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MAPPING SPACES OF Gray-CATEGORIES

BJORN GOHLA

ABSTRACT. We define a mapping space for Gray-enriched categories adapted to higher
gauge theory. Our construction differs significantly from the canonical mapping space
of enriched categories in that it is much less rigid. The two essential ingredients are a
path space construction for Gray-categories and a kind of comonadic resolution of the
1-dimensional structure of a given Gray-category obtained by lifting the resolution of
ordinary categories along the canonical fibration of GrayCat over Cat.
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1. Introduction

It is well known that among algebraic models for homotopy n-types Gray-groupoids model
3-types; [Lack| [2011] gives us a proof using model category methods. Wanting to study
the homotopy 3-type of the moduli space of 3-connections on a manifold, we thought it
apt to define a mapping space [83(M),C(#H)] of Gray-groupoids that could model that
moduli space, where 83(M) is the fundamental Gray-groupoid and C(H) is the Gray-
groupoid ultimately derived from a 2-crossed Lie-algebra where the triconnections take
their values; see for example [Schreiber and Waldorf| [2011] for 2-connections, to which
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MAPPING SPACES OF Gray-CATEGORIES 101

this is an obvious next step. See [Martins and Picken| 2011] for the background on the
smooth fundamental Gray-groupoid and triconnections. Wang| [2013]| shows how to obtain
the gauge 3-connection from a 3-holonomy, and the 3-gauge transformation from the
lax-transformation between holonomy Gray-functors.

The original definition of the Gray-tensor can be found in |Gray||1974]; |Gordon et al.
[1995] give us the definition of tricategories and show that every tricategory strictifies
to a triequivalent Gray-category. |Crans [1999] gives an explicit, elementwise definition of
Gray-categories.

In 1999 (Crans| gave a partial solution the mapping space problem; however, the ab-
sence of an interchange law in Gray-categories prevents lax transformations between Gray-
functors from being composable in general. The slightly unsatisfactory solution is to
restrict to those transformations and higher cells that can in fact be composed; this does
give a mapping space Gray-category, but a mere stopgap not sufficient for our purposes.

Instead, we enlarge the repertoire of maps, and thereby transformations, in a way that
will permit forming all composites of transformations; specifically we introduce a 2-cocycle
that intermediates coherently between the two possible evaluations of arrangements of
squares shown in and (37). In analogy with |Garner [2010] we introduce a co-monadic
weakening of strict Gray-functors in section 2] The comonad Q' then yields a co-Kleisli
category GrayCatqi. We use in an essential way that GrayCat is fibered over Cat.

Inspired by |[Bénabou|[1967] we axiomatise lax transformations as maps into a path-
space. In section [3| we introduce a functorial path-space construction for Gray-categories;
subsequently in sectionwe show that this yields an internal category :H in GrayCatq:
for a given H in GrayCat.

The n-th iterate of () yields an n-truncated internal cubical object in GrayCat. In
section [b| we construct an internal Gray-category
N SN
A—E—H—H
in GrayCatq: as a subobject of the third iterated path-space. It is then a trivial conse-

quence in section [6] that we obtain a mapping space Gray-category by applying the hom
functor

|G, H] := GrayCatq: (G, ﬁ:ﬁ:ﬁ:]}ﬂ)

Furthermore we obtain a restricted mapping space {G, H}, where everything is as before,
except only strict Gray-functors are permitted between G and H. This leads to a natural
sesquicategory structure on GrayCat.

We hope to be able to prove in a later paper that this internal hom is part of a
monoidal closed structure on GrayCatq: involving a suitable extension of Crans] tensor
product.

Finally, in section [7| we give explicit details of functors, transformations and so on in
terms of components. Lastly, we remark that if H is a Gray-groupoid then ﬁ as well as
|G, H] will be Gray-groupoids.
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Similar work was done by |Gohla and Martins| [2013] concerning 2-crossed modules,
which are equivalent to Gray-groupoids with a single vertex, that is, Gray-groups.

A version of this article constituted the author’s doctoral thesis defended at the Faculty
of Science, University of Porto. Many thanks are owed to Joao Faria Martins for plentiful
advice and discussion.

2. Resolution in Dimension One

We define a resolution of the 1-dimensional structure of a Gray-category using a comonad,
by lifting the free category comonad (called “path” in [Dawson et al.|2006|) to Gray-
categories; but note that we use the term in a different way in this paper.

The resulting co-Kleisli category can be seen as the category of Gray-categories with an
enlarged repertoire of maps, that is flexible enough to carry out our path space construc-
tion. After giving an abstract construction of this category of pseudo maps we proceed
to characterize them explicitly.

2.1. BAsic FIBRATIONS. There are obvious functors

GrayCat LY SesquiCat Oy Cat e, Set

that forget the 3-cells, the 2-cells and 1-cells respectively. By a slight abuse of language
we will denote the composite (_)1(_ )2 by (_); also, it is of course a fibration as well;
we will use it in section to construct the monad Q'. We will use the fibration
(_)2(_)1(_)o = (_)o in section [6] to construct the restricted mapping space {G,H}.

Let & be a sesquicategory, G a Gray-category, and I': & — (G, a sesquifunctor. We
define F: F*& — G as follows:

(F*&)y = &,
(F*6), = &,
(F*&), = &,
(F*&); = {(T;a, B)|T: Fa — F3}

Note that the interchange of two 2-cells «, 3 in F*& incident on a 0-cell is given
essentially by the interchange of their images under F:

Boa = (FBRFS; Bba,f4a).

Let us take note of the following useful fact that helps to characterize the Cartesian
maps:
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2.2. REMARK. For a functor p: E — B that preserves co-limits, let D: D — E a
diagram in E with co-limit (C, k;)

D, i ¢
g

assume p(g) factors below as p(f)u = p(g). Furthermore, assume that the induced sink
(u;) = up(k;) has fillers (u;) above with f (u;) = gk;, then the co-universally induced map
(u) : C — A'is a filler over u.

This means that to check whether a map [ is Cartesian we don’t need to give the filler
u directly, but we can define it on presumably simpler parts of C'. These then combine
into a valid filler.

2.3. REMARK. Maps Cartesian with respect to (_)o are exactly the Gray-functors, that
are 2-locally isomorphisms of sets. That s, given two parallel 2-cells on the intervening
3-cells, the map s bijective.

2.4. LEMMA. F*& is a Gray-category, F is a Gray-functor and Cartesian with respect to
()2 U

Similarly, let & be a sesquicategory, C a category, and F': C — &; a functor, then
we define a sesquicategory:

(F*C)y = G
(F*C), = C,
(F*C)y = {( f, 9)|a: Ff — Fg}

2.5. LEMMA. F*C is a sesquicategory, F is a sesquifunctor, and Cartesian with respect
to (_)1. O

2.6. REMARK. Maps Cartesian with respect to ()1 are exactly the sesquifunctors, that
are 1-locally isomorphisms of sets. That s, given two parallel 1-cells on the intervening
2-cells, the map s bijective.

For later reference we describe the Cartesian liftings of (_); explicitly as well. Let
G be a Gray-category, (G its underlying category. Let C be an ordinary category and
F: C— G; a functor. Then F*G is given by:

o f,9)f,9:x — vy, ar Ff — Fg}
F;a>5§fag)‘f793$—>y7ri FQ—>Fﬁ}

—~~
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Source and target maps are as follows:

so(l 0, B5 f,9) = (o f, 9) to(Ts 0, 85 f,9) = (B3 f, 9)
Sl(a;fvg):f t1(04,f,g):g

and sg, to are as given by C. As identities we take:

Zl(f) = (ide;fv f) Z-2<05; f:g) = (ida;avaa f?g)'

The tensor in F*G of two 2-cells is

(B59.9)@(a; f, [') = (B®a; B<a, B> g#of, g #of") (1)

where
Baa = (B#Ff)#1(Fg#or), [ra= (Fg#ea)#(B#.Ff).

There is an obvious map F': F*G — G over F that acts like F on 0- and 1-cells, and
on 2- and 3-cells as a projection to G.

2.7. REMARK. The globular set F*G is a Gray-category. The composition operations of
F*G are given by those of C and G and it is easy to see that they fulfill the azioms of a
Gray-category.

Obviously G*F*G = (FG)*G and id¢ = idgraycatc coherently. Also, we can always
choose id¢ = idgraycatc, but this is not necessary in what follows.

2.8. LEMMA. A map of Gray-categories is Cartesian with respect to G — Gy iff it is 1-
locally an wsomorphism of categories, i.e. given two parallel 1-cells the map is bijective on
the intervening 2-cells and in turn bijective on the 3-cells between parallel such. U

2.9. DEFINITION. We define a map of Gray-categories to be an n-isomorphism if it is
Cartesian with respect to (_),. It is n-faithful if fillers of factorizations under (_),
are unique, and n-full is there (not necessarily unique) fillers for all factorizations under

(L)

By this definition 0-fidelity is ordinary fidelity of functors, 1-fidelity is local fidelity,
and so on.

2.10. REMARK. One property of Cartesian maps in a fibration p that we are going to
exploit in the proof of the following theorem is that for three arrows upstairs,

r f
—
S

with f Cartesian, p(r) = p(s) downstairs and fr = fs upstairs imply r = s, on account

of f being p-faithful.
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2.11. LEMMA. If fg is Cartesian with respect to a given fibration p and f is p-faithful,
then g is p-Cartesian.

PROOF Take k and u such that p(g)u = p(k), then p(fg)u = p(fk) and hence by
fg being p-full there is a filler (u) such that fg(u) = fk. Then by f being p-faithful

g {u) = k.
By fg being p-faithful (u) is the unique such filler. O
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2.12. COMONAD LIFTINGS. In this section we show that comonads can be lifted along
fibrations of categories.

2.13. DEFINITION. In an arbitrary 2-category a comonad on an object A is given by an
endomorphism

AT, A
and 2-cells
T
/7 \
A U A
N
A
and
T
TN
A—p A—p A
such that
T T
T
7O\
ﬂ(s T = A UTA = m
VY T
A—SA4 e A \T/ A e A—5A
N A N A
A A
and
T T
m - m -
{s VIR
ATATATA ATATATA

See, for example, |Mac Lane [1998).

If Ais a category, T' a functor and € and ¢ natural transformations, then these equations
of course amount to the usual equations objectwise in A:

Tx

7N

Ter+—TTe——Tx
ETx Tey
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and

Tz —2 s TTx

{ |

TTxTTTTx
Tx

2.14. THEOREM. Given a fibration of categories p: E — B, a comonad (Q,0,¢) on B
can be lifted to a comonad (K,d,e) on E such that (K,Q): p — p is a comonad in the
2-category of all fibrations.

PROOF Let (_)*: B®®» — Cat be a chosen cleavage. For every A € E, we let
ea: (KA =¢erA) — A be the chosen Cartesian lift of €,: Qx — z. For a morphism f
over j in

KA A

f
Kj,

KB——B

€B

Qr —=—x

J
Qj
Qy——v
the dotted arrow is the unique filler induced by the factorization below. This makes K a

functor and e: K — idg a natural transformation.
We define a family of co-multiplication maps d4 as the unique fillers in

where the triangle below commutes because () is co-unital.
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In the diagram

KEA—4 KA~ A
EKA
C2$ [
Qzx
\\;:\\x Qeg
QQx%;QxE—IMU

we see that eqexads = eaKeads by the naturality of e, and p(exada) = p(Keadas) by
() being a comonad. Hence by remark the three endomorphisms of K'A above have
to coincide, meaning d is co-unital component wise.

The naturality of d, that is, that dgKf = KK fd4 is the unique filler making the
left-hand upstairs square commute

KA-—" KKA
KB— S KKB—— KB
dp €EKB
Qu LN QQx
QQj
QJ
Qy s, QQy oy | Qy

is obtained by observing that expdp K f = KF = K fexada = ex g KK fd 4, from e being
natural and a retraction. Also, p(dgK f) = p(K K fd,) by naturality of 5. We apply
again.

Finally, we show that d is co-associative: Consider the diagram

KA KEKA
KKA—SKKKA—KKA
_ EKKA

Qr —2 4 QQu

RN

Qv —5— QQQT — > Q.

€QQx
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We calculate that exgaKdads = daexgads = day = exxadrada, again by naturality of
e and its retractiveness. Moreover, ¢ is co-associative, hence we can apply remark
once more. 0]
We observe that K preserves Cartesianness of maps, thus in particular Ke is Cartesian
component wise.
Finally we can define our resolution comonad. Let (Q,d,¢) = (FU, FnU,¢) be the
comonad that arises from the adjunction

F
RGrph LU7 Cat

Then, according to theorem we obtain the comonad (Q',d,e) on GrayCat induced
by lifting @ along (_);. The exponent reminds us that this provides a resolution of the
1-dimensional structure of Gray-categories. See section [A] for a more abstract point of
view on this construction. In section we will show explicitly how this comonad acts.

2.15. COROLLARY. By the above theorem there is a comonad Q' on GrayCat that pulls
back the Gray-structure onto the free category on the underlying 1-graph.

