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ITERATED ICONS

EUGENIA CHENG AND NICK GURSKI

Abstract.

We study the totality of categories weakly enriched in a monoidal bicategory using
a notion of enriched icon as 2-cells. We show that when the monoidal bicategory in
question is symmetric then this process can be iterated. We show that starting from
the symmetric monoidal bicategory Cat and performing the construction twice yields
a convenient symmetric monoidal bicategory of partially strict tricategories. We show
that restricting to the doubly degenerate ones immediately gives the correct bicategory
of “2-tuply monoidal categories” missing from our earlier studies of the Periodic Table.
We propose a generalisation to all k-tuply monoidal n-categories.

Introduction

In this paper we use an iterated icon construction to study the degenerate n-categories
that appear in the Periodic Table. Unless otherwise specified, the term n-category should
be interpreted as weak n-category. We began our analysis of the Periodic Table of n-
categories in [5] (degenerate categories and bicategories) and [7] (degenerate tricategories).
A k-degenerate n-category is one in which the lowest k dimensions are degenerate, that
is, contain only one cell. In this case the lowest non-trivial dimension is k, and we can
perform a “dimension shift” to forget the degenerate dimensions and regard the k-cells as
the 0-cells of an (n− k)-category. These cells come equipped with k monoidal structures
coming from the k types of composition they had in the old structure; thus a degenerate
category is regarded as a monoid, and a degenerate bicategory as a monoidal category.
In general we have the following shift:

k-degenerate m-category k-monoidal (m− k)-category

or k-degenerate (n+ k)-category k-monoidal n-category.

The first type of indexing is more natural if one is starting with a fixed m and varying
the amount of degeneracy as we did in [5, 7]. The second form is more appropriate if one
is fixing the codimension and varying the number of monoidal structures, which is what
we will end up doing in the present work.

The periodic table of n-categories as proposed by Baez and Dolan [1] gives predictions
of what sort of structures should arise as k-monoidal n-categories. The idea is that as the
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k monoidal structures came from different types of composition in the original (n + k)-
category, the interchange laws from that structure give interactions between the different
monoidal structures which, as a result, amount to weak “commutations” such as braidings
and so on. The first few entries are given in the following table.

set category 2-category 3-category · · ·

monoid monoidal category monoidal 2-category monoidal 3-category · · ·
≡ category with ≡ 2-category with ≡ 3-category with ≡ 4-category with

only one object only one object only one object only one object

commutative braided monoidal braided monoidal braided monoidal · · ·
monoid category 2-category 3-category

≡ 2-category with ≡ 3-category with ≡ 4-category with ≡ 5-category with
only one object only one object only one object only one object
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

′′ symmetric monoidal sylleptic monoidal sylleptic monoidal · · ·
category 2-category 3-category

≡ 3-category with ≡ 4-category with ≡ 5-category with ≡ 6-category with
only one object only one object only one object only one object
only one 1-cell only one 1-cell only one 1-cell only one 1-cell
only one 2-cell only one 2-cell only one 2-cell only one 2-cell

′′ ′′ symmetric monoidal ? · · ·
2-category

≡ 4-category with ≡ 5-category with ≡ 6-category with ≡ 7-category with
only one object only one object only one object only one object
only one 1-cell only one 1-cell only one 1-cell only one 1-cell
only one 2-cell only one 2-cell only one 2-cell only one 2-cell
only one 3-cell only one 3-cell only one 3-cell only one 3-cell

′′ ′′ ′′ symmetric monoidal · · ·
3-category

...
...

...
...

The process of fixing an overall dimension m and increasing the amount of degen-
eracy amounts to moving diagonally down-and-left in the table. The process of fixing
codimension n and adding monoidal structures consists of moving down a column. The
hypothesis is then that there is some kind of equivalence between the following three types
of structure:

• k-degenerate n-categories
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• k-tuply monoidal (n− k)-categories

• the (n, k)th entry of the Periodic Table.

One of the lessons learnt from [5, 7] is that we must take care about the precise formu-
lation of these equivalences. For example, we wish to compare the totality of commutative
monoids with the totality of doubly degenerate bicategories, but the former naturally form
a category whereas the latter form a tricategory. Now, bicategories do form a category but
this is a sort of “accident” and does not generalise into higher dimensions; n-categories
and weak maps in the usual sense do not form a category for any higher n, for algebraic
definitions. (Garner [8] constructs a category of n-categories using a different type of
weak map.) Moreover, the category of doubly degenerate bicategories is in any case not
equivalent to the category of commutative monoids, as shown in [5].

The general problem is that we are trying to compare a totality of k-degenerate (n+k)-
categories, which is naturally an (n + k + 1)-dimensional structure, with a totality of
k-monoidal n-categories, which is naturally an (n + 1)-dimensional structure.

In [5] we investigated ways of

• decreasing the dimensions of the former, by forgetting higher-dimensional maps, or

• increasing the dimensions of the latter, by adding identities as higher cells.

We did this in a somewhat ad hoc way on a case-by-case basis, with mixed results.
We are now able to propose a much more systematic approach based on Lack’s the-

ory of icons [15, 17]. The aim of Lack’s work was to construct a “convenient 2-category
of bicategories”. It is well-known that bicategories and homomorphisms form a cate-
gory, and that bicategories, homomorphisms, transformations and modifications form a
tricategory, but simply forgetting the modifications does not give us a 2-category as the
transformations do not compose coherently enough.

Lack’s solutions is to restrict to “Identity Component Oplax Natural transformations”
(ICONs), and re-arrange their composition a little. This gives a 2-dimensional totality
of bicategories that is not only coherent (i.e. it is a 2-category) but also convenient—
it contains enough 2-dimensional information to express a strong form of the coherence
theorem for bicategories.

The key, for our purposes, is that the resulting totality is correct for comparing degen-
erate bicategories with monoidal categories which, after all, naturally form a bicategory.
That is, we consider Icon, the 2-category of bicategories, weak functors and icons. The
full sub-2-category on the degenerate bicategories is then equivalent to the 2-category of
monoidal categories. This is done by Lack [15].

We now generalise this construction in order to iterate it. In [9] various convenient
lower-dimensional totalities of tricategories are constructed (that is, lower than the nat-
ural four dimensions) but none of these gives the right framework for comparing doubly
degenerate tricategories with braided monoidal categories, for example.
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Our approach is to consider bicategories as categories “weakly enriched” in Cat, and
then generalise this to replace Cat with any symmetric monoidal bicategory B. We then
make a bicategory with

• 0-cells: weak B-categories,

• 1-cells: weak B-functors, and

• 2-cells: B-icons.

We name this 2-category B-Icon after its 2-cells. Our key theorem 3.8 shows that if B is
symmetric monoidal then so is B-Icon, so that we can iterate the construction.

We then have the following inductive process: starting with B0 = Cat and putting
Bk+1 = Bk-Icon, we finally take the full sub-2-category on suitably degenerate objects.
This gives correct totalities of monoidal categories as shown in the following schematic
diagram.

B0 = Cat

B1 = B0-Icon
degen

MonCat

B2 = B1-Icon
2-degen

BrMonCat

B3 = B2-Icon
3-degen

SymMonCat

B4 = B3-Icon
4-degen

SymMonCat

...

Note that the basic definition of B-Icon only requires that B be monoidal. However,
in order to iterate the icon construction

B B-Icon,

we need B-Icon to inherit the relevant structure of B. We have the following structures.

B B-Icon

monoidal —

braided monoidal monoidal

symmetric monoidal symmetric monoidal

Thus we see that for the iteration to proceed, we need symmetric monoidal bicategories.
This is the main technical content of this work. The work was first presented [6] but
suffered some delay due to the technical complications in the construction of the symmetric
monoidal bicategory B-Icon. These were resolved in [13]. In the meantime, Shulman [20]
gave an elegant abstract account of B-icons via 2-monads, but did not focus on the totality.
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His focus was on the 0-cells, and he did not study iteration, so he did not need a symmetric
monoidal structure on B, or on B-Icon. Garner and Shulman [10] also study categories
weakly enriched in a monoidal bicategory, but construct the tricategory of such, so study
the enriched version of pseudo-natural transformations instead of icons.

Weak enrichment is at the centre of higher category theory and so has been studied
by many different authors in different ways. Trimble studies weak enrichment via operad
actions [21, 16] and this approach is further developed in [4] and [3]. There is a large
body of work on weak enrichment via homotopy theory; we refer the reader to Simpson’s
comprehensive book [19].

We note that there is another point of view one could take when studying degenerate
objects, namely that the unique lower-dimensional cells should be treated as basepoints
as in topology, with all cells indexed on them required to be identities, but we do not
pursue this idea here; for further discussion see [7].

