) f is a special homogeneous surjection.

PROOF. (i) = (ii) If f is a trivial extension, then by definition the diagram

f
X ﬁ Y
nx Ny (H)
Gp({)
Gp(X) == Gp(Y)
p(s

is a pullback. By Remark , the group homomorphism Gp(f) is a special homogeneous
surjection; hence so is f by Proposition [3.13]

(ii) = (i) Given a split epimorphism (f,s) which is a special homogeneous surjection,
we have to show that the square is a pullback. Taking kernels we obtain the morphism
of special homogeneous surjections and their kernels

f
N%Xﬁﬁf

where, in particular, the kernel N of f is a group by Remark [3.11] By Theorem 2.3.7
in [3|, the square is a pullback precisely when 7% is an isomorphism.
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Lemma gives us the diagram of solid arrows

f
NHXﬁY

S
P TP
f//

NHX”%%> Gp(Y

S H

Kr—— Gp(X) ﬁ Gp(Y
Gp(s)

On the other hand, since X" is a group (thanks to Remark [3.16]), the universal property
of Gp(X) makes 7y induce a unique group homomorphism g: Gp(X) — X” such that
gnx = Ny. Note that this g is actually a morphism of split epimorphisms:

f"onx = "y = nv f = Gp(f)nx

so that f”g = Gp(f) by the universal property of nx, while

gGp(s)ny = gnxs =Tys = s'ny

and thus gGp(s) = s".

Finally, we have njxg = lgpx) since Nxgnx = TxNy = nx. On the other hand,
using Lemma 2.1.6 in [3]—which says that Schreier split epimorphisms are strongly split
epimorphisms, that is, the kernel and the section are jointly strongly epimorphic—from
S”

gixk" = gixiyk = gnxk =Tyvk =k and  gixs” = gGp(s) =

we conclude that gnx = 1x». In particular, the arrow 7x is an isomorphism, hence the
square is a pullback. =

4.3. THEOREM. For a surjective homomorphism of monoids g, the following statements
are equivalent:

(i) g is a central extension;
(ii) g is a normal extension;
(iii) g is a special homogeneous surjection.

ProoOF. Consider a surjective homomorphism and its kernel pair (E]). Then g is a normal
extension

(L.2) ) .. )
= 1 is a trivial extension
&2 ) . .
S m is a special homogeneous surjection
B12)

&S g is a special homogeneous surjection.
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A normal extension is always a central extension by definition. To prove that (i) implies
(iii), let us suppose that g is a central extension. Then there exists a fibration p such that
p*(g) is a trivial extension, which makes it a normal extension by Proposition hence a
special homogeneous surjection by (ii) = (iii). Since p is a surjective homomorphism, we
can apply Proposition to conclude that g is a special homogeneous surjection, too.m

4.4. WHAT ABOUT SPECIAL SCHREIER SURJECTIONS? A natural question that arises is,
whether the special Schreier surjections admit a similar characterisation. More precisely,
does the reflection factorise in such a way that the special Schreier surjections become
the central extensions with respect to this new adjunction? As explained in the proof of
Proposition 4.2 any split epimorphism of groups is necessarily special homogeneous, which
implies that so are the central extensions. Hence we would need a reflective subcategory 2
of Mon in which all spit epimorphisms are Schreier split epimorphisms. By Corollary 3.1.7
in [3] though, this would mean that 2" is contained in the category of groups, which
defeats the purpose.
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