If a category C is already the free category C = F'g over a reflexive graph with injection
of generators n: g — UC, then by adjointness the counit is split

cMoc—sC

NS

C

2.16. DEFINITION. If a Gray-category G has an underlying category Gy of the form Fg
for some reflexive graph g we say that G is free up to order 1 with generating 1-cells g.

Let k: G — Q'G be the filler along (_); for the factorization e, F'n = (idg); for the
given generating reflexive graph. This of course gives a splitting

N~ (2)

If a Gray-category is free up to order 1 we may look at the 1-cells as follows: every
1-cell f can be written as [fi,..., fu], where the [f;] are generating 1-cells unique up to
insertion and deletion of units. Now, the action of k: G — Q!G can be described as
follows:

1. O-cells: k: x— x

2. 1-cells: k: f=1[f1,.... ] = [[Al - [fall
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3. 2-cells: k: (Oé: = f/) = (O‘; Hfl]a SO [fn“7 Hfﬂv SO [fT/LI]])
4. 3-cells: k: (FI o= O/) = (F; a,a’; Hfl]v SR [fn“’ Hfﬂ? ) [ 711’”)
This is obviously a section of eg.

2.17. DEFINITION. The category of Gray-categories and pseudo Gray-maps is the co-
Kleisli-category GrayCatqu of the comonad Q.

2.18. LEMMA. The map k for a G free up to order 1 has the following nice behaviour
with respect to Q1:

G—"—Q'G . (3)

S

1 1n1
QIC—7 QQE

commutes.

PrROOF We apply remark The diagram

G—E QG

{

1 1M1
Q¢ —»Q'Q'G

Lk

G—— Q'G
commutes by co-unitality and the definition of k. Also under (_); the diagram (3) becomes

Fg— " L, FUFg

Fi anUF

FUFg 7 FUFUFg

which commutes by naturality of 7. 0]
This category has Gray-categories as objects, and morphisms

G—m are morphisms Q'G Jm
in GrayCat. Composition of two maps
G—H—-K
is defined by
1 ds Nt QA1 g
Q'G—Q'Q'G Q'H K.
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Identities are of the form

GG = QG -=-G.
By way of notational convenience in diagrams in GrayCatg: we use unslashed arrows
/1 G — H to denote a strict arrow that is included in GrayCatq: as fe: G - H.

The comonad axioms make sure this is a category; c. f. e. g. [Mac Lane|[1998|.

There is an adjunction
R
—
GrayCat TL GrayCatq

The functor R takes a strict map f: G — H to a pseudo map fe: G - H where e is
the co-unit of Q. Moreover, since e is an epimorphism, R is faithful, and it is bijective
on objects, hence R is actually an inclusion; in particular, we have injective maps

GrayCat(G, H) — GrayCatq: (G, H) (4)

for all G and HL.
We note that the composite of a strict map after a pseudo map is particularly simple:

G—H—I5K - QG5 QIQIe 2L QIH LK . (5)
N
\ i {H/
QIGTH

If G is free up to order 1 we also get an idempotent function

GrayCatq: (G, H) BN GrayCatq: (G, H) (6)

from we might call strictification (note the reverse order of k and e). It preserves the
image of the functor R, that is, strict Gray-functors are preserved.

2.19. LEMMA. The category GrayCatq: has all limits of diagrams of strict maps, that is,
those in the subcategory GrayCat, that is, GrayCat is complete and the inclusion GrayCat —
GrayCatq preserves all limits.

PROOF Let D be a diagram in GrayCat, let (¢;: L — D;); be a limiting source in
GrayCat, we claim its embedding into GrayCatq: is a limiting source there as well.

Let (¢;: C' - D;); be asource over D in GrayCatq:. Thus there is a source (¢;: Q'C' —
D;); in GrayCat, which induces a map {(c): Q'C — L and this is of course a map

(c): C' - L. The diagram
C
EN

Ci
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commutes for all ¢ by the co-unit axiom of Q' and the naturality of e; c. f. also (5.
Because e is an epimorphism (c) is the unique filler. d

In particular, the pullback of two strict maps in GrayCatq: is the same as its pullback in
GrayCat. Products are obviously simply the same in both categories since their diagrams
do not include any nontrivial morphisms.

2.20. REMARK. For two diagrams {ay: G; — G;}, {bx: H; — H,} of strict maps of
the same type in GrayCatg: and a natural transformation f;: G; - H; between them there
is an induced map Um{ f;} such that:

pi lpé : (7)

P A .
G’L 't Hz

7

We unravel this diagram in terms of maps in GrayCat and obtain
lim f;

lim f;

Qlp;
Q' lim{G;, as.} <—p>>lim{QlGi, Qlay} —— lim{H;, by }

lei lri J{p;

Q'G; IH,

fi

where the map liinfi is induced by the universal property of the source { f;Q'p;} in GrayCat,
that is, im{ f;} = (fiQ'p:), which then is the appropriate map in GrayCatqi. On the other
hand, lim f; is induced by the cone fir;. By universality lim f; = lim f;(Q'p;).

In particular this applies to pullbacks, that is, there is a canonical map
fXg G XKH - G’ XK/ H'

determined by f, g, h in
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2.21. REMARK. If in (@ the maps f; are of the form g;e, i.e. the f; come from strict
maps, then we have '
lim(g;e) = (lim g;)e.

In particular in a situation analogous to (@ we have

(fe)x(ge) = (f x g)e (9)

2.22. SPECIAL CELLS IN THE RESOLVED SPACE. We now take a closer look at the
structure of Q'G. By definition 1-cells here are non-empty lists [fi, ..., fn] of composable
G-1-cells modulo insertion or removal of identity 1-cells of G; composition is concate-
nation. For composable 1-cells in G, say, fi,..., f, we have several 1-cells in Q'G, in

particular [f1, ..., fu] = [fil#o - - Folfn] and [fiFo - - - F#ofn] and eg maps all of these to
fi#o - H#ofn. Between [f1,..., fu] and [fi#o - - - #ofn] We have a 2-cell

Kftyosfn = (idfl#O“'#Ofn; [fl> ceey fn]a [fl#() T #Ofn])
that is the pulled back identity 2-cell of fi#¢---#of.. In particular we have

[f2]

,
@

}Zh 2

[f17#0 fo] A

for all for all pairs f;, fo of 1-cells of G. Whiskers and composites of higher cells in Q'G
are simply carried out in G, hence for example

kg Aol fs] = (idg o pnofss L1, fol#ol fa]s [fi#tofal#olf5])
= (idfl#ofz#of3§ [fb 2, f3], [f1#0f2> fz])

and

'Lifl#ofz,f?,#l (ﬁflny#O[f:ﬂ) = (idfl#OfQ#OfS; [fh f2, f3]7 [f1#0f2#0f3]) = Kfi fo,f3 -

Hence we obtain that

[f1]l#ok £y, 15

Lfi]# ol f2]#0l 3]

Hflva#O[fB K 1,f,f3\ Kf1,fa#0f3

[f1#0f2]#0[f3] [fl#OfZ#QfS]

[fi]#ol f2#0 /3] (10)

K f1#0f2.f3
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commutes.
We consider the possible horizontal composites of ¢, s, and ky, r, and their tensor:

[f3: /4] [fl f2] [f3,f4] [f1,f2]
®
[f3#0f4] [f1#0f2 [f3#0f4] [f1#0/2]

By we obtain

Ky fa @K fs s = (idfl#0f2; [fh f2]> [fl#OfQ])®<idf3#of4; [f37 f4]7 [f3#0f4])

idfl#ofz(g)idfﬁ‘#ofzx;

(idfl#OfZ #0€[f3#0f4])#1<e[f17 f2]#01df3#0f4)7
(e[fl#OfQ]#Oidf3#0f4)#1(idf1#of2 #Oe[fg, f4]);
[fl? f27 f37 f4]7 [fl#Oan f3#0f4]

1didf1#of2#0f3#of4;

(id g, 0 £ Fo f3o fa) F1 (fr#to foFFoid ps 0 p0)
(fr#to fottoid pypeops ) 1 (1d g 0 o Fr0 f3F0 f0);
[fh f2a f37 f4]7 [fl#Oan f3#0f4]

ididg, g 0 1304
(idf1#0f2#of3#0f4)#1<idf1#0f2#0f3#0f4)7

(id f, 0 fosto fstto ) 1 (1 fy o oo fto fa )
[fb f?a f37 f4]7 [fl#Oan f3#0f4]

i_didfl #ofo#of3#0f4 )

— 1df1#0f2#0f3#0f4a

id g, 0 fotto fatto S
Lf1, fos f3, ful, [fi#Fo f2, fs#Fofa]

meaning that this tensor is the identity of the two possible horizontal composites of k¢, ¢,
and Ky, .

Finally, note that by construction the xf _  are all invertible.

2.23. Pseupo MAPs ExpLiCcITLY. We provide an elementary characterization of pseudo
Gray-functors.

2.24. DEFINITION. A pseudo Q! graph map F: G — H between Gray-categories is

a map of 3-globular sets, together with a function F*: Gy xg, Gy — Hy, such that the
following conditions hold:

1. the restriction of F to G(z,vy) is a sesquifunctor for all 0-cells x,y of G,

2. F? is a normalized 2-cocycle, that is, the Fi,fz are invertible 2-cells thh D F(f)#0F(f) =

F(fi#of2) with

F} g1 (F(F)#0F ] 1) = Fiiso o1 (Ff, p#H0F (f3), (11)
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and for fi or fo an identity 1-cell we have

2 .
Ff1,f2 = ldel#oFfzv

115

. left and right whiskers of 2-cells by 1-cells along 0-cells are coherently preserved:

Flodhof)#Fy = F b (FagboFf)
F(Q#Oﬁ)#lF;f = F;,f/#l(Fg#OFﬁ)

(12)

. left and right whiskers of 3-cells by 1-cells along 0-cells are coherently preserved:

F(D#of)#FL = Fy 1 (FT#0F f)

. the tensor is coherently preserved:
F(Boa)#Fy = Fy pit(FB@Fa)

. the tensors of compositors are trivial:
F?2  ®F?
2 2 f1.2 77 f3.f4 149 2 .
( Ff17f2 < Ffs,fz; = Ff17f2 > Ff637f4 ) =id

. tensors of 2-co-cycle elements with images of 2-cells vanish:

2

9 Foz®Fg’f 9 .
Fa<1Fg7fE‘Fal>Fg7f =id

) F QFB 9 .
Fi Ff=——F, v Fp | =id

F<O‘<'5)#1Fg2,f = F;/,f/#l(FO‘ AFp)
Plas B)#1F2, = F yd(Fav FB).

(13)

(14)

(15)

(16)

(17)

for all suitably incident cells. Denote the set of all pseudo Q'-graph maps from G to H
by M(G,H).

Note also how the identity 1-cells of a O-cells are preserved strictly, this is part of the
globularity condition.
Note furthermore how this definition implies that the horizontal composites are also
coherently preserved as a consequence of :
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2.25. LEMMA. There is a canonical correspondence between the set of pseudo Q' graph
maps M(G,H) and co-Kleisli maps GrayCatq: (G, H).

()
/\
M(G,H) GrayCatq: (G, H)

\/
(L)Y

PROOF Given a Q' graph map F: G — H we define a Gray-functor F: Q'G — H
as follows

1. O-cells: .
F(x) = F(z),
2. 1-cells: .
F[fla"'?fn] = Ffl#O"'#Oana
3. 2-cells:

ﬁ(a7 [fla--'7fn]7[gla"'7gm]) = F'%gl ,,,,, gm#lFCY#1F/€ﬁ ..... fn (18)

where for n = 2 the 2-cell F/‘ifl f,, is defined as thh and for n > 3 as the unique

extension due to , , 7777

4. 3-cells:

F(F,O{,B, [fl>"'7fn]a [glavng = Fﬁ:gl ..... gm#lFF#lF%ﬁ ..... fn *
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the equation

Fgi#o-#oFgm

F[glz"'7gm]
ﬁ' M ~ n
[f150fn] @ _ Ffi#o-#oFf
F[gi7vg:n/}

Fg1#o-#0Fg. ,

Fgi#o-#oFgm#oF fri#o#oF frn

F(lg1,-gml#olf1,-sfn])

N

F([gi7~'~7g,:nl]#0[f17"'7fn])'

Fgi#to#oFg. #oF fi#oFoF fn

is a consequence of (18). .
Similarly, we can verify that F' preserves tensors: We calculate

F((B: 1915+ gm) (00 - G @(e; [fr, s ful U5 Fi)
= F (Boa; Ba0, B (g1, Gns fro s b (90 s s 1o fr])
= Frgpg it 1P (BOQ)H Fyy g g
= (Frg, g @Fkg o )#1(FBRFQ)#1(Fyy 0, ®F), 1)
= (F"{gi,...,g;n,#1F5#1Fgl,...,gm)®(F/ff{,...,f7’1,#1Fa#1pf1,...,fn)

F(ﬁa [gla~-7gm]7[917"'7g;n’])®ﬁ1(a; [fla'~-7fn]7[f{7"‘7f'r,ﬂ])

using and . Preservation of the remaining operations is equally simple to verify.
Conversely, given a Gray-functor G: Q'G — H we define a pseudo Q! graph map
G: G — H as follows:
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5. 2-co-cycle: é?ﬁ,b = Gry p, = Gdy g0 10; [[1#0f2), [f15 [2])