This paper is structured as follows. In Section 1 we recall the basic theory of icons
as in [15]. In Section 2 we recall the definitions of various kinds of monoidal bicategory
(braided, sylleptic, symmetric), and briefly remind the reader of the relevant coherence
theorems that we will use repeatedly in later proofs. Then in Section 3 we generalise
the definitions of Section 1 to the enriched setting and prove that if B is a symmetric
monoidal bicategory then so is B-Icon so we can iterate the icon construction. We
study this iteration in Section 4. We show that this gives correct totalities of degenerate
structures to correspond with the second column of the Periodic Table, and make some
conjectures about how to generalise this for the higher-dimensional columns.

We note that many of the structures defined in this paper use diagrams which, if
written out fully, would each span pages and would likely fail to convey any meaning at
all except to the most tricategorically-inclined readers. Thus we have taken a minimalist
approach to our diagrams, only including the key cells or those cells which lend some
useful geometry to the algebra. That we can do this is a consequence of the coherence
theorems in Section 2, but the diligent reader should always be able to reconstruct the
full diagrams, complete with all the necessary cells. Two such reconstructions might
not exactly coincide, but coherence tells us that they will differ only by unique 2-cell
isomorphisms.

1. Icons

In this section we recall Lack’s definition of icon [15, 17]. The idea is to form a con-
venient 2-category of bicategories. Bicategories together with functors, transformations
and modifications form a tricategory, and while truncating this to the level of functors
does yield a category, truncating to the level of transformations does not yield a coherent
2-dimensional structure. This is because transformations between bicategories do not in
general compose in a strictly associative or unital way, nor is interchange strict.

Lack’s idea is to introduce a new type of transformation called icon which can be
thought of as ‘Identity Component Oplax Natural transformation”. However, composition
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is not merely that of transformations—composing identity 1-cell components Ia would give
a component Ia ◦ Ia, not itself necessarily an identity.

Instead, Lack’s insight is to drop all reference to the 1-cell components of these “trans-
formations” and only retain the 2-cell components as data. This results in the following
definition.

1.1. Definition. Let X and Y be bicategories and let F,G : X Y be weak functors
such that Fa = Ga for all objects a ∈ X. An icon

X Y

F

G

α

is given by, for all pairs of 0-cells a, b ∈ X a 2-cell

X(a, b)
Y (Fa, Fb)

=

Y (Ga,Gb)

F

G

αab

satisfying the following axioms. Note that to save space we will omit the name of the bi-
category when writing hom-categories, thus X(a, b) becomes (a, b), and Y (Fa, Fb) becomes
(Fa, Fb), and so on.

• Composition:

(b, c)(a, b)
(Fb, Fc)(Fa, Fb)

=

(Gb,Gc)(Ga,Gb)

(a, c) (Ga,Gc)

FF

GG
m

m′

G

αα

φG

=

(b, c)(a, b) (Fb, Fc)(Fa, Fb)

(a, c)
(Fa, Fc)

=

(Ga,Gc)

FF

m m′

F

G

φF

α

• Unit:
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1

(a, a)

(Fa, Fa) = (Ga,Ga)

I

I′

GF
φF

α
= 1

(a, a)

(Fa, Fa) = (Ga,Ga)

I

I′

G
φG

Lack notes the following result.

1.2. Theorem. Bicategories, weak functors and icons form a 2-category.

2. Background on monoidal bicategories

In this section we provide the full definition of symmetric monoidal bicategory, which is
necessary for the constructions in Section 3. We build this up gradually. We first recall
the definition of monoidal bicategory, which can also be found in [7] and [12]. We then
define the notion of a braiding, as in [11], followed by syllepsis and symmetry as in [13] and
[18]. While these definitions are not new, we feel it is useful to gather them all together
in one place.

2.1. Definition. A monoidal bicategory M consists of the following data subject to
the following axioms:

DATA:

• an underlying bicategory, also denoted M ;

• a functor ⊗ : M ×M → M ;

• a functor I : 1 → M , where 1 denotes the unit bicategory;

• an adjoint equivalence a

M ×M ×M
⊗×1 //

1×⊗
��

M ×M

⊗
��

⇓a

M ×M
⊗

// M

in Bicat(M3,M);

• adjoint equivalences l and r

M

M ×M

I×1

??��������
M M

1
//

M ×M

M

⊗

��?
??

??
??

?

⇓ l

M M
1

//M

M ×M
1×I

??��������

M ×M

M

⊗

��?
??

??
??

?

⇓ r
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in Bicat(M,M);

• an invertible 2-cell π (i.e., an invertible modification)

M3

M2

1×⊗ ��=
==

==
==

=

M2 M
⊗

//

M4

M3

1×1×⊗

����
��
��
��
M4

M3

1×⊗×1
==

=

��=
==

M3

M2

1×⊗����
��
��
��

M4 M3
⊗×1×1 //

M3 M2
⊗×1 //

M3

M2

⊗×1

��=
==

==
==

=

M2

M

⊗
����
��
��
��

π_ *4M3

M2

1×⊗ ��=
==

==
==

=

M2 M
⊗

//

M3 M2
⊗×1 //

M4

M3

1×1×⊗

����
��
��
��
M4 M3

⊗×1×1 // M3

M2

1×⊗
��
�

����
�

M2

M

⊗
��=

==
==

==
=

M3

M2

⊗×1

��=
==

==
==

=

M2

M

⊗
����
��
��
��

⇐
a

⇓a

=⇓a×1

⇓a

1×a
⇐

in the bicategory Bicat(M4,M);

• invertible modifications

M2

M2

1

##
M2

M3
1×I×1
OO

''OO
M2

M2

1

((

M3 M2
⊗×1

//M3

M2

1×⊗

��
M2 M⊗

//

M2

M

⊗

��

M2

M2

1

##
M2

M2

1

((
M2 M⊗

//

M2

M

⊗

��

⇓r�×1

⇐1×l
⇓a

1

s{ ooo
ooo

ooo
oo

ooo
ooo

ooo
oo

µ _ *4

M2

M3
I×1×1 55lllllll

M3

M2

⊗×1
))RRR

RRRR

M2

M

⊗

��
M M

1
//

M2

M

⊗

��

M2 M2

1
// M2

M

⊗

��
M M

1
//

M2

M3
I×1×1 55lllllll

M3

M2

⊗×1
))RRR

RRRR

M2

M

⊗

��
M

M2

I×1
99rrrrrrrr

M2

M

⊗

%%LL
LLL

LLL

M3

M2

1×⊗
��

=

⇓l×1

= ⇓a

⇓l

λ _ *4

M M
1 //

M2

M

⊗

OO

M2

M31×1×I ))RRR
RRRR

M3

M2

1×⊗

55lllllll
M2

M

⊗

OO

M2 M2
1 // M2

M

⊗

OOM M
1 //

M2

M31×1×I ))RRR
RRRR

M3

M2

1×⊗

55lllllll
M2

M

⊗

OOM

M2
1×I %%LL

LLL
LLL

M2

M

⊗

99rrrrrrrr

M3

M2

⊗×1

OO
⇓1×r�

= ⇓r�

= ⇒a

ρ _ *4

AXIOMS:

• The following equation of 2-cells holds for all objects a, b, c, d, e in M , where we have
used parentheses instead of ⊗ for compactness and the unmarked isomorphisms are
naturality isomorphisms for a.



ITERATED ICONS 937

(((ab)c)d)e

((a(bc))d)e

(a1)1

OO((a(bc))d)e

(a((bc)d))e
a1 77oooo

(a((bc)d))e

(a(b(cd)))e(1a)1 22dddd (a(b(cd)))e

a((b(cd))e)

a ,,ZZZZ
a((b(cd))e)

a(b((cd)e))

1a
''OO

OO

a(b((cd)e))

a(b(c(de)))

1(1a)

��
(((ab)c)d)e

((ab)c)(de)

a ''OO
OOO

OOO
O

((ab)c)(de) (ab)(c(de))
a

// (ab)(c(de))

a(b(c(de)))

a

77ooooooooo

(a((bc)d))e

a(((bc)d)e)

a
**TTT

TT

a(((bc)d)e)

a((b(cd))e)1(a1) 44jjjjj
a(((bc)d)e)

a((bc)(de))
1a ##G

GGG
GGG

a((bc)(de))

a(b(c(de)))

1a ,,ZZZZ

((a(bc))d)e

(a(bc))(de)

a ''OO
OOO

OOO
O

(a(bc))(de) a((bc)(de))
a

//

((ab)c)(de)

(a(bc))(de)

a(11)

OO

(((ab)c)d)e

((a(bc))d)e

(a1)1

OO((a(bc))d)e

(a((bc)d))e
a1 77oooo

(a((bc)d))e

(a(b(cd)))e(1a)1 22dddd (a(b(cd)))e

a((b(cd))e)

a ,,ZZZZ
a((b(cd))e)

a(b((cd)e))

1a
''OO

OO

a(b((cd)e))

a(b(c(de)))

1(1a)

��
(((ab)c)d)e

((ab)c)(de)

a ''OO
OOO

OOO
O

((ab)c)(de) (ab)(c(de))
a

// (ab)(c(de))

a(b(c(de)))

a

77ooooooooo

(((ab)c)d)e

((ab)(cd))e

a1

66mmmmmmmmmm

((ab)(cd))e

(ab)((cd)e)
a **TTT
TT

(ab)((cd)e)

(ab)(c(de))

(11)a

��'
''
''
''

(ab)((cd)e)

a(b((cd)e))

a
66mmmmmmmmmm

((ab)(cd))e

(a(b(cd)))e

a1

CC��������

∼=

∼=

⇓π ⇓1π

⇓π

∼=

⇓π1 ⇓π

⇓π

• The following equation of 2-cells holds for all objects a, b, c in M , where the un-
marked isomorphisms are either naturality isomorphisms for a or unique coherence
isomorphisms from the hom-bicategory.

(ab)c

((aI)b)c
(r�1)1 77oooooooo

((aI)b)c

(a(Ib))c
a1

77ooooooo

(a(Ib))c

(ab)c

(1l)1

''OO
OOO

OOO

(ab)c

a(bc)

a

��

(ab)c

a(bc)
a ''OO
OOO

OOO

a(bc) a(bc)

1

77

((aI)b)c

(aI)(bc)

a
��

a(bc)

(aI)(bc)

r�(11)
OO

(a(Ib))c

a((Ib)c)

a

��
a((Ib)c)

a(I(bc))

1a
��

a((Ib)c)

a(bc)

1(l1)

""D
DD

DD
DD

DD
DD

a(I(bc))
a(bc)1l
,,ZZZZZZ

(aI)(bc)

a(I(bc))

a
**TTT

TT

(ab)c

((aI)b)c
(r�1)1 77oooooooo

((aI)b)c

(a(Ib))c
a1

77ooooooo

(a(Ib))c

(ab)c

(1l)1

''OO
OOO

OOO

(ab)c

a(bc)

a

��(ab)c
a(bc)a ,,ZZZZZZ

Z
a(bc) a(bc)

1
//

(ab)c

(ab)c

11

22ddddddddddddddddddddddddddddddd

∼=

⇓π ∼=

⇓1λ

⇓µ

⇓µ1

∼=

• The following equation of 2-cells holds for all objects a, b, c in M .
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(ab)c

a(bc)

a

OOa(bc)

a((bI)c)
1(r�1) 77oooooooo

a((bI)c)

a(b(Ic))

1a

''OO
OOO

OO

a(b(Ic))

a(bc)

1(1l)

''OO
OOO

OOO

(ab)c (ab)c

1

77 (ab)c

a(bc)

a

77oooooooo
(ab)c

(a(bI))c

(1r�)1

<<zzzzzzzzzzz
(ab)c

((ab)I)c

r�1

22dddddd
((ab)I)c

(a(bI))c

a1

OO

((ab)I)c

(ab)(Ic)
a 44jjjjj

(ab)(Ic)

(ab)c

(11)l
��

(ab)(Ic)

a(b(Ic))

a
OO

(a(bI))c

a((bI)c)

a

OO

(ab)c

a(bc)

a

OOa(bc)

a((bI)c)
1(r�1) 77oooooooo

a((bI)c)

a(b(Ic))

1a

''OO
OOO

OO

a(b(Ic))

a(bc)

1(1l)

''OO
OOO

OOO

(ab)c (ab)c
1

// (ab)c
a(bc)

a
22ddddddd

a(bc)

a(bc)
11 ,,ZZZZZZ

ZZZZZZZ
ZZZZZZZ

ZZZZZZZ
ZZZZ

∼=

⇓ρ1

⇓π

∼=

⇓µ

⇓1µ

∼=

2.2. Definition. Let B = (B,⊗, I, a, l, r, π, µ, ρ, λ) be a monoidal bicategory. Then a
braiding for B consists of

• an adjoint equivalence R : ⊗ ⇒ ⊗ ◦ τ in Bicat(B × B,B), where we define τ :
B × B → B × B to interchange the coordinates;

• an invertible modification R(−|−,−) as displayed below;

(AB)C

(BA)C
R1 ::tttt

(BA)C B(AC)
a // B(AC)

B(CA)

1R
$$JJ

JJ

(AB)C

A(BC)
a $$JJ
JJ

A(BC) (BC)A
R

// (BC)A

B(CA)

a

::tttt

R(A|B,C)

��

• and an invertible modification R(−,−|−) as displayed below;

A(BC)

A(CB)
1R ::tttt

A(CB) (AC)B
a� // (AC)B

(CA)B

R1
$$JJ

JJ

A(BC)

(AB)C
a�

$$J
JJJ

(AB)C C(AB)
R

// C(AB)

(CA)B

a�

::tttt

R(A,B|C)

��

all subject to the following four axioms.
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(AB)(CD)

A(B(CD))
a ??���

A(B(CD))

A(B(DC))
1(1R) ??���

A(B(DC))

A((BD)C)
1a� ??���

A((BD)C) A((DB)C)
1(R1) // A((DB)C) A(D(BC))

1a // A(D(BC))

(AD)(BC)

a�

��?
??

(AD)(BC)

((AD)B)C

a�

��?
??

((AD)B)C

((DA)B)C

(R1)1
��?

??

(AB)(CD)

((AB)C)D

a� $$I
II

II
II

II

((AB)C)D D((AB)C)
R

// D((AB)C) (D(AB))C
a�

// (D(AB))C

((DA)B)C

a�1

::uuuuuuuuu

A(B(CD))

A((BC)D)
1a� 33ggggggggggg

A((BC)D)

A(D(BC))
1R 33ggggggggggg

A((BC)D)

(A(BC))D

a�

����
��
��
��

(A(BC))D

((AB)C)D

a�1

����
��
��
�

(A(BC))D D(A(BC))
R // D(A(BC)) (DA)(BC)

a� // (DA)(BC) ((DA)B)C
a�

//D(A(BC))

D((AB)C)

1a�

��

(AD)(BC)

(DA)(BC)

R1

����
��
��
��

⇓ π

⇓ 1R(B,C|D)

⇓ R(A,BC|D)

∼=

∼=

⇓ π

(AB)(CD)

A(B(CD))
a ??���

A(B(CD))

A(B(DC))
1(1R) ??���

A(B(DC))

A((BD)C)
1a� ??���

A((BD)C) A((DB)C)
1(R1) // A((DB)C) A(D(BC))

1a // A(D(BC))

(AD)(BC)

a�

��?
??

(AD)(BC)

((AD)B)C

a�

��?
??

((AD)B)C

((DA)B)C

(R1)1
��?

??

(AB)(CD)

((AB)C)D

a�

""E
EE

EE
EE

EE
EE

((AB)C)D D((AB)C)
R

// D((AB)C) (D(AB))C
a�

// (D(AB))C

((DA)B)C

a�1

<<yyyyyyyyyyy

(AB)(CD) (AB)(DC)
1R

// (AB)(DC)

A(B(DC))

a

WW////////
(AB)(DC) ((AB)D)C

a�
// ((AB)D)C

(A(BD))C

a1
OO(A(BD))C

(A(DB))C

(1R)1

77ppppp
(A(BD))C

A((BD)C)

a�

ddHHHHHHHHHHHH

(A(DB))C

A((DB)C)
a�ffNNNN
(A(DB))C

((AD)B)C
a�1

**VVVV
VVV

((AB)D)C

(D(AB))C

R1

''OO
OOO

OOO
OOO

OOO
O

∼=
⇓ π

∼=
⇓ π

⇓ R(A,B|D)1

⇓ R(AB,C|D)

(AB)(CD)

(BA)(CD)
R1

CC���

(BA)(CD)

((BA)C)D
a�

CC���

((BA)C)D (B(AC))D
a1 // (B(AC))D (B(CA))D

(1R)1 // (B(CA))D ((BC)A)D
a�1 // ((BC)A)D

(BC)(AD)

a
��8

88

(BC)(AD)

(BC)(DA)

1R
��8

88

(AB)(CD)

A(B(CD))

a
��:

::
::

::

A(B(CD)) (B(CD))A
R

// (B(CD))A B((CD)A)
a

// B((CD)A) B(C(DA))
1a

// B(C(DA))

(BC)(DA)

a�

AA�������

(BA)(CD)

B(A(CD))
a ''OO
OOO

O

B(A(CD))

B((AC)D)

1a�
66nnn

B((AC)D)

(B(AC))D

a�

RR%%%%

B(A(CD))

B((CD)A)

1R ))SSS
SSS

SSS
SSS

SSS

B((AC)D) B((CA)D)
1(R1)

..^̂^̂ B((CA)D)

(B(CA))D

a�

OO

B((CA)D)

B(C(AD))
1a ##F

FF
FF

B(C(AD))

B(C(DA))
1(1R) ##F

FF
FF

B(C(AD))