This is obviously locally a sesquifunctor. We check the co-cycle condition:

Gl poors #1(G Fr#0G, 1)
= G(idg, gofosofs: Lf1, fofFofs], [f1#Fo foFo f3]) #1 (G f1l#0G (i fyto 135 [ fo, f3]s [foFo f3]))
= G(id s, o fottofs L1, foFfo fs], [i#Fo fotto f3])F1G (i, s fatto s 15 fos 3], [f1, fo#Fo f3])
= G(idf, 4 fatto s 15 fo, f3], [[i#Fo fodfo f3])
= G(idpgofaofs [1#0f2, f3], [Ni#ko fo#o f3]) #1G (1 oo oo a5 10 o, f3], [f1#F0f20 f3])
= G(idy, g0 oo fs: LF1#0f2, f3], [fiFFo fodbo f3]) #1(G (id g 0105 [f1, fol, 1o fo] ) #0 G f3])

- éfcl#of%f:&#l <Gv§'1,f2 #Oéfd)

Furthermore, we check the coherent preservation of whiskers:

G(Oé#of)#1(;;f
= G(at#of; [9#0f], [9#0f)#1G (idgyor; [9, 11, [9F0f])
= G(a#of; g, f1, [9'#0f])
= G(idgg,s; 19, fl [9'#0f))#1G (aFto; 19, £, 19, £1)
= G(idgyos; 19, 1, [9'#0 1) #1(G (s (9], [97)#0Gf])
= G2 #1(GattoC )

The remaining axioms are verified just as easily.
We verify briefly that G = G, for 1-cells we have

é[fh o fal = Gfidto - #0G S = Glfil#0 - #0Glfa] = Glf1s- - -, fal

and for 2-cells:

Gl [frs s fals [l F]) = gy #1 GGy,

G(idf{#O"'#of:l,; [f{#o T #Ofrlz’]’ [f{? S fq;/])
= #1G (a; [fi#o - Fofrl, [idto - #oful)
#1G(idf1#o~“#ofn; [flv ceey fn]v [fl#o te #Ofn])

G(a; [fla'-wfn]’[f{?"'vfrll/])

Finally, F = F. 0

2.26. REMARK. Given two pseudo Q' graph maps F: G — H and G: H — K their
composite GF' is simply the composite of the underlying globular maps with cocycle

2 2 2
(GF)y, ., = GF}, 1, #1Grp, py, -
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2.27. LEMMA. Under the correspondence in lemma a pseudo Q-graph map F has
trivial cocycle F? iff the corresponding Gray-functor F is of the form Ge.

PROOF Considering definition we see that I € M(G,H) is an ordinary Gray-
functor iff F? is trivial, in which case Fe is the embedding of F in GrayCatq with

(Fe)Vi, ;= Feryp g = Fe(idgpop; [hi#ofol, [f1, f2]) = Fidpgop = idp(spp). That
is actually G = F.
In turn, if we are given a co-Kleisli map Ge with G a Gray-functor we obtain (Ge)vffhf2 =

Gekp,p, = ida(pistof)-
In particular for G free up to order 1 with section k (@ induces an idempotent map

MG, 1) (6, m) (19)

with image GrayCat(G, H).

We spell out the action of this map on an arbitrary pseudo Q! graph map F': G — H
for G, free up to order 1, at the level of 1- and 2-cells. Let fi = gi1#0 - #091,m
and fo = ga17#0 - #092.n, be unique decompositions up to units in G of the 1-cells

f1, fo. This means that k(f1) = [g11,---,91.n)s k(f2) = [g21,--.,92n,)- Furthermore,
for a 2-cell a: f = f" we have k(a) = (a;[911,. -, 91a); (9115, 91 ,0]), in particular
k(ids) = (idy; (911, - - -5 G1n)s [91,15 - - -, 91.0]). Hence for a composite we get

(er)v<f1#0f2>
= (er)[ﬁ#ofz] = Fk?(f1#of2) = F[gm, - 91n15 92,15 - - - 792,%2]
= Fgi1#0 s Fg1m#Fol 9210 #092ns
= (er)v(fl)#o(ﬁke)v(ﬁ) . (20)

For the 2-cocycle we get

~ 2 ~ ~ .
(Fke)'s, 1, = (Fke) (kg p,) = Fh(idf4,5,)
= F(idf1#0f2§ [91,17 ey J1my 92,15 - - - 792,712], [91,1, ey 1n, 9215 - - - ,gz,m])

= FK:gl,la---agl,nl792,17--'792,712#lFldfl#OfQ#1F"€gl,17---7gl,n1792,17“'792,77.2

Fﬁgl,h---,gl,nl 192,15++,92,n9 #lldF(fH#foﬁ)7éé1F/{g1,17---,91,n1 192,15+++,92,n9

F’ig1,1,~~,91,n1,92,17~~~7g2,n2#1F’191,1,~~,g1,n1,92,17~~~,92,n2
=id:

Flg1,1,-,91,n7 :92,15--:92,n5]
= ingl,l#O'”#OFgl,nl#OFQQA,I#O"'#OFQQJLQ . (21)
These equations and make it palpable how the operation (19) yields a strict

Gray-functor.
We will see in section [6l how F' and it’s strictification F'ke are related.
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3. Path Spaces

We construct a path space for Gray-categories and prove some essential properties. We
derived the idea for this construction from Bénabou| [1967]. Maps into this space can be
viewed as right homotopies between functors and are our axiomatization of transformation
for morphisms in GrayCatq:. In section {4 we will introduce an internal category structure
for this path space; its composition operation will allows us to compose transformations.

3.1. DEFINITION. Given a Gray-category H we define the path space ﬁ where the cells
wn each dimension are diagrams in H:

Hy={ — (22)

( f
—
ﬁ1 = (gZ;QOaglafa f/) gi /gzlgl (23)
—
\ f
(
/ f
3 h; 7 V%
) h@@% o =2 ] LE . (21)
go, 91, No, 17f7f / ; i
\

'y, Ty, a3, B3; g2, ha, !
ﬁg 1, 12,3 /83 92, 2 (Fl: aq = ﬂl?) such that 63#2((f #0F1)#192)

B gf&i,?é,%{%jf’ Lot ar = By = (ho#F# 1 (Datto f)) #oaus
(25)

Compositions and identities arise canonically from pasting of diagrams in H, as detailed
below.

The condition in on the 3-cells is the commutativity of the following diagram

f f
— —

h@ oygz//lm% hi K/hQ// L@El (26)
\> — —>l

I I

(f'#0T1)#19 hao#t1(D2#of)

f f
h@f ﬂgf lglE hi K/hQ// L(@ql
\ f, B3 > 1

The identities in each dimension are obviously the ones consisting of identity cells.
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3.2. REMARK. By construction the map (do, d;): ﬁ — H x H is 2-faithful in the sense
of definition but in general not full.

3.3. REMARK. The map i: H — ﬁ 18 2-Cartesian and 1-faithful, but not in general
1-full.

3.4. PATH SPACES AND CARTESIAN MAPS.

3.5. LEMMA. The path space construction U of Gray-categories preserves 1-Cartesianness
of maps.

PROOF Let’s as assume we have a situation

¢-LH
dﬂdl dudl ,

take a pair of parallel 1-cells in @
f f
— —
gi /g ) lgl hi /’@lhl
— —
I I

we need to show that ? is bijective on the intervening 2-cells. That means given

Br: F(go) - f(ho) Ba: F(gl) - F(hl) Bs: F(92#1(ﬁ2#0f)) = F((f/#oﬁl)#ng)

there are unique

ar: go = ho az: g1 = Iy as: gt (afof) = (f'H#or) #1092

with F'(a;) = ;. But these exist uniquely by the 1-Cartesianness of F.
The same kind of argument can be applied to parallel 2-cells in @ U

3.6. REMARK. The functor U preserves 2-Cartesian maps.

3.7. LEMMA. A pullback of a Cartesian map is Cartesian if p preserves pullbacks.
PROOF Let F' be p-Cartesian, and G*F' the pullback of F' along G.
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Let H factor through G below as p(H) = p(G*F)u, then GH factors through F' below
as p(GH) = p(GG*F)u = p(F)p(F*G)u, hence there is a unique lift (p(F*G)u). Hence
there is a universally induced (u) with G*F(u) = H.

The functor p preserving pullbacks ensures that p(u) = u. U

3.8. VERTICAL COMPOSITION OPERATIONS IN THE PATH SPACE. We need to describe
the vertical composition of 1-, 2-, 3-cells along 0-, 1-, 2-cells respectively.

We designate the composition in H by #; and the interchange by ®, in ﬁ we define
the respective operations []; and X as follows:

hOog = (ho; ho, has f7, ) 00(92; 90, 91, o f') = ((hQ#Og())#l(hl#ogZ);)

ho#o090, o1, f, 1"

This is just the vertical pasting

f
—

£

—
7
hi i lhl
—
f//
Obviously this composition is associative and unital.

3.9. REMARK. Considering we note that if the 1-cells in H are invertible, with inverse
(), then the 2-cell

(ha#tog0)#1(hi#0g2)
m can also be written as a horizontal composite in two different ways:
(%#07) 492 = h2 < (7#092) (28)
There is of course also the opposite horizontal composite
(%#07) >go = ha> (7#092) (29)

and a 3-cell - -
(hadtof')®g2 = ha®(f'#0g2)
going from to . The picture , however, always means .

The vertical composite of two 2-cells is

_ B3; B1, B2, ha, ka; as; a, g, G2, ho;
e = (h07h17k07k17f7 f’) = (g07gl7h07h17f7 f’>
_ ( (53#1(062#0f))#2((f,#051)#1043); ) (30)
Bi#F1an, BaFt10i2, g2, h2; 9o, g1, ko, ki, f, f
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which has as its first component the following composite of H-3-cells

f f f
— — —

=V 53#1(a2#0f)ki ]Q//}C

kﬁ%ygg lgl%kﬁkoﬂh{/ i@ s o.%% %1 .
—, L S L

We shall henceforth argue mostly diagrammatically in terms of such 3-cell diagrams, as
it is fairly obvious what the lower dimensional components are.

Vertical composition of ﬁ—B—cells is particularly simple:

Ap: = 71,> (Fli a; = 517> (A1#2F12 o = 71a)
AL = ] = 31
? (Azi Bo=7) P\ Dot w2 fo Ao#tal'y: g = 7 (1)

The condition is obviously satisfied, since we just paste two instances of the com-
muting square vertically.

3.10. WHISKERS. We need to define three whiskering operations, 002, '[J3, 2003, where
the raised indices indicate the dimension of the operands, the lower one the dimension of
the incidence cell. Their symmetry partners are then obvious.

We define right whiskering of a 2-cell by a 1-cell as:

k,1|:|2 — (ko kn. ke Y/ 1[,2 ag; g, Qg )
Oa ( 2y Oy 1’f7f ) 0 (go,g1,h0,h17f,f/
((kQ#oho)#l(kl#oas))

F#o((ka®on ) #1(k1#092)); (32)
ko#Focur, ki#Foca; '
ko#og0, k1#191, ko#oho, ki#oha, f, f”

Diagrammatically this is the following composite:

f f f
.

—
hgé(ﬂ; 0 gz//lgl (k2®a1) hoé(q: 0 g{ lfh (k2#£0ho) hi hg// 1<=>1
”f’—> #1(k1#092) /f’—> #1(k1#o0a3) ff,_)l
ki kg//lkl ki kg// lkl ki k:g// lkl
V4 V4 V4

—

—
f// f// f//

For reference (,617 62, ﬁg)[jg(ho, hl, hg) is

I, AN
hi ”hz// lhl (hQ#Okl) hi hg// h1 (mQ#OhO) hi
SN #1(ho#oB3) 47 3 #1(h2®B2)

/ ol "
“\%f’y’” l’“ iz/’” Eﬁ’“ iy

f// f//
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The action of 1-cells on 3-cells is as follows:

[y, T, a3, B3;
mlmgf‘ = (m2§m1>m27f,7 f”)ng aq, g, 4182, g2, ha;
907gl7h07h17f7 f/

mo#ol'1, mi#ol's,
((ma#toho)#1(miFFoas))#2(Me®an)#1(mi#eg2)),
((ma#oho)#1(miFoSs))#2((Me®B1)) #1(Mm1#0g2));
Mmoo, MofF102, MoFFoB1, mi#oSe,
(mz#ogo)#1(m1#og2)7 (m2#0h0)#1(m1#0h2);
mo#ogo, MaFogr, MoFtoho, mi#oha, f, f”

We claim this is again a proper 3-cell in ﬁ, that is, the whisker satisfies , as can be
easily seen:

f f f
— — —
hgé(az 0 g{ (ma®a1) @ oyg/ lgl (ma#oho) hﬁ hg// )11¢> 1
f’—) #1 m1#092g Ly #1(mi#oas ff%i(/q
m 'mg m1 m 'mg mi
V4 V4
— —
f// f// f//

L I i
(f"#omo#ol'1) (ma#oho (ma#oho)
#1(ma#090) naturality #1(miftof #0T1) (26) #1(m1#oh2)
#1(mh}#og2) #1(m17$092) #1(m1$0F2#0f)

h@ oygg lgl h@ 0”9{ lgl hi ﬂhg// i@gl
= al— —f'—>l

o\

E————
mi ”mé/ Jml (m2®ph) mﬁ p 4 lml (ma#oho) mﬁ ”Tr/lg/ lml
7} #1(m1#092) = #1(m1#053) -

Finally, we define 3-2-whiskering:

', Ty, as, 835 g2, ha,

s Y1572, P2, Ko
VBT = (hz?’ le 1302 k12f2f') 03 o, az, B, fa;
7 ’ ’ Y gO)gbhOahlvfa f/

N, el s,
(vs#1(atto f))F2((f'#on)#103),
= (73#1(52#0f))#2((]”#071)#153); (33)
G2, ka2, i#F100, Ve Ft 102, V181, V2 B2;
90s 91, ko, kv, f, f
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It yields a 3-cell in ﬁ:

f (f'#om) f V3 f
— — —
e e f A lgl#léko@/; ho 7 kglgﬁgi 4 }C% (34)
NG 7l 1
f/ f/ f/
(f'#om1) (f'#o0l'1) ko H‘
#1(f'#o0l'1) (126) #1h2 func. #1(Ta#0f)
#191“ #1(2#o0f) #1(ca#of)
_r, _r, _r,
7 3
\} (f'#om \l l l
I’ #1833 f #1(B2#0f)  f

3.11. HORIZONTAL COMPOSITION OF 2-CELLS. We shall use the following slightly ab-
breviated notation for the higher cells of the mapping space, for example writing
as:

— = klﬂga = (k23 ko, k1, f’>f//)1D(2) (043§CY17042

g, n)

-

_ (((k?Q#ono)#l(k1#0a3))#2((k52®a1)#1(k1#092))5>
ko#toou, k1#foc ‘ kOog, kUon .