(BC)(AD)

a�
;;vvvvvvvv

⇓ π ∼= ⇓ π

⇓ R(A|B,CD)

⇓ 1R(A|C,D) ∼=

(AB)(CD)

(BA)(CD)
R1

CC���

(BA)(CD)

((BA)C)D
a�

CC���

((BA)C)D (B(AC))D
a1 // (B(AC))D (B(CA))D

(1R)1 // (B(CA))D ((BC)A)D
a�1 // ((BC)A)D

(BC)(AD)

a
��8

88

(BC)(AD)

(BC)(DA)

1R
��8

88

(AB)(CD)

A(B(CD))

a
��:

::
::

::

A(B(CD)) (B(CD))A
R

// (B(CD))A B((CD)A)
a

// B((CD)A) B(C(DA))
1a

// B(C(DA))

(BC)(DA)

a�

AA�������

(AB)(CD)

((AB)C)D

a�

22ffffffff
((AB)C)D

((BA)C)D

(R1)1
bbEEEEEEE

((AB)C)D

(A(BC))D

a1

22fffffff
(A(BC))D

((BC)A)D

R1

22ffffffff
(A(BC))D

A((BC)D)

a��'
'

A((BC)D)

((BC)D)A

R��&
&&

A(B(CD))

A((BC)D)

1a�

55kkkkkkkkkkkkkkkkkkkkk
(B(CD))A

((BC)D)A

a�1

55kkkkkkk

((BC)D)A

(BC)(DA)

a

11cccccccccccccc

∼=

⇓ R(A|B,C)1

⇓ π
∼=

⇓ R(A|BC,D)

⇓ π
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(A(BC))D

(A(CB))D

(1R)1

OO(A(CB))D

((AC)B)D

a�1

EE������

((AC)B)D (AC)(BD)
a // (AC)(BD) (CA)(BD)

R1 // (CA)(BD) (CA)(DB)
1R // (CA)(DB) C(A(DB))

a // C(A(DB))

C((AD)B)

1a�

��3
33

33
3

C((AD)B)

C((DA)B)

1(R1)
��

(A(BC))D

((AB)C)D

a�1
  A

AA
AA

AA
AA

A

((AB)C)D (AB)(CD)
a

// (AB)(CD) (CD)(AB)
R

// (CD)(AB) C(D(AB))
a

// C(D(AB))

C((DA)B)

1a�

>>}}}}}}}}}}
((AB)C)D

(C(AB))D

R1

HH������

(C(AB))D

((CA)B)D

a�1

HH������

((AC)B)D

((CA)B)D

(R1)1 %%J
JJ

JJ
JJ

JJ
J

((CA)B)D

(CA)(BD)

a

99tttttttttt

(CA)(BD)

C(A(BD))

a
%%J

JJ
JJ

JJ
JJ

J

C(A(BD))

C(A(DB))

1(1R)

99tttttttttt
C(A(BD))

C((AB)D)

1a�����
��
��
�

(C(AB))D
C((AB)D)

a //````````````` C((AB)D)

C(D(AB))

1R

%%KK
KKK

KKK
KKK

K

⇓R(A,B|C)1

∼=

⇓π

∼=

⇓1R(A,B|D)

⇓R(AB|C,D)

(A(BC))D

(A(CB))D

(1R)1

OO(A(CB))D

((AC)B)D

a�1

HH���������

((AC)B)D (AC)(BD)
a // (AC)(BD) (CA)(BD)

R1 // (CA)(BD) (CA)(DB)
1R // (CA)(DB) C(A(DB))

a // C(A(DB))

C((AD)B)

1a�

��-
--
--
--
--

C((AD)B)

C((DA)B)

1(R1)

��
(A(BC))D

((AB)C)D

a�1

��=
==

==
==

==
==

((AB)C)D (AB)(CD)
a

// (AB)(CD) (CD)(AB)
R

// (CD)(AB) C(D(AB))
a

// C(D(AB))

C((DA)B)

1a�

@@�����������

(A(BC))D

A((BC)D)
a 66nnnn

A((BC)D)

A((CB)D)

1(R1)

OO
(A(CB))D

A((CB)D)

a
22 A((CB)D)

A(C(BD))

1a

99sss
A(C(BD))

(AC)(BD)

a�
II���

(AC)(BD)

(AC)(DB)

1R &&MM
MMM

MMM
M

(AC)(DB)

(CA)(DB)

R1

88qqqqqqqqq

(CA)(DB)

((CA)D)B

a�

����
��
��
��
�

((CA)D)B

(C(AD))B

a1
33 (C(AD))B

C((AD)B)a
,,(C(AD))B

(C(DA))B

(1R)1

��
(C(DA))B

C((DA)B)a
++

(CD)(AB)

((CD)A)B

a�

<<xxxxxxx

((CD)A)B

(C(DA))B

a1

BB�����

A(C(BD))

A(C(DB))

1(1R) ��?
??

??
??

A(C(DB))

(AC)(DB)

a�

::tttt

(AC)(DB)

((AC)D)B

a�

��2
22
22
22
22

((AC)D)B

((CA)D)B

(R1)1

BB�����A((BC)D)

A(B(CD))

1a

��6
66

66
66

A(B(CD))

(AB)(CD)

a�

""E
EE

EE
EE

A(B(CD))

A((CD)B)

1R

DD					

A((CD)B)

A(C(DB))

1a

DD




A((CD)B)

(A(CD))B

a� $$J
JJ

JJ
JJ

J

(A(CD))B ((CD)A)B
R1

//(A(CD))B

((AC)D)B

a�1

BB������

∼=

⇓π

∼=

∼=
∼=

⇓π

∼=

⇓π

⇓π

⇓π

⇓1R(B|C,D)

⇓R(A,B|CD)

⇓R(A|C,D)1

(AB)C

(BA)C

R1

DD







(BA)C B(AC)
a // B(AC) B(CA)

1R // B(CA) (BC)A
a� // (BC)A (CB)A

R1 // (CB)A

C(BA)

a

��4
44

44
4

(AB)C

A(BC)

a
��4

44
44

4

A(BC) A(CB)
1R

// A(CB) (AC)B
a�

// (AC)B (CA)B
R1

// (CA)B C(AB)a
// C(AB)

C(BA)

1R

DD






A(BC)

(BC)A

R
;;wwwwwwwww

(BC)A

B(CA)

a
;;wwwwwwwww

(BC)A

(CB)A

R1

33ggggggggggggggggggggggggggg

A(CB)

(CB)A

R

77ooooooooooooooooooooooooooooooo

⇓R(A|B,C)

∼=

∼= ⇓R−1
(A|C,B)

(AB)C

(BA)C

R1

DD







(BA)C B(AC)
a // B(AC) B(CA)

1R // B(CA) (BC)A
a� // (BC)A (CB)A

R1 // (CB)A

C(BA)

a

��4
44

44
4

(AB)C

A(BC)

a
��4

44
44

4

A(BC) A(CB)
1R

// A(CB) (AC)B
a�

// (AC)B (CA)B
R1

// (CA)B C(AB)a
// C(AB)

C(BA)

1R

DD







(AB)C

C(AB)

R
,,ZZZZZZ

ZZZZZZZ
ZZZZZZZ

ZZZZZZZ
ZZZZZZZ

ZZZZZZZ
ZZZ

B(AC)

(BA)C

a�

((QQ
QQQ

QQQ
QQQ

QQ

(BA)C C(BA)
R

//(AB)C (BA)C
R1 //

∼=

⇓R−1
(A,B|C)

⇓R(B,A|C)

∼=

A braided monoidal bicategory is a monoidal bicategory equipped with a braiding.
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While these axioms might look quite daunting, they are just algebraic expressions of
the notion that a pair of homotopies that each start at the braid γ and end at the braid
γ′ are in fact themselves homotopic. For instance, the first axiom concerns the case of a
braid with four strands in which the first three strands are braided past the final one. This
can be done either all at once (this is the 1-cell target of the pasting diagram) or it can
be done step-by-step in which strand 3 is braided past strand 4, then strand 2 is braided
past strand 4, and finally strand 1 is braided past strand 4 (this is the 1-cell source). The
two different composite 2-cells which are claimed to be equal in this axiom are just two
different ways to transform the step-by-step method into the all-at-once method using
the algebra available in a braided monoidal bicategory. The other three axioms also have
similar interpretations. In fact, one could take the presentation of these axioms seriously,
and view them as certain three-dimensional polytopes in which the two-dimensional faces
are precisely the 2-cells in each equation above. Doing so produces polytopes discovered
by Bar-Natan in [2].

2.3. Definition. Let B be a braided monoidal bicategory. A syllepsis for B consists
of an invertible modification with components vxy : Ryx ◦Rxy ⇒ 1 such that the following
two axioms hold; here we use the convention that if α is a 2-cell, then α̂ denotes its mate.

(ab)c

(ba)c

R1

::tttt
(ab)c

(ba)c
R�1 ++

(ba)c b(ac)
a // b(ac)

b(ca)
1R $$JJ
JJ

b(ac)

b(ca)

1R�

��
(ab)c

a(bc)
a $$JJ
JJ

a(bc) (bc)a
R

// (bc)a

b(ca)

a

::tttt

R(a|b,c)

��
=

⇓v̂ab1 ⇓1v̂ac

(ab)c

(ba)c
R�1 ::tttt

(ba)c b(ac)
a // b(ac)

b(ca)

1R�

$$JJ
JJ

(ab)c

a(bc)
a $$JJ
JJ

a(bc) (bc)a
R�

//a(bc) (bc)a

R

AA(bc)a

b(ca)

a

::tttt

R̂(a,b|c)

��

⇓v̂a,bc

a(bc)

a(cb)

1R

::tttt
a(bc)

a(cb)
1R� ++

a(cb) (ac)b
a� // (ac)b

(ca)b
R1 $$JJ
JJ

(ac)b

(ca)b

R�1

��
a(bc)

(ab)c
a�

$$JJ
JJ

(ab)c c(ab)
R

// c(ab)

(ca)b

a�

::tttt

R(a,b|c)

��

=

⇓1v̂bc ⇓v̂ac1

a(bc)

a(cb)
1R ::tttt

a(cb) (ac)b
a� // (ac)b

(ca)b

R1
$$JJ

JJ

a(bc)

(ab)c
a�

$$JJ
JJ

(ab)c c(ab)
R�

//(ab)c c(ab)

R

AAc(ab)

(ca)b

a�

::tttt

R̂(a|b,c)

��

⇓v̂ab,c

A sylleptic monoidal bicategory is a braided monoidal bicategory equipped with a
syllepsis.

2.4. Definition. A symmetric monoidal bicategory is a sylleptic monoidal bicate-
gory in which the following axiom holds for every pair of objects a, b.

ab

ba

R

DD








ba ab
R // ab

ba

R

��4
44

44
44

ab ba
R

//ab

ab

1

77oooooooooooooooo

⇓ vab
∼=

ab

ba

R

DD








ba ab
R // ab

ba

R

��4
44

44
44

ab ba
R

//

ba

ba

1
''OO

OOO
OOO

OOO
OOO

OO

∼=

⇓ vba=
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The proofs in the next section rely heavily on various coherence theorems for monoidal
and symmetric monoidal bicategories; see [12, 11, 13]. Essentially, these say that “every
diagram of 2-cell constraints commutes”. We collect these theorems together as the fol-
lowing.

2.5. Theorem. In the free monoidal bicategory, braided monoidal bicategory, or symmet-
ric monoidal bicategory generated by a bicategory B, every diagram of constraint 2-cells
commutes.

In practice, this means we can simplify calculations involving 2-cells in the following
ways.

• We can disregard lower-dimensional coherence cells in the sources and targets of 2-
cell diagrams, as there is a unique coherence isomorphism between any two possible
interpretations.

• We can manipulate coherence 2-cells in the diagram, more-or-less at will.

• When using only the braided structure, there is a unique 2-cell between any pair of
parallel 1-cells built using the braid constraint if and only if those 1-cells have the
same associated geometric braid, and if not there is no 2-cell at all. Using the full
symmetric structure, there is a unique 2-cell between such a pair if and only if those
1-cells have the same underlying permutation, and if not there is no 2-cell between
them at all.

We will at times record some of these coherence 2-cells in our diagrams, but it is largely
done for either clarity (if omitting them would make the diagram difficult to parse) or
aesthetic purposes.

3. Generalised icons

In this section we are going to generalise the definition of icon in the following sense.
Given a monoidal bicategory B we will define a bicategory B-Icon with

• 0-cells: categories weakly enriched in B

• 1-cells: weak functors

• 2-cells: icons enriched in B.

The case B = Cat gives the original definition of Lack in [15]; Shulman gives an abstract
account of the case where B is a tensor distributive monoidal 2-category in [20]. Fur-
thermore we will show that if B is symmetric monoidal then B-Icon is also symmetric
monoidal, so the construction can be iterated.

We begin by defining the appropriate bicategory of graphs. For the rest of this section
we fix a monoidal bicategory B, with tensor product ⊗ (or omitted) and unit object 1.
Motivating examples include Cat and Icon.
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3.1. Definition. A B-graph X is given by

• a set X0 of objects, and

• for all objects x, y ∈ X0 a hom-object X(x, y) ∈ B.

A morphism of B-graphs F : X −→ Y is given by

• a function F : X0 −→ Y0, and

• for all objects x, y ∈ X0 a morphism F = Fx,y : X(x, y) −→ Y (Fx, Fy) ∈ B.

A 2-morphism of B-graphs α : F =⇒ G

X Y

F

��

G

AA
α

��

exists only when Fx = Gx for all x ∈ X0. When this holds, α is given by, for every pair
x, y ∈ X0 a 2-cell

X(x, y) Y (Fx, Fy) = Y (Gx,Gy)

F

%%

G

99
αx,y

��

It is straightforward to check that B-graphs, their morphisms and their 2-morphisms
form a bicategory, which we write as B-Gph. Note that horizontal and vertical com-
position of 2-morphisms come from the horizontal and vertical composition of 2-cells in
B.

3.2. Definition. Let B be a braided monoidal bicategory. A category weakly en-

riched in B or weak B-category X is given by

• an underlying B-graph X,

• composition: for all a, b, c ∈ X0 a 1-cell in B

mabc : X(b, c)⊗X(a, b) −→ X(a, c),

• identities: for all a ∈ X0 a 1-cell in B

Ia : 1 −→ X(a, a),
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• associativity constraints: for all a, b, c, d ∈ X0 an invertible 2-cell in B

(
X(c, d)⊗X(b, c)

)
⊗X(a, b)

X(c, d)⊗
(
X(b, c)⊗X(a, b)

)
≃
��

X(c, d)⊗X(a, c)

X(b, d)⊗X(a, b)

X(a, d)

1⊗ma,b,c

��

mb,c,d⊗1
//

ma,b,d

��

ma,c,d

//

aa,b,c,d
v~ vv

vv
vv
vv
vv

vv
vv
vv
vv
vv

and

• unit constraints: for all a, b invertible 2-cells in B

X(a, b)⊗X(a, a)X(a, b)⊗ 1

X(a, b)

ma,a,b

��

1⊗Ia //

≃

''OO
OOO

OOO
OOO

OOO
OOO

O
ra,b

{� ��
��
�

��
��
�

X(b, b)⊗X(a, b) 1⊗X(a, b)

X(a, b)

ma,b,b

��

Ib⊗1oo

≃

wwooo
ooo

ooo
ooo

ooo
ooola,b

�#
??

??
?

??
??

?

.

This data satisfies the following axioms. We write (a, b) for X(a, b) except in the first
diagram where we write Xab to space. We also omit all ⊗ symbols. Note also that the
2-cell a is the associativity constraint for the weak B-category X, whereas the 1-cell a is
the associativity constraint for the monoidal structure of B.
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Xde(Xcd(XbcXab))

(XdeXcd)(XbcXab) Xde(XcdXac)

Xde((XcdXbc)Xab)

((XdeXcd)Xbc)Xab (Xde(XcdXbc))Xab Xde(XbdXab) XdeXad

(XdeXbd)Xab

(XceXbc)Xab Xac

XbeXab

(m1)1

m1 m

m

a

a
1(1m)

1m

(1m)1 a

a 1(m1)

a1

m1

1m

1a

∼=

a1

1aΠ

a

=

Xde(Xcd(XbcXab))

(XdeXcd)(XbcXab) Xde(XcdXac)

(XdeXcd)Xac

((XdeXcd)Xbc)Xab XdeXad

Xce(XbcXab) XceXac

(XceXbc)Xab Xac

XbeXab

(m1)1

m1 m

m

a

a
1(1m)

1m

m(11)

1m

(11)m

1m

a m

a

∼=
functoriality of ⊗

∼=
naturality of a

∼=
naturality of a

a

a
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Note that ignoring B coherence this axiom becomes (more tractably):

(d, e)(a, d) (a, e)

(d, e)(c, d)(a, c)

(d, e)(b, d)(a, b) (b, e)(a, b)

(d, e)(c, d)(b, c)(a, b) (c, e)(b, c)(a, b)m11

m11m1

m111m

1m

1m m

m

a1

1a

a

=

(d, e)(a, d) (a, e)

(d, e)(c, d)(a, c) (c, e)(a, c)

(b, e)(a, b)

(d, e)(c, d)(b, c)(a, b) (c, e)(b, c)(a, b)m11

1m11m

m1

m1

m

m

1m

m

a

a

∼=
functoriality of ⊗

where we now write (a, b) for X(a, b). This is the notation that we will use for the rest of
this work.