In the same spirit we write the opposite whiskering:

k
—n>@ = 320gn = (Bs; b1, Ba| k,m)

_ (((m2#0n0)#1(52®”2))#2(53#1(kl#onz)%)
Bi#ono, Ba#ton ‘kDon, mUon '

So now we can define the left horizontal composite:
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g

k

n m

#a(Bs#1(k1#onz2)); #a((ka®an)#1(k1#092));
Bi#ono, B2#tor ‘kDOn, mUon ko#foou, k1#foca ‘ kUog, kUon

(i) eissun)
(s (LSS

a1 <4y, g < 52‘]47‘:]097 mUon

( ((ma#fono)#1(B2@ns)) ) ( ((ka#tono)#1(k1#os)) )
[

and conversely,

! b ( ((m2#0n0)#1(ﬁ2®n2)) ) ( ((@#0”0)#1(%#0(13)) )
[

(424l =p@a=|  #albtr(nttom) (R ) (ki Hhoge) )
\nj \'m/\ Bi#tono, Patfor ‘kDOn, mUon ko#focu, kl#OQQ‘kDOQa kOon

(b i)

((katono)#1 (Fr #ocis)) )) ;

#: <<f "Hobittono) 1 (#2(<k2®a1>#1<k1#0g2)>
a1 <4 S, az4 /62‘]{5[]097 mUon

3.12. TENSORS. Finally, in

9 k g k

letting S X a = (1®aq, f2®ay) makes H a Gray-category. This is a well defined 3-cell.

3.13. INVERSES. If H has invertible 1- and 2-cells the inverse of a 1-cell
f

LN
gi /92 lgl

—
f/

in ﬁ is given by

Sl
=
[ |
%

i

S|
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3.14. Axiowms. This composition of ﬁ—Q—cells is associative: Given three 2-cells

f !
a = h@f} yg{ lgl = h[i ﬂhg// A%l
\) f/ l J/
6 = ko<=B= )lo hz// hi1 % k kg// }Cl¢kF h1
17 Z- 1
! !

f f
— —
¥ = ﬂ@}m”kz// lkl % mi /g”lnléﬁ\tkl
T e

we use and the functoriality of the whiskerings in H to compute:

(73#1(ﬁz#of))#2((f/#oﬁ)#ﬁal;
(’}/Dlﬁ)ml@ = e |:|106

w3
7151, Vo1 B2, ha, ma; ho, by, mo, my, f, f/

(W3#1(042#0f))
= #2((f/#0(71#151))#1043);
V#F1BLFF 100, Vo1 BoFF 12, 92, M2; Go, 1, Mo, M, f, f

/ (V31 (Battof)#1 (2o f))
(et il ol | | A eotas)
B N#F 1B F 11, Vo1 BaF 10z, B : VTIPS e

NF1Br1FF100, YVoFF1 BaFFi 0, G2, ]
Jo, g1, Mo, My, f7 f/

(V31 ((Battrc2)Fo f))F2((f'#ov)#1Bs#1 (a#to f))
= Fo((f'Fo)F (f'#051)F103);
Y BiF 1o, YeFt 1 BaFb 1z, G2, Ma2; Go, 91, Mo, M, f, f

(va#1((BaFtro) Fof))#2((f #o1)
B #1 ((Ba#t1 (cato f)#2((f#o0Br1)#103)));
3
VFF1BLFF 10, Vo1 BoFF 12, 92, M2; Go, 1, Mo, M, f f
(73#1((52#102)#0f))
= #ao((f'#om)#1¢3);
Y BiFF L, Vo1 BaFF 102, G2, M2; o, g1, Mo, M, f, f

_ CS;Bl#lalaﬁZ#l()Q’ B
—h (927/@;90,91,ko,kl,f7 ] Y01 (0L« .

. !
g2,MmM2; go, g1, Mo, M1, f7f




128 BJORN GOHLA

We check that 2-1-whiskering in H is functorial, that is, mOy(S01a) = (me )1 (mOpx).
In diagram the diagonal is mOy(f0;«) and left and down is (moS)0y (mOo). 1-

2-whiskering in ﬁ is functorial by duality.
It is obvious that 3-1-whiskering is 2-functorial, that is,

(mo, my, m2)do((Ay, Ag)Oy (T, Tg))
= (mo, m1, ma)Uo(A1#2l1, Agfal's)
= (mo#o(Ar1#2l'1), mifo(As#al))
= (((mo#ol1)#2(mo#tol'1)), ((Ma#0lA2)#2(mi#ol'2)))
= ((mo#oAl), (m1#0A2)) 2((m0#0F1), (m1#0F2))
= ((mog, my, m2)do (A1, Ag))Oa((mg, my, me)To(I1,T2)) .

By duality, 1-2-whiskering in ﬁ is functorial as well. And the 3-2-whiskering thus
defined is functorial with respect to vertical composition of 3-cells, that is, vy (IT,A) =
(vO,I)Oy(vO,A), as can seen by inspecting the following diagram:

f} (f'#om) f, V3 _>f
kﬁ‘ fo ”g{ lgl#lékoé ho K/h{/ )Lﬁm%fzi K/kg// }em ]
— \)i—>l —>l
f f I
(f'#om) (f'#0A1) 2 m
#1(f'#0A1) (26) #1h2 func. #1(A2#0of)
#192 #1(wa#of) #1(wa#of)
f (f'#0m) f f
— — —
e b A [ o o e B i L%
\’ 7 \*lTl —,>l
(f'#o0m1) (f'#0T1) k2 H
#1(f'#0l'1) (26) #1ha func. #1(L2#0f)
#192 #1(a2#of) #1(as#of)
f f f

—
o A

—
g e—
Lx_) (f'#om \l

#1083

f/

—

/

—

#1(B2#of)  f
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We see that 2-3-whiskering is functorial:

(AL B) s (1 T)
= (A1#181, Dot Bo) o (ni#11, ya 1 12)
= ((A1#181)#2(nm#1T1), (Ao#162)#2(72#112))
= ((51#1F1)#2(A1#1041)> ((52#1F2)#2(A2#2a2))
= (617£111, So#F1 T2) Do (As F1c, Dofran)
= (60,00 (AD4 @) .

So we can conclude that ﬁ is locally a 2-category.
That interchange X is natural and functorial in both arguments follows immediately
from the respective properties of ® in H. Thus we have:

3.15. LEMMA. The path space ﬁ for a Gray-category H is again a Gray-category. O

3.16. LEMMA. Given a Gray-functor F': G — H there is a canonical Gray-functor
o

PROOF The Gray-functor ? acts by applying F' to all components of the cells of @:

(m—>f y> — (Fx—>Ff Fy)

f Ff
— —
gi /92 lm — ng /Fglpgl
— —
f Ff'
f f Ff Ff
— — — —
y F .
h@f yg{ ng =2 hi K/hg// il = o |- Fh@bigoﬂFgg nglEO“?’ Fhi{ ;héli@ For
— — s -
! f/ Ff/ Ff/
I I
h0<=(~; fo yg{ lglé hi ”hz// )1%1 (a}' P a0 5 ngl = Fhi thFb@’m
\ — —>l
I’ Ff F f’
(f'#ol'1)#192 h2#1%ﬁ#of — (Ff'#0FT1)#1Fg2 Fha#1( JU‘JH#oFf
y y
h@ fo /{ lgl — hi z/'”// L@l F@ Plg%Fgé ngl = Fhi tpﬁ@gl
~_ 17 Bs Ti ~_0 ~ FBs Tﬂi/

f
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This preserves the structure of @ since I’ preserves all commuting diagrams on the nose.
O

3.17. THEOREM. Furthermore, (TS 18 canonically an endofunctor of GrayCat.

PROOF Obviously GE = G F. O
We finally note the following:

3.18. LEMMA. The functor @: GrayCat — GrayCat preserves limits.

PROOF This is obviously true for products.
For the equalizer E of two strict maps F, G we remember that the action of ? and 8
is defined by the component wise action of F' and G, that is, a cell of f is equal under

and G iff its components are so under F' and G. O
A straightforward calculation shows how this forms part of an adjunction

O
GrayCat T®]I GrayCat

where I is the free Gray-category on a single 1-cell (01): 0 — 1 and ® is Crans’ tensor
of Gray-categories.

4. Composition of Paths

We want to turn the path space that we constructed in the previous section into the arrow
part of an internal category, which requires us to define a composition map as follows:

4.1. DEFINITION. We define the composite of paths as a pseudo Q' graph map m: ﬁxH
ﬁ > ﬁ by horizontal pasting in the following fashion:

1. 0-cells
(y M s fy)._><x F#of Z)
2. 1-cells
_r _r AN N
e Ao A7) o | {1 Ao
— — ——
7 F ooy

F#of

—~ /
(F'#092) = A
/#1(93#0f)

F#of
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1, 1, 1, f
R T G b A |2 A
P — 7 —
f! !

3. 2-cells
f 7
— h<f0 g{flﬂgz l
f 7
4. 3-cells

(f'#o Fl)#lgzlﬁ

=(F'#oT2)#1d

(F'#0a3) 7 (F#

f #oh2)
#1(52#0f) i
N

e
S

f 7

mhz#l(F2#of) , (f#orl)#wm

f

_QQiO 2l91é7{h2h> <og{ n = hi f/)l g1
f
_r,
gio”m gi ,83 T{hth (0 9{ 915 hi /L
f

7

# )
H i /;% W o

fl

mh2#1 (T2#0f)

f 7 (f'#oas) f (F'#oha) f 7
_— _
Ao i G i e
— S S
oo f F oo
(F'#0f'#0T1 Il (F'#0h2)
= #1(f'#092) (J?’#ofm)#l(J?’#owb#of)#l(g/i#of) m#l(’l/;#of)
#1(B#of) #1(Ta#tof#0f)
f 7 f 7 f
— — — L
//
h 0 g{ 1,35 0 hq h E h
(f : fﬂi J ! f/#053) i ? ;152 Aﬂql #ohs) i{ Z 1ﬂh2 >
f I’ #1(32#0f) f 1 #1(53#0f) f 7

5. the 2-cocycle: for a (vertically) composable pair in ﬁ XH ﬁ we have the composite
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of the tmages and the image of the composites under m.:

T
m fgi yg{lgi, gii ﬂg/{lm f f
— E——
7 I gi ﬂg{ 1”92/ lgﬁ
. -| X
> / v 9 / 9
: f gi %2 flygg J/g1
m 90 5/ g’\ gl é// gi Iz ﬁ
—g| 2% | Ve
— —
77 £
f f
go V74 /{ —~
:g 72 |9 gi ﬂg lsh f f
— — i { /lA
f! f’ g ﬂg lygg g1
m |:|0 ) DO = —f f/:l_)
o f | 7o
f ; g ng j]/lygz 91
g{) / -~ g/ }// g/ m —
WA AR T
— 7
Iz f

-~ -
goi”g{ lsh, Qi e lgl , f ; f (f #ﬁogg#ogo)
- ol V4 7| #1(95®g2)
~ —/> g g 1yg2 g1 -~ ~
2 F f Z > ~ #1(91 #0920 f)
m i - famd E—+1
, ! | #Z N7
5? / Y 9 ng 51”92 91
A |5 o A L 7
‘?ﬁ f//

For completeness’ sake we give it in the algebraic notation:

(ﬁ#ogé#ogo)#1(9A§®92)#1(9Ai#0§2#0f);
idgf)#ogoa idgA,l#oﬁ,
(ﬁ#ogé#ogo)#l(gé < 92)#1(%#093##),
(f"#ogé#ogo)#l(gé > gz)#l(gi#oé\zﬁgfﬁ
90090, 917091, GoF090, 917001, fHofs ["Fof"

_

!
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(36)

”Q{ 1”g2/
— j:_)
ff / '%o/

g1

91
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4.2. LEMMA. The map m: ﬁ xHﬁ —+> ﬁ is a pseudo Q' graph map and hence by lemma
uniquely defines a pseudo Gray-functor.