The unit axiom is as follows.
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(b, c)1(a, b) (b, c)(b, b)(a, b)

(b, c)(a, b)

(b, c)(a, b)

(a, c)

1I1

m1

m

1l

m

1m
1l

a

=

(b, c)1(a, b) (b, c)(b, b)(a, b)

(b, c)(a, b)

(a, c)

1I1

m1

m

r1

r1

3.3. Definition. A weak B-functor F : X X ′ is given by

• a function F : obX obX ′,

• 1-cells Fab : X(a, b) X ′(Fa, Fb) ∈ B, and

• 2-cells

(b, c)(a, b) (Fb, Fc)(Fa, Fb)

(a, c) (Fa, Fc)

F.F

F

m m′
φ

1 (a, a)

(Fa, Fa).

I

I′
F

φ
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This data satisfies the following axioms:

• associativity

(a, d) (Fa, Fd)

(c, d)(a, c)

(b, d)(a, b) (Fb, Fd)(Fa, Fb)

(c, d)(b, c)(a, b) (Fc, Fd)(Fb, Fc)(Fa, Fb)FFF

m′1m1

FF1m

m

m m′

F

φ.1F

a

φ

=

(a, d) (Fa, Fd)

(c, d)(a, c) (Fc, Fd)(Fa, Fc)

(Fb, Fd)(Fa, Fb)

(c, d)(b, c)(a, b) (Fc, Fd)(Fb, Fc)(Fa, Fb)FFF

1m′1m

FF

m′1

m′

m′

m

F

a′

φ

1F .φ
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• right unit

(a, b) (Fa, Fb)

(a, b)(a, a) (Fa, Fb)(Fa, Fa)

(a, b)1 (Fa, Fb)1F1

1I′1I

FF

r

m m′

F

1F .φ

r

φ

=

(a, b) (Fa, Fb)

(Fa, Fb)(Fa, Fa)

(a, b) (Fa, Fb)1F1

r

1I′

m′

r

F

r′

∼=
naturality of r
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• left unit

(a, b) (Fa, Fb)

(b, b)(a, b) (Fb, F b)(Fa, Fb)

1(a, b) 1(Fa, Fb)F1

I′1I1

FF

l

m m′

F

φ.1F

l

φ

=

(a, b) (Fa, Fb)

(Fb, F b)(Fa, Fb)

(a, b) 1(Fa, Fb)1F

l

I′1

m′

l

F

l′

∼=
naturality of l

3.4. Definition. Composition of weak B-functors is defined as follows. Given compos-
able weak B-functors as below

X
(F,φF )

Y
(G,φG)

Z

we define the composite GF .

• The action on objects is given by the composite

obX F obY G obZ.

• The action on hom-categories is given by the composite

X(a, b)
Fab

Y (Fa, Fb)
GFa,Fb

Z(GFa,GFb).
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• The composition constraint φGF is given by the following composite 2-cell.

(b, c)(a, b)

(Fb, Fc)(Fa, Fb)

(GFb,GFc)(GFa,GFb)

(a, c) (Fa, Fc) (GFa,GFc)

(GF ).(GF )

F.F G.G

F G

m

m

m

φF φG

∼=
interchange

In what follows below, we will omit the interchange cells, noting that these are
uniquely determined by coherence.

• The unit constraint is given by the following composite 2-cell.

1

X(a, a)

Y (Fa, Fa)

Z(GFa,GFa)
I′′GFa

I′Fa

Ia

G

F

φF

φG

We immediately check that this satisfies the axioms as follows.

• Associativity:

FFF

m′1m1

FF

1m

m

m m′

F

GGG

GG

G

m′′1

m′′

φF .1F φG.1G

a

φF φG
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=

FFF

1m′1m

FF

GGG

GG

G

m′′1

m′′

m′1

m′

m′

m

F

a′

φF

1F .φF

φG.1G

φG

=

FFF

1m′1m

FF

GGG

G

m′′1

m′′

GG

1m′′

G

m′

m

F

a′′

φF

1F .φF 1G.φG

φG

• Right unit (and similarly left unit):

F1

1I′1I

FF

r

m m′

F

G1

GG

G

1I′′

m′′

1F .φF 1G.φG

r

φF φG

=
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F1

r

G1

GG

G

1I′′

m′′

1I′

m′

r

F

r′
∼=

naturality of r

1G.φG

φG

=

F1

r

G1

G

1I′′

m′′

rr

F

r′′
∼=

naturality of r
∼=

naturality of r

3.5. Definition. Let F,G : X Y be weak B-functors such that Fa = Ga for all
objects a ∈ X. A B-icon

X Y

F

G

α

is given by, for all pairs of objects a, b ∈ X a 2-cell

X(a, b)
Y (Fa, Fb)

=

Y (Ga,Gb)

F

G

αab

satisfying the following axioms.

• Composition:
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(b, c)(a, b)
(Fb, Fc)(Fa, Fb)

=

(Gb,Gc)(Ga,Gb)

(a, c) (Ga,Gc)

FF

GG
m

m′

G

αα

φG

=

(b, c)(a, b) (Fb, Fc)(Fa, Fb)

(a, c)
(Fa, Fc)

=

(Ga,Gc)

FF

m m′

F

G

φF

α

• Unit:

1

(a, a)

(Fa, Fa) = (Ga,Ga)

I

I′

GF
φF

α
= 1

(a, a)

(Fa, Fa) = (Ga,Ga)

I

I′

G
φG

3.6. Definition. We now define composition of B-icons. Vertical composition is inher-
ited from B, that is, components are composed vertically as in B and axioms then follow
from those in B.

Horizontal composition is similar, but slightly more complicated. Given composable
B-icons

X Y Z

F

G

H

K

α β

the component (β ∗ α)a,b is given by the horizontal composite

X(a, b) Y (Fa, Fb) Z(HFa,HFb)

F

G

H

K

αa,b βFa,Fb
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noting that this makes sense as F and G agree on objects, and likewise H and K. We can
then check that this satisfies the axioms for a B-icon. The unit axiom follows immediately
from the unit axioms for α and β. The composition axiom is as follows.

(b, c)(a, b) (HFb,HFc)(HFa,HFb)

(Gb,Gc)(Ga,Gb)

(a, c) (Ga,Gc) (KGa,KGc)

=

(KGb,KGc)(KGa,KGb)

G K

m

m′′

m′

HF.HF

KG.KG

G.G

K.K

∼=
interchange

(β ∗ α)(β ∗ α)

φG φK

(b, c)(a, b) (HFb,HFc)(HFa,HFb)

(Gb,Gc)(Ga,Gb)

(a, c) (Ga,Gc) (KGa,KGc)

=

(KGb,KGc)(KGa,KGb)

=

(Fb, Fc)(Fa, Fb)

G K

m

m′′

m′

HF.HF

G.G

K.K

F.F H.H∼=
interchange

α.α
β.β

φG φK

=
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(b, c)(a, b) (HFb,HFc)(HFa,HFb)

(Gb,Gc)(Ga,Gb)

(a, c)
(Fa, Fc) (HFa,HFc)

=
(Ga,Gc)

=

(KGa,KGc)
=

(Fb, Fc)(Fa, Fb)

G
K

F
H

m
m′′

m′

HF.HF

F.F H.H∼=

α
β

φF φH

=

where the first equality follows from functoriality axioms and the second from the first
B-icon axiom applied on each side.

3.7. Proposition.Weak B-categories, weak B-functors and B-icons organise themselves
into a bicategory B-Icon. Furthermore if the underlying bicategory of B is a 2-category,
then B-Icon is also a 2-category.

Proof. Given a pair of weak B-categories X and Y , the weak B-functors X Y and
B-icons between those form a category—composition is vertical composition of B-icons
and the identity 1F : F F has all its components given by identity 2-cells in B. The
category axioms follow from those for the hom-categories in B.

We have defined the action of the composition functor on cells in Definitions 3.4
and 3.6. For functoriality, interchange of B-icons follows from interchange of 2-cells in
B. Likewise the fact that horizontal composition of units is a unit follows from the
corresponding fact in B.

We now define the identity weak B-functor.

• On objects it is the identity function.

• On homs it is the identity 1-cell in B.

• The constraint cells are given below.

(b, c)(a, b) (b, c)(a, b)

(a, c) (a, c)

1.1

1

m mm

1

∼=

r−1

l
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1 (a, a)

(a, a)

I

I 1
r−1

The axioms for a weak B-functor follow from coherence for the monoidal bicategory
B.

We now deal with the associativity and unit constraints. First note that in each case
the constraint must be a B-icon, so has components which are 2-cells of B. We simply
define these to be the associativity and unit constraints of B, and it only remains to
check that these components satisfy the B-icon axioms, which is straightforward as we
now indicate. For the first axiom we must check the following equality

F.F

G.G

m′

F G H

m m′′′

m′′

(HG)F.(HG)F

H(GF ).H(GF )

GF.GF

H.H

∼=
interchange

∼=
interchange

a.a

φF

φG

φH

G.G

H.H

m′′

F G H

m m′′′

m′

(HG)F.(HG)F

H(GF )

F.F HG.HG

∼=
interchange

∼=
interchange

a

φF

φG

φH

=
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which follows from coherence for the monoidal bicategory B and naturality of a, the
associator for the 1-cells in B. The unit axiom follows similarly.

Finally, to verify the bicategory axioms for B-Icon we only need to check them com-
ponentwise, so they all follow from the bicategory axioms for B. Since the coherence
constraints are built from those in B, it follows that if the constraints in B are identities
then the constraints in B-Icon are also identities. Thus if B is a 2-category then B-Icon
is also a 2-category.

3.8. Theorem. If B is a symmetric monoidal bicategory then so is B-Icon. Thus in
particular the icon construction can be iterated.

Proof. Suppose B is a symmetric monoidal bicategory, with symmetry

R = Rab : a⊗ b b⊗ a.

We already know that B-Icon is a bicategory, and we now show that it is symmetric
monoidal.

We define a (weak) functor

⊗ : B-Icon×B-Icon B-Icon.

Definition of ⊗ on weak B-categories. Let X, Y be weak B-categories. Then
X ⊗ Y has

• objects pairs 〈x, y〉 ∈ obX × obY ,

• (X ⊗ Y )
(
〈x0, y0〉, 〈x1, y1〉

)
= X(x0, x1).Y (y0, y1) where on the right the dot denotes

the tensor product in B,

• composition: given x0, x1, x2 ∈ X0 and y0, y1, y2 ∈ Y0, composition is defined as
below

X(x0, x2).Y (y0, y2),

X(x1, x2).X(x0, x1).Y (y1, y2).Y (y0, y1)

X(x1, x2).Y (y1, y2).X(x0, x1).Y (y0, y1)

1.R.1

m.m

• identities: for all x ∈ X, y ∈ Y , a the unit 1-cell is the composite

1 1.1
Ix.Iy

X(x, x).Y (y, y),

• associativity constraints:
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(x2, x3)(y2, y3)(x1, x2)(y1, y2)(x0, x1)(y0, y1) (x2, x3)(x1, x2)(y2, y3)(y1, y2)(x0, x1)(y0, y1) (x1, x3)(y1, y3)(x0, x1)(y0, y1)

(x2, x3)(y2, y3)(x1, x2)(x0, x1)(y1, y2)(y0, y1) (x2, x3)(x1, x2)(x0, x1)(y2, y3)(y1, y2)(y0, y1) (x1, x3)(x0, x1)(y1, y3)(y0, y1)

(x2, x3)(y2, y3)(x0, x2)(y0, y2) (x2, x3)(x0, x2)(y2, y3)(y0, y2) (x0, x3)(y0, y3)

1.R.1.1.1 m.m.1.1

1.R.1.1 m.1.m.1

1.R.1 m.m

1.1.1.R.1

1.1.m.m

1.1.R.1

1.m.1.m

1.R.1

m.m
a.a

∼=
naturality of R

∼=
naturality of R

∼=
braid coherence
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Note that in the above diagram, we have written R for various different instances
of braidings. This is unambiguous given the sources and targets, but requires some
care especially in the top left square.

• unit constraints:

(x0, x1)(y0, y1).1 (x0, x1)(y0, y1).1.1 (x0, x1)(y0, y1)(x0, x0)(y0, y0)

(x0, x1).1.(y0, y1).1 (x0, x1)(x0, x0)(y0, y1)(y0, y0)

(x0, x1)(y0, y1)

∼ 1.1.I.I

1.I.1.I

1.R.1 1.R.1

m.m
∼

∼

∼=
naturality of R

∼=
sym. coherence

r.r

1.(x0, x1)(y0, y1) 1.1.(x0, x1)(y0, y1) (x1, x1)(y1, y1)(x0, x1)(y0, y1)

1.(x0, x1).1.(y0, y1) (x1, x1)(x0, x1)(y1, y1)(y0, y1)

(x0, x1)(y0, y1)

∼ I.I.1.1

I.1.I.1

1.R.1 1.R.1

m.m
∼

∼

∼=
naturality of R

∼=
sym. coherence

l.l

We check that this data for X⊗Y satisfies the axioms for a weak B-category. Ignoring
all coherence in B, these are not difficult to check; they follow from the axioms for X

and Y tensored together. The following diagram indicates how to prove the associativity
axiom; we again use the cubical version of the axioms, as introduced in Definition 3.2,
and omit almost all the labels as they can be inferred.

1.a.a

a.a.1

a.a
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=

1.a.a

a.a.1

a.a

=

1.a.a

a.a.1

a.a

=

1.a.a

a.a.1

a.a

=

1.a.a

a.a.1

a.a
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=

a.a

a.a

This completes the definition of X ⊗ Y as a weak B-category.

Definition of ⊗ on weak B-functors. Given weak B-functors

X
F

X ′

Y
G

Y ′

we define
X ⊗ Y

F⊗G
X ′ ⊗ Y ′

as follows:

• on objects: (F ⊗G) : 〈x, y〉 〈Fx,Gy〉

• on homs: X(x0, y0).Y (y0, y1)
F.G

X ′(Fx0, Fx1).Y
′(Gy0, Gy1)

• constraints

(x1, x2)(y1, y2)(x0, x1)(y0, y1) (Fx1, Fx2)(Gy1, Gy2)(Fx0, Fx1)(Gy0, Gy1)

(x1, x2)(x0, x1)(y1, y2)(y0, y1) (Fx1, Fx2)(Fx0, Fx1)(Gy1, Gy2)(Gy0, Gy1)

(x0, x2)(y0, y2) (Fx0, Fx2)(Gy0, Gy2)

FGFG

FFGG

FG

1R1

mm

1R1

mmφφ

∼=
naturality of R

1 (x, x)(y, y)

(Fx, Fx)(Gy,Gy)

II

I′I′
FG

φφ

We now check that this data for F ⊗ G satisfies the axioms for a weak B-functor.
The calculations are similar to those for the weak B-category axioms for X ⊗ Y above,
essentially by tensoring together the axioms for F and G, and using coherence for B qua
braided monoidal category.
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Definition of ⊗ on B-icons. Suppose we have weak B-functors

F, F ′ : X X ′

G,G′ : Y Y ′

agreeing on objects, and B-icons

X X ′

F

F ′

α

Y Y ′

G

G′

β

we define the B-icon

X ⊗ Y X ′ ⊗ Y ′

F ⊗G

F ′ ⊗G′

α⊗ β

to have components

(x0, x1)(y0, y1)
(Fx0, Fx1)(Gy0, Gy1)

=

(F ′x0, F
′x1)(G

′y0, G
′y1)

F.G

F ′.G′

αx0x1
.βy0y1

and then the axioms for a B-icon follow easily from naturality of R and the icon axioms
for α and β tensored together.

This completes the definition of the weak functor

⊗ : B-Icon×B-Icon B-Icon

on cells. Note that it follows immediately that this is locally functorial on hom-categories
because this amounts to the functoriality of the tensor product of B. We now define
composition and unit constraints for the weak functoriality of ⊗. The principle is as
before. We define putative B-icons whose components are the corresponding constraints
in B; as axioms are then inherited from B, we just have to check that these components
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really form B-icons. These calculations are routine, and are generally similar to those in
Definition 3.6 and Proposition 3.7, so we leave the details to the reader.

Definition of composition constraint for the functor ⊗. Given weak B-
functors

X
F

X ′ F ′

X ′′

Y
G

Y ′ G′

Y ′′

we need a constraint B-icon

X ⊗ Y X ′′ ⊗ Y ′′.

(F ′ ⊗G′) ◦ (F ⊗G)

(F ′ ◦ F )⊗ (G′ ◦G)

First observe that the source and target B-functors agree on objects giving

(x, y) (F ′Fx,G′Gy)

so it makes sense to seek such a B-icon. Now on homs the above B-functors give us 1-cells
in B

X(x0, x1) X ′(Fx0, Fx1) X ′′(F ′Fx0, F
′Fx1)

Y (y0, y1) Y ′(Gy0, Gy1) Y ′′(G′Gy0, G
′Gy1)

Fx0,x1
F ′
Fx0,Fx1

Gy0,y1
G′

Gy0,Gy1

so our constraint B-icon needs components that are 2-cells in B of the form

X(x0, x1).Y (y0, y1) X ′′(F ′Fx0, F
′Fx1).Y

′′(G′Gy0, G
′Gy1)

(F ′
Fx0,Fx1

.G′
Gy0,Gy1

) ◦ (Fx0,x1
.Gy0,y1)

(F ′
Fx0,Fx1

◦ Fx0,x1
).(G′

Gy0,Gy1
◦Gy0,y1)

so we can simply use the constraint for the functoriality of the tensor product in B (recall
that in all these diagrams the tensor product in B is written as a dot). We must check
this satisfies the axioms for a B-icon; as before this follows from coherence in B.
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Definition of unit constraint for the functor ⊗. Recall that for all objects X
in B we have an identity weak B-functor 1X . We need for all X, Y a coherence constraint

1X⊗Y 1X ⊗ 1Y .