PROOF As defined above, m is obviously a 3-globular map. We verify that it is locally

a sesquifunctor: Let (81, 3?) and (o', a?) be two pairs of 2-cells in H X
along a pair of 1-cells. Then

m((8', 7)0i(a, %)) = m((B'Dha’), (BDha?)) = m(B', B*)Dhim(a’, )

follows obviously from the fact that in H 3-cells compose along a 2-cells interchangeably.
Let (A';A?%) and (T, T?) be two pairs of 3-cells in H X
2-cells. Then

composable

composable along a pair of

m((AL, A2 (T, T2)) = m((ATT,T), (A200,12))
= m((Aj#al, Ag#hal'y), (Al#IT, Ad#oT3)) = (Aj#al1, AZ#T3)
= (A1, A3)D2(T1,T3) = m((Ar, Ay), (AL, A3))Dem((T'1,T), (IF,T3))
= m(A', A*)Oym(T,T?).

For the vertical composition of 3-cells see , their images under m are pastings of
commuting diagrams, so preservation is immediate. Preservation of whiskers of 3-cells b
2-cells given for each component of ﬁ X | ﬁ in , again according to definition
m pastes two such commuting diagrams horizontally. Preservation of units is trivially
satisfied. This concludes verification of 2.24I[1]

We verify that m? is a 2-cocycle in (39)). Note that in the last column of

(" #oky#oho#ags)

(fm#o/f_%#ohé#ogé)

"2 1 1
#1(k3 > hi#togd) (Ko o [ ogh) | 7;(222721# 0?3)
#1(ki#ohs > g3) hlEtoahltogh) | | St |
#1 (k2 #oh3#ogi 0 f 1) 1 (ki#o((ha#0g1)
h3 #1(hi#og3))#of")

#1 (ki#ohiFogatof ') #1(ki#ohi#ogs#of")

showing how the multiple horizontal composites of squares can be simplified. And the
left hand rectangle in commutes by local interchange. Also, m? is normalized by the
unitality of the tensor in H.

We check the coherent preservation of whiskers of 2-cells by 1-cells on the left, that is,

m3 Ch(m(@)Tom(g)) = m(alog)Thmi,,

in (40), where the parts commute by the naturality of the tensor and the local interchange.
The corresponding condition for right whiskers is verified similarly. Coherent preservation
of whiskers of 3-cells by 1-cells is checked in the same way using in addition the naturality
of the horizontal composition of a 3-cell by a 2-cell along a 0-cell. This proves conditions

and (T3).
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We verify the coherent preservation of tensors, i. e. that

m(B8 X a)0ymg, = mzﬁDl(m(ﬁ) m(a)), (42)

where «, 8, k, h, k, h are 2- and 1-cells respectively in ﬁ xHﬁ. In terms of constituent cells
can be drawn as , where the pasting of the center and right squares corresponds
to the right hand side of the equation (42)), and the pasting of the left and outer squares
corresponds to the left hand side. Equality in is equivalent to the top and bottom
squares commuting, since the aforementioned ones do so by assumption.

We thus spell out the details of the top and bottom squares in : The diagram
shows the details of the top square of . The central octagon of is broken
down in . The parts of these two diagrams commute essentially by the Gray-category
axioms and the definitions of 2- and 3-cells in the path space. The bottom square on (43)
is analogous.

This proves ([14).

Furthermore, we check that tensors of cocycle elements are trivial: We calculate ac-
cording to section

m§1,f2 X m?‘37f4 = ((m?”17f2)1®(m3”37f4)1’ (m?‘17f2)2®(m?”37f4)2) )

where according to all the arguments on the right are trivial, hence their tensors are
trivial, that is, holds.

Lastly, images of 2-cells tensor trivially with co-cycle components by the unitality of
the tensor in H and the fact that the 2-cell faces of m? are trivial, hence verifying

and ([L7)). O

4.3. THEOREM. There is a pseudo Gray-functor m such that

H xu H —P ﬁéﬂ (45)

do

is an internal category object in GrayCatq:.

PROOF We need to verify that m is an associative and unital operation. We need to

check first that
ﬁ Xdo,dl ﬁ Xdo,d1 ﬁ E‘X—T?ﬁ Xdo,dl ﬁ

o L

H xgpa H ———— H

where m x H and H xm exist by the observation in remark On the level of globular
maps this is obvious, since it is just pasting according to definition Proving that the
cocycles both ways around are the same, means drawing a diagram that looks like (39)
with each array transposed.
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Unitality is obvious, source and target conditions

ﬁ Xdo,d1 ﬁ

di

a4 e

AN

141

hold by definition . In particular, the 2-cell components of m? are trivial, thus dom

and dym are strict Gray-functors, even though m is pseudo.

O

4.4. LEMMA. For a strict Gray-functor F' the multiplication map m is natural, that is

H x g0, H —2 H

|

K Xy, K —+ K

Note that by @) we have (?e)k(?e) = (? X ?)e.

PROOF Verifying elementwise is straightforward.

We can define the 1-cell inverse to

with respect to m as

where () is the respective vertical inverse in H.

(46)

(47)
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4.5. LEMMA. The path space 1-cell in is a left and right inverse to (A7) with respect
to m.

PRrROOF

o g1 X
g1 K
_ Iz Iz
r 7

f! !

And similarly for the right inverse. U
Furthermore, these inverses behave well with respect to the internal category structure:

4.6. THEOREM. Given the situation in , assume H is a Gray-groupoid, then there
is a Ql-map o: ﬁ - ﬁ (“opposite”) such that becomes an internal groupoid in
GrayCatq:.

PROOF The action of o on 0- and 1-cells is already given in , the effect on 2- and

3-cells of ﬁ is analogous.
Furthermore, we need to give a 2-cocycle of, = o(h)0oo(g) — o(hTog) the non-trivial
part of which is the following 3-cell:
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—
[l {[ /lf’ 90
g2

—
i f g1 K
E— —_—
o hi /th(/u Llpo gi /92 lgl -

—
R fi /l b ho
ha

—
h1 fr
77
f f
X \
90 90
— —
g1 7 | 9o g1 v | f 90
2 F#0o %
“\/ ((haoT)®75) v
7 0T 7
e 4
ho ho
hl fJ{ /lf” ho h f\[{ /J{f” ho
hz h2
N L —_— _
h1 77 h1 b
f” F
; ol f
X =ha<(f'#092) ——
ho#0g0 =(h2#0g0)#1(h1#092) gi /nggl
{5
h1#091% X
f//
7

For the relationship between horizontal composition and pasting of squares see remark
5.9
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We check that o® is indeed a 2-cocycle. Given suitably incident 1-cells of H we need
to verify that the analog of hold, that is,

Oi,h[logml (0(k)D00i21,g) - OIQcDoh,gml (Oi,hDOO(g))a

hence commutes. [l

5. Higher Cells

In order to describe higher transformations between maps of Gray-categories we construct
an internal Gray-category in GrayCatqg: as a substructure of the iterated path space.

5.1. COMBINING PATH SPACES AND RESOLUTIONS. We begin by describing explicitly
the action of ¢ QlG — 5 @ as follows:

? ( [fl»---7fnf}) _ (fl#O"‘#Ofnf>
% - %

[f17~--afnf] fl#O"’#Ofnf
V4
(923l91,0,,91,ng, 5
— [90,07“' flv"wfnf]v [gl,Ovma go,0#0" g1,0#0°
(& =
gO,ngO] [f{’”.’f;lf" gl,ngl] #Ogo,ngo 92 #Ogl,ngl
gO,O"“»gO,’rLgO])
[f{r"yf;zf/] f{#o-"#ofﬁf,

(CY3;[91,1,---,91,ng17f1,17.- f1nf
ity b o,
(@15 [90,15 s Goung, ) (P01 - - ho o ]
(a2; [91,1, . 791,%1}, [h1,1, oy nhl] ‘ '
063,041,062792,]12,

925 (91,15 s Gungys fras -+ fing]
— ( [/ ;0 ! ) 90,1#0"'#ogo,ngo,g1,1#0'"#ogl,ng17

o

| hoa#Fo - Fohon,, MaFo Folin,,
fiatto - Fofing, fliFo #of{,nf,

[fl,lv'--7f1,nf,a90,1>'-'790nh0
(h2§[hl,h---,hl,nhl,fl,l,-- flnf
[f{jl,---,f{,nf,,ho,h--- tho
(90,1, - - - ,go,ngOL (911,01 ngl
[hm,...,ho,nho],[hn,.. o, ),
it fung i )
)

1,1
— (301,81, (901 -+ -3 Gongy )s [ho15 - - -5 hony, 1),
’ s ’ — (D), T
‘ ((Fz;azaﬂza[91,1,---;91,%1],[hl,h---ahmhl]) ( b 2)

where for the 3-cells we used the abbreviated notation of (23).
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Combining Path Spaces and Resolutions
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2. 0C T i un wi
5.2. LEMMA. The map € : Q'G — G is Cartesian with respect (_);.

PROOF ¢ is obviously surjective on 0- and 1-cells and 2-locally an isomorphism. [J

N =\ . Ol c
Let F 4 U: Cat — RGrph be the usual adjunction, then (€¢);: Q'G; — G has a

splitting s: U(@l) — U(Q'Gy) under U as follows:

= l90]  (g2;lgv,fT.[f ,90]) | lg1]

(']

Obviously in RGrph we have U(?l)s = idU(@l), taking the transpose 5 we get

FU(G1) = Q'C, —— QIG,
S |7 50)

. — . . . — . 1@ 1 . .
since € is Cartesian we can lift 3 through (_); to obtain ¢¥: Q'G — Q'G satisfying
—
QG QG

Rg . (51)

. . H . . .
Let us consider the action of 5: Q1@1 — Q!'G,. On O-cells it acts just like s, on
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1-cells we have the assignment:

(7]
f’?’b
/
g{i /nJg? /
9 ((gh#0gi#0-#ogt)
ot Hee
5 : = | lob-98]  #1(oltoHogito Hog)# | lohah)
ft #1(g #o#og! " H#093);
[gil7"'79?7.}“”]7[]“079(%7"'798])
| 4o /
g
fO

[£°]
5.3. LEMMA. The family 1 is natural with respect to maps F': G — H.

PrOOF Consider the diagram

Ql@—G>Q1G—>@

Q
ol
A

=l

Qlﬁ—>C21HH—>ﬁ

since the top and bottom triangles as well as the right hand square commute we ol obtain
eHwHQ ? = eHQ1F¢G Since 1); = 5 we need to only verify that 5g(Q* ? (Q F>18G,
but this is immediate from the action of (_) and Q'. Naturality then follows by remark

2.10l O
It remains to be verified that ¢ is compatible with the co-multiplication d: Q' —
Q'Q!', that is,

Q'€ Q€ Y% Q¢ (52)
] b

— —

Q¢ y Q'Q'C

commutes. We will prove this using, again, remark with € and the commutativity
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of the underlying diagram of categories

FU(C) % pUFU(G ) L25 FUQIGY)
1 L
Q'G, — Q'Q'G; .

But because the upper left object is free over the reflexive graph U(@l) it is sufficient to
check for generating 0- and 1-cells.
For 0-cells we compute:

s~ ) = ()= ()

And likewise for 1-cells:

[f] (Lf1
f
— 7 7
- 7 (gz;[gl,f]/, _ (92;[[91],ﬂ7
dgis | ¢ /gz 9| =dgi | loo . gl | = | [lgo] ) [lg1]]
/[ :90]) (L£]",lg0l])
5 7
_— _—
[f] (L]
(]
7 _r, _r,
=5 | w N | =503 gi /ngl — 5(FUS)(FnU) gi /gzlm
/[790]) fl f/

(']

Furthermore, we can check that post-composing with & gives a commuting diagram:

Q¢ Q! QI@ Vs IQIC M QIQE
4 \ %1@
QG T
(e
e N\
Q'Q'C Q'G

where we use , naturality of ¢ in lemma and the fact that Q! is a comonad.
Hence we can cancel ¢ and obtain (52).
So, we have proved the following
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“ . % . « “
5.4. LEMMA. There is a natural transformation i : QIU — Q(_) satisfying properties
and . We call v a semi-distributive law. O

5.5. REMARK. In terms of formal category theory the pair (U,@D) 15 an endomorphism
of the comonad (Q',d, ), that is,

GrayCat (—j> GrayCat GrayCat (—j> GrayCat

e | P l ) i | > .

id <= = 1 =

c< ? / Q ld Q
GrayCat — GrayCat GrayCat — GrayCat

) )

and

GrayCat (—j> GrayCat

GrayCat (—j> GrayCat . |
Q Q'
i e I

T % Q' — GrayCat—{ % GrayCat < )q'

ey
GrayCat ?} GrayCat GrayCat ——» GrayCat

)

Qo <%=

5.6. LEMMA. The functor U extends canonically to an endofunctor P of GrayCatq: by

Pe—Lun)- (o8 2a¢ L%)- (3 208).
Furthermore, it preserves strictness of maps.

PROOF We use the properties of ¢ to check that this assignment is functorial. Given
two maps f: G -» H and ¢g: H -» K we compare P(g)P(f) at the top and P(gf) at the
bottom:

Q¢ QT 2%Qac 2l g Y oH T-F .
— —
QG— Q¢

The naturality of ¢ and make sure they are equal. Preservation of units is exactly

B,
We remember that a strict map in GrayCatq: is given by feg where f: G — H is
from GrayCat and e is the co-unit of Q'. Then by we get

P(fec) = ?aélﬁ«; = 76@%

Meaning that P acts on strict maps like U, in particular, it takes identities to identities.
O
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5.7. LEMMA. The functor P: GrayCatqn — GrayCatq: preserves limits of diagrams of
strict maps.

PrROOF Finally, by lemma |3.18| the restriction CS of P to GrayCat preserves limits:
Let p;: lim{H;, b} — H; be a limit cone in GrayCat, let f;: G - ﬁz be a cone in

GrayCatq:.
Q'G - % T {H,, g §
=
\ ]%32

P is a limit cone, hence there is the unique weak map (fiy: G -» lim{Hj;, by, F O

5.8. LEMMA. The functor P: GrayCatqr — GrayCatq: preserves induced maps of limits
of strict diagrams, that is, P(limf;) = Ulm(Pf;).

PRrOOF Consider

-y

— lrnl N
QMim{G;, ay } i Q' lim{G;, ay.} iy lim{Hy, by, }
Q' (7) | limPf;
%
Q'p] Q! lim{G;, CTk)} Qlp; Pj-

107
%% \

Q'G; QG ————H,

- .
using the conventions of remark [2.20, Also, note that limf;y) = P(limf;) by defini-
tion. limf; is the induced arrow for the source f;(Q'p;), imPf; is the induced arrow for

P(£)Q! (). Since
. —_
oL (6P £,)Q1 (7)) = pllimf
ﬁ

p; is a limit cone we obtain

and

-

(LimP£,)Q"(p;) = limf;1) .

If the limit is, for example, a product we may now say that
P(fxg) =PfxPg. (53)

From now on however we shall use x for the product of arrows in GrayCatq.
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5.9. LEMMA. The face maps are natural with respect to weak maps, that is
do
@ —G
dy
SR e
E—
H

commutes.

PROOF We write in terms of its underlying maps:

O'¢ 1,QQ'T 208 24 qie

{ /’ 4 Qldr

QQE > QUC—QC=2Q'c (55)

bl

)

Qlﬁ—eﬁf#;ﬂ

that is, commuting is equivalent to the outer frame in commuting. All parts are
given by naturality and the co-unit laws of Q!, except the upper right square.

We use remark to conclude dgyp = Q'dy and divp = Q'd;: By naturality and
semi-distributivity we get edot) = do €1 = doe = eQ'dp, furthermore, (dy1); = (Q'dy); is
immediate from the definition of ¢. The map d; is obviously treated in the same way. [

5.10. LEMMA. The degeneracy maps of the path space are natural with respect to weak

maps:
11
ﬁﬂ e

i

—'>

Proor Counsider

QlG—d>Q1Q1G Qle QIG Qi QI@

Q'Q'G : QG —

Q'f lf

Q'H H

=gl
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We conclude that then top right square commutes by computing i = ie = eQli =
Qi and checking that (Q'i), = i; and again applying remark together with
lemma 5.2 O

The functor P can also be applied to Q'-graph maps by setting P’ = (PG)Y: see
lemma for the notation. For the sake of completeness we describe briefly the effect
of P’ at the level of 1-cells as well as its 2-co-cycle. Let G: G — H be a Q'-graph map.
We take a 1-cell g: f — [’ from @ and calculate:

f
N A By
(P'G)g) = Gv) (9) = Gv gi/g lgl
SN
f/
Glf] Gf
—
¢ / G?"ﬂflo//
= | Gloo Claailon. Tl Glg) | = | Goq #1Gg2 Go | (56)
[/ﬁgO]) ﬂ#lG?n»f
— —
G[f] Gf'

Taking two composable 1-cells g: f — f"and h: f" — f" of @ we get a 2-cocycle with
components as shown in , where in the end the Gk are iterated 2-cocycles of G.

5.11. ITERATING THE PATH SPACE CONSTRUCTION.

5.12. REMARK. As a consequence of lemma lemma and lemma [f.4] the maps
1,do, dy and m for all Gray-categories H constitute natural transformations with respect to
strict maps.

For reference, this means that for all f: H — K the following diagram commutes
sequentially:

d

vl 40

dy
ﬁXKﬁﬁ‘mﬁTK
0

[terating the arrow construction yields an internal cubical set, so it allows us to talk
about higher cells in the internal language of GrayCat. But since we want to construct an
internal Gray-category we need to restrict to cubical cells with certain degeneracies. The
general recipe beyond the construction in section [3|is to apply (_ ) and squash the excess
faces given by cm so that the only non-trivial faces of each cubical element are the ones
given by do ;.
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/ V2 V2 =
(P'G) )iy = (GY))hy = G(kny)
-
/
h
ho#ogd <= ho O(QOQ#OQO/ h1#091
id #/(hl#OQQ)
— / !
= f f/ f/ atoanf
) 7 27090
Gw mld(h2#090>#1(h1#092); hi/hg lhl R gi/g/lgl , hO#Og # (h1#092)
f 1" / /
! f
f//
(ot / |
hottoad 0% higtogie=) hi#tog
#/(fu#ogz) id
f//
[f} (ld(hQ#Ogo)#l(hl#OQZ)’ [f]
(h2#09g0)#1(h1#092),
((hZ#OQO) / (ha#090)#1(h1#092); ((h2#090) /
= #1(ha#tog2)i | [ha,g1,fLU" ho#ogo)) #1(hi#og2);
G foftoso ,ﬁo[hc,go] [h1,91,f], — [h1#091,f], [hl#oglJﬁ .l
oo 1,611 [Ro#ogo " hakoe)
[f"] ("]
Glf) é(id(hz#ogo)#ﬂh#ogz)? Gl/]
(h2#0g0)#1(h1#092),
é((hz#og())/ (ha#o0g0)#1(h1#092); C?((h2#090)/
- - h ; " h 5~ -
Glhothogol <= Glho,go) 11 #092) | [br.g1,f1 [ hotogol) #al I#OQQ)G[hl#ogéJ¢ Gl g1
Khg,90 [h1,91,f], ~ B [h1#091,f], Khylgy
/[f",hmgo]) gl Clho#togo /[f”,ho#ogo])
a1l ayn
Gf Gf
- 7
GE 11 1o g0 G((’m#ogo)/
. h ;
G(ho#o0g0) <= Gho#oGgﬁlG((M#ogo) éd #al 1#092)G(h1#09L)<= Ghi#0Gg1
20790 #1(h1#092)) G Clhost [h1#0g1, ], GEhygq
”#1C~¥nh1,g1,f oG 07090 /[f”»ho#ogo})
Gf// é[f”]

hi#oq

(57)
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This general procedure will canonically yield an internal reflexive n-graph, we will
furthermore have to provide the operations in each degree to actually obtain a Gray-
category. We carry out this construction for the degrees 2 and 3 in sections [5.12.1| and

G227

5.12.1. 2-Patus. We construct the space of 2-paths H over ﬁ and give the vertical
composition of 2-paths and their whiskers by 1-paths.

The 0-cells in H are squares, and we want to filter out those square that are actually
bigons, that is, have identity arrows as left and right sides. That is exactly what we get
by forming the double pullback on the left:

Fid

— ﬁ :; H
where H is the intersection of the pullbacks of dy and d; along 7. Let dg = dpj and
5.13. LEMMA. The diagram
= d]i di
H——H =3 (59)
dl 0
is a globular object, i. e. dod? = dod? and dyd? = dyd?.
PrROOF Using the naturality of dy and d; we calculate:
dod} = dodoj = dodoj = doido = dyidy = dydoj = dodyj = dyd

and similarly for dy. 0

To get a unit for H, that is, an identity 2-paths for 1-paths, we consider the following
diagram:

Ei_"—_ii

ﬂy
ﬁ:;

The upper left span is a compatible source by the naturality of <. The induced arrow 7 is
a joint section of d and d]. Hence we get:
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5.14. LEMMA. The diagram

— 4
He=H (60)
dj

s a reflexive graph. O

5.15. LEMMA. The mapping (—) extends to a sub-functor of (?%: GrayCat — GrayCat
with natural embedding j.

PROOF For each H the map j is a monomorphism by construction and (—) extends
to morphisms by the universal property. 0

5.16. LEMMA. There is a multiplication

with
d{m = d{po

uniquely induced by mz.

PROOF All we need to show is that m(j x j) factors through j, that is, show that the
two outer rectangles commute:

(62)

d/

that is, we shall verify that

dym(j x j) = id)
dim(j x j) = id,

in order to obtain m as a universally induced arrow.
First we prove that dopy = dop::

dopo = dyidopy = dojojpo = dodojpo = dodpy = dod|pr = doddpy = dop: (63)
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which holds by . and (| . Similarly dipy = dip;. Thus we may define dj = dopo

and d} = = dypo. Note that 7 X 7 is universally induced by dojpo = d1jp:.
Furthermore we need that (idy x idy) = (i,7)d}, and (id, x id,) = (i,i)d}. Consider

= = p1 =
Hx ,; ; H H
d),d]

w) |
\ﬁ Xdo,d1 ﬁ —)ﬁ

N

_ __H H

do ? do

(iao X ’LEO )

=l
=

The top and left squares commute by , and makes the pair (iagpo, izlopl) a com-
patible source for lower right pullback square. The universality thus proves our equation.
Finally, we verify that

jom (7 x7) 70 X 7 )(J X 7) joj X joj m(idyj x idoj) = m(i,i)d = id), .

By the same token dym(j x j) = id hence we get the desired m.
To check we calculate:

dm = dojm = dym(j x j) = dop1(j x j) = dojp1 = ddps .

O

5.17. LEMMA. The composition m is unital and associative, that is, it makes a
cateqory.

PROOF Obviously since my is so: Using the notation of we can formulate the
associativity condition as the two composites in the left hand column being equal:

()3 (ﬁ)?’
ﬁ T ﬁwﬂmxﬁ
Ty 25 H w0 B

L
3

JXGX]

EH

@lv—ﬂ—
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whence we conclude that jm(ﬁ x m) = jm(m x H), and by j mono we get the desired
m(H x m) = m(m x H).
For the unit we can argue in the same manner:

ﬁwﬁ f’ i \@

= = jxj ﬁ
P 5
H Xd(])’dgl H XdO,dl

A

=s]l]

=

H .
j
0
5.18. LEMMA. Applying P to an internal category
e s
K X aq.4, K—/—>K<—;—]HI (64)
0
yields an internal category
&
Pm, —_,-—>1
K Xz T K:K X do.d —/—>K<—L—ﬁ

do

PROOF This is true since P is an endofunctor of GrayCatq: that by lemma [3.18] pre-
serves pullbacks of strict diagrams. In particular

K X304, K X34, KMK X303 K

Rxg 3 B— R

Pm

commutes since by P(Kxm) = K xPm. O

5.19. LEMMA. There are left and right whiskering maps
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induced uniquely by P(m).

PROOF We construct a restricted horizontal composition m/.: H x do,ﬁﬁ -+ ﬁ in the
following diagram:
IHI

ﬁxdmﬁ

EII

- . /

I
my.

where i X j is universally induced and m;, is defined as the composite P(m)(i x j). We
need to show that m/ factors through E
Consider the defining pullback for H:

(65)

We need to show that jom; = iaopo and jlm; = 1dyp1 to obtain a universal w,, hence
we calculate:

jom; jop(m)(’ j) = 70]'290 = dopo
7 ;—773m 711'191231291

using the definitions of 7 X j and j as well as the naturality of 7.
For w, there is a corresponding argument. U
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5.20. LEMMA. Left and right whiskering are compatible and associative, that s, the dia-

grams

ﬁxdodlﬁxddHMT x, 3 H

commute.

PROOF The objects in the above diagram embed into pullbacks of ﬁ by j and these

pullbacks being preserved by P and the monicity of j yield the desired result.

5.21. LEMMA. wy and w, extend m. That s

ﬁxdmaﬁ ﬁ ﬁx%dlﬁ—bﬁ

ﬁxd ﬁxd] )[ do X dlxﬁ d )‘& d{
il | |

ﬁxdo,dlﬁ—/ﬁﬁ ﬁxdo’dlﬁ—;n—)ﬁ

commute serially, and the outside 0-faces are preserved:

d_Owr = d_opl d_owz = dop1
d_lwr = dipo d_1w€ = d_lpo

PRrROOF Considering the proof of lemma [5.19 we calculate:
déwr = dojw, = dom, = dePm(i X j) = m(do X dp)(i X j) ﬁ X dj

Similarly for dJ and w;.
The equations hold by the construction as given in (65).

U

(66)
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Lemma [5.21]allows us to define left and right horizontal composites. Call the composite
along the middle in the following diagram h,: H X dods H —» H:

d{)xﬁ
ﬁx—o—lﬁ »»»»»»» foo >deéd{-ﬁ—fm—>ﬁ , (67)
Hxd]

0,01
= wy =
Hxd]
— = — o M Tr
HX*O’TH ,,,,,, 5 H Xdé,d{H_/_)H (68)
déxﬁ
0,d1 Wr

PrOOF We calculate:
%m@mmﬁwﬁxﬁmmﬁx@>
(62) . . ] = = ;
B oy x 3) (wn(df x ), wo( x &)
dopo <m;«(dé x H), mi(H d{)>
= dym!.(d) x H)
= doPm(i x 5)(d x H)
© (o x do) (i x §)(d) x H)
= m(d) x d)
and by the same token

B h, = m(d) x d)). (70)
Analogously for . O
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5.22.1. 3-PATHS. We proceed to construct the internal 3-path object and the operations
involving 3-cells. Note that the (_ ) and (_) used in this section are not at all functors.

We apply the construction in to as follows:

1 dO
By we get a reflexive graph
= 4 _
=_%,=
dO

where by

= 4 = dq
H %(H : H d1<]HI

is a 3-globular object. Furthermore, by applying the reasoning of lemma [5.16| we get a
vertical multiplication map

=l
%
==l

arising as a restriction of ms:

=
=1L

X
2
2
Q.
=

]
H_
K 2
S
3
——
3

&
Ul
al

]| pum—== [
ot

where dj, = dopy and d} = dip;.

5.23. LEMMA. There are left and right whiskering maps

Hx - ©H-"@°

dod? dy
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induced uniquely by Pw, and Pw,.
PROOF We define wy as the universally induced arrow in the following diagram:

ﬁ H 24, ﬁxa_)ﬁ:;]ﬂxdodlﬁ

dodJ d1 )
+ J d{xﬁ
| wg J,wz w, .
J dlx
1

:;ﬁ ﬁ X do,d1 ﬁ
do

& d{/m/

di
do

(71)

dl | ]

@u% 1)

@Mi@m«

=l

where ry = m(d_{] X ﬁ) and r; = m(al_J1 X ﬁ) We calculate

iTQ

m(d x H) = Pm(i x i)(d x H) = Pm(id), x i) = Pm(d)j x i) = P(dwe)(j x i)
%

d%’ngO X 2) s

—
and likewise for r; and df. And hence we obtain wy, and w, by analogy. U
5.24. LEMMA. w; and w, extend w, and w, respectively. That is

S = W =
ﬁ Xt —/—>H deod@,dl ﬁ—/—)H

Hxdl | Hxdl d | & d{)xﬂd{xﬁ d“d{ (72)
g H—p— H deg,dl _&T’H

commute serially.
PROOF Inspecting we can calculate
dywe
= do]m = dop(’d)g)(] X Z) = U)gd()(j X 7,) = wg(do X do)(j X ’L)
= U)g(d% X ﬁ) .
U

And likewise for the other squares in ([72)).
Lastly, we need the whiskering of a 3-path by a 2-path along a 1-path. We can reapply

the basic scheme of lemma [5.19
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5.25. LEMMA. There are left and right whiskering maps

=)
i
=
=<1l

==l
X

TIII
==l

g3
induced uniquely by P(m).
And these extend m, that is
di, =mA x &) db, =m(HE x &) (73)
diy =m(d, x H)  dii, = m(d] x H). (74)

PROOF The desired map arises as a universal arrow in the following diagram:

:> 2 dy — —
Hx—=—=H_—=Hx, ; H
&) 4 dp

—
)
3
3 E

j 2 dy =
SN : S (75)
do
& C?Jf ||
#
_ ¢H.
1 dO

liow, we can \Le;rify idipo = dyjpo = dipo(i x j) = diPm(i x j) and idipy = djjp1 =
dipi(i x j) = diPmi x j).
The equations are now immediate. 0

5.26. THE SPACE OF PARALLEL CELLS. For a Gray-category H we define the space of
parallel 1-cells P'(H) as the following limit:

P (H)

S

3
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/ P1

H (76)

5.27. LEMMA. The canonical map <d%,d{>: H— P?*(H) is 1-Cartesian.

ProOOF Consider the following cells in H

[ = (f4§f27f3;f0;f1>

9 = (94; 92, 93; 90, 91)

h = (hy, hs; hy, hayho, he): f — g
k= (kg ks; ko, ksi ko k1) f — g
a=(az;aq,00): h=k

By construction the map <d6, d{> acts on this data as follows:

= ((f2; fo, f1), (f35 fo, f1))

9= ((92: 90, 91), (933 9o, 91))

h v+ ((hy; ho, h3; ho, hy), (hs; ha, hs; ho, hy))
k= ((ka; k2, ks; ko, k1), (ks; ke, ks; ko, k1))
a = ((as;an, a2), (a3; 01, )

where on the right we find parallel pairs of cells from H, that is, in the central square,
the outer square, and the left and right hand trapezoids commute by assumption.

The requisite compatibility conditions for f, g, h, k, o to be cells of H are displayed in
. We obverse that the remaining trapezoids at the top and the bottom commute by

naturality of #; and ® in H. Hence we conclude that given 1-cells h, k in ﬁ all higher
cells, including 3-cells, between them are determined by their image under <df), djl> 0
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5.28. LEMMA. The 3-paths compose horizontally along 2-paths, that is,

<@(ﬁxd{),m(d{oﬁ)>:

==l

Hx— — Hx . H
5 &l H X g H
<wT(d{xﬁ),wg(ﬁxdg) ™
H oy, 0 H
do,d ™
commutes. O

5.29. THE TENSOR MAP. Given that by lemma|5.27|we have a 1-Cartesian map <d%, d{ >ﬁ —
P%(H) we consider the following diagram in GrayCatq:

(df >P2 (H)

where hy and h, are given by and respectively. By we know that (hy, h,) is
a source for hence we obtain (hy, h,).

There is a map t;: (ﬁ Xgoa H)1 — (ﬁ)l in Catg given by:

fo go
I 7V
0. F) = (92390, 90), U for 1)) — @/\ﬂ/

go#o fo go#o fo

= (92®f25 92 < f2, g2 > fo; goFo fo, 1FFof1) = @ %@

g1#of1 q1#of1
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and

fo 90
A

st s
NN

it 91

((hh: (0.0) — (0.1 = (e i ) s

fo 90
NN

/// ///
hq A0 )1{1“370 k1

I g
NIA NI
f g1

n (wl,wg; (gé#ohz)#1(k2#ofo)7)

(917F0h3)#1(ks#of1); ho, ka

where w; and w, are defined as the vertical composites in , by definition these consti-

tute the components of a 1-cell in .
such that

5.30. LEMMA. (h¢, h,), = (d}, d}),t, in RGrph.

PROOF One checks that (hy); = (d)t); and (h,); = (d]t); as graph maps using defini-
tions and (68)). O

5.31. LEMMA. The 3-globular set

1

pr — d! d!
P’(H) —a-H+—— H +——H
po do do

s an internal Gray-category.
PrROOF We already know that its three lower stages constitute a sesqui-category. The

three top parts are trivially a 2-category. The tensor map is given by

ﬁ X%,dT ﬁ —/—><hZ7hT>P2 (H)

which satisfies the tensor axioms by construction. 0
We can finally prove our desired theorem:
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5.32. THEOREM. Given a Gray-category H there is an internal Gray-category in GrayCatq

= 4 _ !
Oe—He—H——H (80)
do do do

with composition operations m,m, m, Wy, Wy, We, Wy, We, Wy, and tensor t.

PROOF We have a globular map

= d! e
A R
AT
pb gt dl
(H<—A—H<—z—ﬁ<—z—H

Q..

do

This globular map is an internal sesqui-functor in the lower and at the upper degrees, and
by it preserves the tensor:

—/—)ﬁ

P2(H)

Using the results of sections 4| and [5| this proves that is an internal Gray-category. [

a=l]
X
Ell

—s

==l]
EII

Xdo.di

5.33. LEMMA. The operations m, wy, w,, W, Wy, We, Wy, and t are natural with respect to
strict Gray-functors.

PROOF This can be shown using the universality of the respective constructions and
the fact that m is natural with respect to strict Gray-functors, i. e. lemma O

6. The Internal Hom Functor

We can finally define the internal hom of GrayCatq:

G, H
—  di _ dis ﬁ 1x
= | GrayCatq: (G, H) ;r GrayCatq: (G, H) <—dz'*— GrayCatq: (G, H) <—di:k— GrayCatq: (G, H)

(81)

by applying GrayCatq: (G, —) to the diagram , where the lower star means action by
post-composition in the co-Kleisli sense. This includes the various induced composition
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operations M., My, My, Wee, Wyy, Wee, Wre,Wee, Wy and t,. Because GrayCatq: (G, —)
by definition preserves limits in the second variable, it takes internal Gray-categories in
GrayCatq: to such in Set, that is, to ordinary Gray-categories. In analogy with our earlier
notation we write the compositions on [G, H] as *,, where n is the dimension of the incident
cell, we use * for the tensor of transformations incident on a functor.

Explicitly, for example, given

>

p
+
T
==

<

the composite [ *g « is defined as

G—/—><ﬁ’a> ﬁ Xdo,d1 ﬁ H_)m ﬁ

that is, 8 %o a = mQY(3, a)d.
To be slightly more explicit, at the level if 0-, and 1-cells of [G,H], that is, pseudo-
functors and transformations the composition works as follows:

GrayCatqi (G, ﬁ) X do,.di, GrayCatq: (G, ﬁ)

o)

GrayCatq:i (G, H X do.dy ﬁ)

/ lm* \

GrayCatQ1 (G, ﬁ GrayCatq: (G, ﬁ GrayCatq: (G
GrayCatq: (G, H) GrayCatQ1 (G, H) e GrayCatq: (G, H)

6.1. REMARK. The Gray-category [G,H] is a Gray-groupoid if H is one.

6.2. THEOREM. Given a morphism F: G' - G in GrayCatq:, the map
F*=[F,H]|: [G,H] — [G', H]

acting by pre-composition in the co-Kleisli sense is a Gray-functor, that is, a strict mor-
phism.
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G
|
PROOF Assume a situation ¢/ ', @ + H then we have

v

K
F*(Bxoa) = (B*)F =m(B,a)F
=m(BF,aF) = (BF) ¢ («F) = (F*3) % (F*a) .
Also, for identity transformations we have:
F*idg =1GF =idgr,

hence F* is a functor. By the same reasoning the higher operations including the tensor,
are preserved as well. O

6.3. REMARK. This way [—, H]: GrayCatg’1 — GrayCatq: is a functor for each H.
6.4. THEOREM. Given a strict morphism F: H — H' in GrayCat, the map

F, =[G, F]: [G,H|] — [G,H]
acting by post-composition is a Gray-functor, that is, a strict morphism.

/N

PROOF Assume a situation G -—p 1 —F | then we have
Il

W

K
Fx (8% ) = FmQ!(8,a)d = mQ!(F x F)Q'(8,0)d
= mQ (T8, Fa)d = (Fx5)x (Fra),
where we use lemma [5.33] Also, for identity transformations we have:
F xidg = FiG = iFG = idp.q

hence F™* is a functor.
The other operations are preserved similarly by applying lemma [5.33 0]
We now proceed to constructing the restricted mapping space {G, H}. We pull back
all the parts of along e* given in () to obtain

dl* dl*< dl*
- - _ s
(G HY— i {G H})— "+ {G,H} — i GrayCat(G, H)
- s

_—
do* do * dO*
e e e e* ,
d1 * dl * dl *

= — = —
GrayCatqi (G, H) <—du— GrayCatq: (G, H) (—dw— GrayCatq: (G, ﬁ) (—dh— GrayCatq: (G, H)

(82)
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and we set {G,H}y = GrayCat(G, H). We call {G,H}; the set of malleable transforma-
tions, c. f. definition [7.2] Obviously the left and right actions of strict functors described
in theorems and restrict to the restricted mapping space.

Hence for strict morphisms F': G’ — G and G: H — H’ we get a commuting square
of Gray-functors

(G, H} 5 (G, H)

| 2

{G7 H/} — {G/7 H/}

F

In conclusion, we get the following interesting structure on GrayCat, and leave the
question as to further, higher structure open:

6.5. THEOREM. The category GrayCat of Gray-categories, strict Gray-functors and mal-
leable transformations is a sesquicategory. 0

6.6. REMARK. By section [2.1 {G,H} is a Gray-category and e*: {G,H} — [G,H] is a
strict Gray-functor.

For G free up to order 1 the maps e and £ discussed in give natural transformations
GrayCat(G, _) — GrayCatqi (G, _) —— GrayCat(G, _)
GrayCat(G, )

where the maps act by precomposition in GrayCat.

6.7. LEMMA. Given a Gray-category G free up to order 1 there are canonical transforma-
tions

s

GUpH
N

that is the identity on objects.ﬂ
PROOF We need to give a Q! graph map p: G - ﬁ with dip = Fke and dyp = F"

1. O-cells

idy
T h— T—T

1. e. basically icons in the sense of Lack|[2007], except our constraint 2-cell points the other way.
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2. 1-cells
idy
f=1f ot F }1 ..... ) | Flfrl#o-#0F ()
_
id,
3. 2-cells
idg idg
_
l Flf] /F[fjl Flfi]
F w
(a: f= f)— FI == Ff Fpm |#o — g 7, Fo , =) #o
H#0F[f] 7 #oF(f)] H#0F[fa]
_
id, id,
: 2 2
where wis Iy o g1 OBy -
4. 3-cells
ida ide
_—
l / Flf1] /F[fj} Flf1]
Ff pRA FoF e | #o —— Ff 2o ]#0"' =) #o-
J / #oF (/2] 7 #on;,} #oF [f2]
Y
idy idy
FT
T:a=d)— FL#FG, L,
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I 2— 2 ! 2— / 2
where w = Iy (o fhiF gy g and W' = Fipy e #FQHE

5. For a composable pair of 1-cells f’, f a 2-cocycle element

idy (2
/ Flif1)

Ef Fiy g | #o
/ #oF[fn]
Fl#o#oF[f,]
— F(f'#of "
( OFQ HoF[f1)#0#oF[fn]

(1deoolf LA L Un
/| 1 /

v, | o
#OF[f,/L/}

Ffi]#o0#0F[fn]

F(f'#of) <=
L f

2
Ef

Flf{l#to#oF(f],]

Qo Oz

The equation holds by [I5 and

The verification that this is a Q'-graph map is straightforward. O

7. Putting it all together

7.1. DEFINITION. A lax transformation o: F' — G between pseudo-functors F,G: G —»
H of Gray-categories is a pseudo-functor a: G - ﬁ such that dgao = F and dja = G.

7.2. DEFINITION. A malleable transformation «: ' — G between strict functors

F,G: G — H of Gray-categories is a pseudo-functor a: G - ﬁ such that dgao = F and
dloz =G.

This was introduced in (82]).

7.3. REMARK. Using the definition of path spaces in definition[3.1) and the characteriza-
tion of pseudo-maps in definition [2.2/] we note for reference that a lax transformation «
15 given by the following underlying data:

1. for each O-cell x of G a 1-cell a,: Fxr — G,

2. for each 1-cell f: © —> y of G a 2-cell

Fo -2 Gx

of A |or

Fy— Gy
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3. for each 2-cell g: f — [ of G a 3-cell of H

Fo -2 Gx Fm&Gl’x
a/ Qg a// ’

o ff/f leEFfl./ (ifEGf
Fy— Gy Fy—Gy

4. for each pair of composable 1-cells f: x — y, f': y —> z an invertible 3-cell

For—2 Gz Fr—2 Gz
l“f O‘f/l / \
F(f'#of) <= FyT>G F(f'#of (f#f¢ Gy
Iy y/le l/
ch/ !
4 !
FZTZ>GZ FZTZ>GZ

Furthermore, these data have to satisfy the following equations:

1. On identities of 0-cells:
Ofidx = idax

2. for each 3-cell I': g — ¢’ the square of 3-cells in H

For—2 Gx For—25Gx

Fferg Ji"f /O‘f/ leé Ffl /‘lf’/ %f’«ecy af

Fy——Gy Fy——Gy
(ay#oFT)# 1 o pr#1 (GT#o0z)
Fr -2 Gr Fa—2% Gy
FfeFgs %f/af/ leE Ffl C!‘f%Gg’_- Gf
ag/

r

FyTy>Gy Fy—>Gy

commutes. This condition obviously comes from the definition of 3-cells in the path
space.
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3. For every pair g: f = f',q": f' = f":

(ay#of?g/)#l% ag/#l(gg#oaz)
/l | 7 ; l 7 |
FIep g Frer 1Lf of | Gf—— FIeF@EFf ofi GfeGe Gf—— Ff|  Of GfeGEG G Gf
\\:’U % I AANGE A e S P =
FyTy>Gy FxTy>Gy Fy—— Gy
w

and for identity 2-cells idy: f = f we have an identity 3-cell
aidf = idaf .

4. The family of 3-cells has to satisfy a kind of cocycle condition: For a composable
triple f, f', f" of 1-cells o* has to satisfy equation . furthermore, o has to
satisfy the normalization condition:

TS A
idy, if f=1d,

5. The family of 3-cells o has to be compatible with left and right whiskering according
to and .
These conditions are derived from the ones in the definition of pseudo-Gray-functors[2.24)
Note how conditions 4, 5, 6 of definition are trivially satisfied for transformations.

7.4. DEFINITION. A transformation o: F — G where the cocycle o has only trivial
components we call a stiff transformation.

7.5. LEMMA. A stiff transformation o: F' — G with F' and G strict Gray-functors is a
1-transfor in the sense of [Crans||1999]. O

7.6. REMARK. Given two laz-transformations F—a>G—B>H their composite Bxa given
by m(B, ) and has the following components:
1. for each O-cell x of G the 1-cell

(Bxa)z Bz
—_—

Fzx Hy = Fo—2Gr s Hax

2. for each 1-cell f: v — y of G the 2-cell
5‘77

FxMsz Fr—2% Gz —" Hx
G e = o} o |

F (Bxa) Hf — F af f 3 Hf

i/ ! vz 177

Fy—>(3 )Hy Fy— Gy —5~ Hy
*Q)y Y y



(€8)

D

no

Z5 m
//\As &
E%i )

4D

177

9

/

0%, 5 0%,

nA

§07F,§ 0

fo

z

L4084

FO# 1 f

U\

9

79

X
(fO#,f0#,1)D

no

:k. 9]

FD|[T#, D

s of Categori ,Q’ol 29, No. 5, 201éi~,5p

o3
O]

(#0#,40

W)

#5:@\

0%, 5 0% 11 )

/

nA

Theory and App%at'

Akko%:ﬁc#:xdv T#

0
(w00 [ oo Ful o)y
Tty

ud)d

SOH, JO#, 1)

0
(=00t Lo0#,[0)1# 7

O [«
(TR Tl

e V:Y
(,§0# :QU\

M) +— m,]

:o#\b,o\

0% o

&

\d

(roa ity

<« 1o
A% o+ #:ano#\nﬁd

Mo

:no*w:.\.vnw
(FOF, LO#,, 1) d

0% o

/

o \

10%#,10

/

A\O%\.\-O%\\.\, RN
SO, %h )

(Voo f0) 1#
((JO# ) a0 1F 0) 1
(FO# el ] qoggno)

FOF# A
AKO%\&O#\\KV.@

(f00# ,fD0# D) 1#
(feo#” o)1
A%F\NO#IMRNO%S@V

0, [ D04, fD) T#
(Foa 0 00# [ D) T
(I qouto)y iy
(S 0l pogsmo)

177



“JOFEL SIONSTUM 3JO] YITM L0 9[04D00 o1} Jo A3Iiqiyeduio))

(w00 Zo) 1# (T %0y 14
(f°#50) ((JO#L) g0 70)

22—z 2 —— 2

Zdo 1] / w6l

m@ ao— ] ”#E& o m

T e T &U T &r«
o
mm Ty Ry NUTNM \NUFN& NUFN&
24 T A
b H b5+ 5 5 %
DR \ D Uumﬂ o %m % r,m CEE]
\ O% b \
@Uﬂwm Woo#@. Jo#,6) g h/ I,él m U Qo% ) == U/ o— mr@w (fo#6) = m@ +io— f,] u (fO#,6).1
£ T T ﬁo%f T 45— O] DT

: I i / :
(P00# [DO0#LD) T1# A c@%:% ( co#a\cv%
ey Qr@o%\ 0) T4 Qr&o%fwﬁ%

3
<

5]

2,

o)

A 14

= ¢ Nm 0#%1) ¢ Nmo% 1)
3]

B

(@]

S

~

178



"QOFED sISTYM JYSLI Ym0 9[2400d 91} Jo Aiqryeduno))

(¢8)
(w00 20) 14 (T %0y iy
m (9950) (QO#5) . 04 70)
NUFN& NUTNE
1 7]
m@
QU%QO%SU \ﬁ&h”&?#em W QU Ho— mrTN ”ﬁo#mvm”v LO3£6) 1
(2 02670 (00#D) o1 Y oed (00#6)1
/ \\ 50% fo ﬁ \
o
= TO oo Td TO oo Td TO oo~ Td
S
e
3
z
5
w PO 2 OS2 FO——2d NUTNE
50 % % 7 ﬁ ﬁ )
b 0 b 0 b b
Lo / — s — AN d §
7% goih [ SO#DT = fiD) so— A = (S04 == A ci—R == (So#0)a == \8 g (R
N2 |/ o] 7 WS ] 7 P o] 47 T%
@\A N m 0/ Ve : 7 \

O]

T oo W] Iy Ty

t1
8
G)
8
€

T ‘ 5 .
w Ty Foost

(00400 0#69) T1# (00350 1 (f00#60) T4

. (4 T0#00) 1 (01 ®P0) 14

14 A\%FM_HNO%NGV m\%amm,mou}mmdv

Theory and App]icg\ i

179



. 180187

1

Theory and Applications of Categories, Vol. 29, No. 5,

figf fio
fi fi fi
fipp < fin g H \U g S@APQUAF@
S 5 - P— 5 -
W Tm Goomig# H| 4 G/% dpge M Gogrgig Q i j* o
,&.m Aﬂ MN.U Aﬂ H.rm‘ A\xdo%amv \ Amﬁo%amv Hm 4 @.U J D\\.@
TH g T =5 TH e
i
md*m 0%
7
xm@:ﬁm&d*g \Tr&%b@ﬁ \Ad*m OJ.\ @,% Vol
amg&& TH <5o— 2o



MAPPING SPACES OF Gray-CATEGORIES 181
3. for each 2-cell g: f — [ of G the 3-cell of H shown in
4. for each pair of composable 1-cells f: x — y, f': y —> z a 3-cell shown in (87)

7.7. DEFINITION. Assuming o and [ are as in definition and F and G are pseudo-

functors G - H, a modification A: « — : F — G is a pseudo-functor A: G - H,
such that dgA = a and d1A = 3.

7.8. REMARK. A modification A: o« — [ according to definitions and 1S given
by the following data:

1. For every O-cell x in G a 2-cell
/E\
Fx A, Gz

L

Ba

2. For every 1-cell f: x — y a 3-cell in H

/ﬂ\ VRN
Fx 8 Gx Fx K/oz{/GQE
o 5 Jor | " o

; 2N
Fyﬁ Gy Fy 4, Gy
\B/ \g/

This data has to satisfy the following conditions:

1. Units are preserved:
Aidz == ldAz
2. Compatibility with the cocycles of F,G,«, 8 according to (88

3. For 2-cells g: f = f" in G the images under F' and G as well the data of A, «
and B are compatible as shown in

7.9. LEMMA. A transformation A: o« — [ where o, B: F — G are stiff and F,G are
strict is a 2-transfor in the sense of [Crans|1999]. O

7.10. DEFINITION. Gwen modifications A, B: a — [ a perturbation is a pseudo-
Gray-functor o: G - H such that dyo = A and d,o = B.
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7.11. REMARK. According to definition [7.10 a perturbation is given by a 3-cell in H
/P Y
Fx . Gy === Iz . Gr
I N4

for each 0-cell x in G such that

Qg Qg

/,Ux\ Y
Fx i Gx 8y Fx i Gx
Fi\ﬁm/lef H1Cl ooy F{\ﬂx/jcf

N N

By By
AHJ me

/\ /\
Fx K/oc{/ Grx Fx K/af/ Gx
F Y laf F{{ Y JGf
J/Pl e AR
Fy a4 Gy 4, Fy B, Gy

J A~
By By

commutes.

7.12. LEMMA. A perturbation o: A — B fulfilling the conditions of lemma is a 3-
transfor in the sense of [Crans|1999]. O

A. Adjunctions

We can embed the ideas developed in section [2 in a more global picture. The functor
Q': GrayCat — GrayCat is part of the following adjunction of fibered categories:

(L™ (F)
F*(GrayCat) , L~ GrayCat

U
F*(()li l()l
F

RGrph 1 Cat
U

where F' means “free category over a reflexive graph” and U means “underlying reflex-
ive graph of a category”, (_); means “underlying category of a Gray-category. Accord-
ing to [Hermida (1999, 4.1] the adjunction F' - U lifts canonically to an adjunction
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((_)1"(F),F) 4 (U,U) of fibered categories. Which means in particular that (_);"(F) -
U is an adjunction and our Q' can be defined as (_),"(F)U.
The objects of Graph x GrayCat might be called 1-free Gray-categories.

A.l. REMARK. Let P: & — B be a 2-fibration in the sense of |Hermida [1999]. Given
u: I — PX and v': I' — PX for X an object in £; and an equivalence h: I — I'
such that u'h = u. Then the unique filler h over h is an equivalence as well.

In particular, given the comparison functor K: Xpy — A for the comonad induced
by FF4U: A — X lifts to a comparison functor K.

A.2. LEMMA. If F is comonadic, then so is ((_)1"(F), F).
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