As before, observe that the source and target functors agree on objects, both acting as
the identity. So our constraint B-icon needs components that are 2-cells in B of the form

X(x0, x1).Y (y0, y1) X(x0, x1).Y (y0, y1).

1X(x0,x1).Y (y0,y1)

1X(x0,x1).1Y (y0,y1)

Again we use the constraint for the tensor product in B. We must check this satisfies the
axioms for a B-icon, and again this follows from coherence in B.

Functoriality axioms for ⊗. It suffices to check the axioms componentwise. Note
that all the constraints have components given by constraint cells for the functoriality of
the tensor product of B as a functor

B×B −→ B.

Hence by coherence for functors of bicategories, the axioms hold.
Thus we have defined a weak functor

⊗ : B-Icon×B-Icon B-Icon.

Unit object for the monoidal structure on B-Icon. The unit object I in B-Icon
has

• one object

• the hom object is the unit in B

• composition is given by l.

All the rest of the structure is given by coherence. Note that we could instead use r

for composition, which would give an equivalent object of B-Icon.
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Constraints a, l, r for the monoidal structure on B-Icon. We must define an
adjoint equivalence (a, a∗, η, ǫ)

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z)

a

a∗

where a and a∗ are weak B-functors, and η and ǫ must be B-icons.

• On objects a and a∗ are given by associativity in Set.

• On homs a and a∗ are given by the adjoint equivalences for associativity of the
tensor product in B.

We show that this makes a into a weak B-functor. First we must define constraints for
a. The composition constraint is given by the composite below. Note that here X, Y, Z are
shorthand for hom-objects of the weak B-categories, with 0-cells suppressed. Also note
that we have suppressed the associators necessary to make the given braidings applicable,
as these are taken care of by coherence for the braiding.

(
(XY )Z

)(
(XY )Z

) (
X(Y Z)

)(
X(Y Z)

)

(
(XY )(XY )

)
(ZZ) (XX)

(
(Y Z)(Y Z)

)

(
(XX)(Y Y )

)
(ZZ) (XX)

(
(Y Y )(ZZ)

)

(XY )Z X(Y Z)

aa

a

a

1R1

1R111

mmm

1R1

111R1

mmm
∼=

naturality of a

∼=
braid coherence

The unit constraint is defined similarly using coherence cells for the monoidal structure
of B and naturality of associator for the tensor product of B. The axioms for a weak B-
functor follow from coherence in B. The result for a∗ follows similarly.

Next we define η and ǫ, the unit and counit for the adjoint equivalence. As usual,
these are B-icons with components given by the corresponding units and counits in B; all
axioms are given by coherence in B.

The constraints l and r follow in exactly the same way.

Constraints π, µ, λ, ρ for the monoidal structure on B-Icon. We now need the
following constraints for a monoidal bicategory: π, µ, λ, ρ. In each case the components
are the corresponding constraints from B, and the B-icon axioms follow from coherence
in the usual manner.
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Finally the monoidal bicategory axioms come from the monoidal bicategory axioms
for B together with the monoidal category axioms for Set. This completes the proof that
B-Icon is a monoidal bicategory.

Definition of symmetric structure.We now construct a braiding R : X⊗Y Y ⊗
X for B-Icon.

• On objects R is the symmetry in Set.

• On homs R is the symmetry in B.

It has the structure of a weak functor with constraints coming from the syllepsis in B

and some coherence cells as follows.

XYXY Y XYX

XXY Y Y Y XX

XY Y X

RR

R

R

1R1

mm

1R1

mm

∼=
symmetry

∼=
naturality of R

Note that the top square is given as follows. The 1-cell source and target have the following
underlying braids respectively.

Comparing these braids, we see that there is an isomorphism between them using the
syllepsis (so in particular to construct a braiding for B-Icon we need B to have a sylleptic
structure), and the isomorphism is unique by coherence for symmetric monoidal bicate-
gories.

The unit constraint has the following form

1 XY

Y X

IXIY

IY IX

R
∼=

and is given by a unique isomorphism from the braided structure. Using the cubical
notation as in Definition 3.2 the first axiom for a weak B-functor is
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a.a

S

S

=

S

S

a.a

where S indicates a unique coherence 2-cell involving the syllepsis of B, and as before a
indicates the associativity constraint for a weak B-category. The equality then follows
from a calculation manipulating cubes in a similar fashion to earlier, using coherence for
symmetric monoidal bicategories. The other axiom follows similarly.

Now we need a unit and counit. These come from the adjoint equivalence for R in
the braided structure on B. We just need to check that η and ǫ are B-icons; this follows
from coherence again, this time for symmetric monoidal bicategories. The modifications
R(−|−,−) and R(−,−|−) are given on components by the corresponding cells in B. We only
need to check the icon axioms, and these follow from coherence for symmetric monoidal bi-
categories and the corresponding modification axioms for the braiding in B. The braiding
axioms follow from those in B.

Finally we construct a syllepsis: the components come from the syllepsis in B, so the
axioms (and the symmetry axiom) are immediate from the same axioms in B. We just
need to check the icon axioms, and these follow from coherence for symmetric monoidal
bicategories.

This completes the proof that B-Icon is a symmetric monoidal bicategory as required.

4. Higher dimensions

Now that we know B-Icon is a symmetric monoidal bicategory, we can iterate the icon
construction to produce the higher-dimensional structures that motivated this work. Re-
call that putting B = Cat gives Icon, a convenient 2-category of bicategories. The idea is
that iterating this gives us convenient 2-categories of 3-categories, 4-categories, and so on.
In fact these are not strict n-categories, nor are they semi-strict in the usual sense—while
they can be thought of as “n-categories with extra strictness conditions”, in fact the co-
herence constraints have different shapes. For some purposes this might not be a critical
difference, but it is crucial for our study of totalities of degenerate structures. We are
finally able to give a satisfying account of doubly degenerate tricategories, as promised
in [7]; we refer the reader to that paper for a discussion of the pitfalls of more naive
approaches.

This suggests a general scheme for studying totalities of k-degenerate (n+k)-categories,
and comparing them with entries in the “Periodic Table” of n-categories.
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4.1. Iteration. The main example we have in mind starts the iteration with Cat, but
we make the following general definition of iterated icons.

4.2. Definition. We define B-nIcon for each n ≥ 0 as follows.

• B-0Icon = B.

• B-nIcon = (B-(n-1)Icon)-Icon.

Recall that if B is a symmetric monoidal 2-category (that is, a symmetrical monoidal
bicategory whose underlying bicategory is a 2-category) then B-Icon is a symmetric
monoidal 2-category. Thus starting with B = Cat we get symmetric monoidal 2-categories
of n-categories. These are a subtly semi-strict version of n-category in which low-dimen-
sional composition is strict. We will now exhibit this explicitly for B = Icon with
monoidal structure given by cartesian product. This gives the 2-category Icon-Icon.

A 0-cell X is a “weak Icon-category” (see Definition 3.2). We now unpack this defi-
nition to reveal what sort of 3-dimensional structure is produced.

• a set X0 of objects,

• for all a, b ∈ X0 a bicategory X(a, b),

• composition: for all a, b, c ∈ X0 a weak functor

mabc : X(b, c)×X(a, b) −→ X(a, c)

(g, f) 7→ g ⊗ f

(β, α) 7→ β ⊗ α,

• identities: for all a ∈ X0 a weak functor

Ia : 1 −→ X(a, a)

∗ 7→ Ia

where here 1 is the terminal bicategory,

• associativity constraints: for all a, b, c, d ∈ X0 an invertible icon

(
X(c, d)×X(b, c)

)
×X(a, b)

X(c, d)×
(
X(b, c)×X(a, b)

)
∼=
��

X(c, d)×X(a, c)

X(b, d)×X(a, b)

X(a, d)

1×ma,b,c

��

mb,c,d×1
//

ma,b,d

��

ma,c,d

//

aa,b,c,d
v~ vv

vv
vv
vv
vv

vv
vv
vv
vv
vv
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and

• unit constraints: for all a, b invertible icons

X(a, b)×X(a, a)X(a, b)× 1

X(a, b)

ma,a,b

��

1×Ia //

∼=

''OO
OOO

OOO
OOO

OOO
OOO

O
ra,b

{� ��
��
�

��
��
�

X(b, b)×X(a, b) 1×X(a, b)

X(a, b)

ma,b,b

��

Ib×1oo

∼=

wwooo
ooo

ooo
ooo

ooo
oooℓa,b

�#
??

??
?

??
??

?

satisfying the axioms given in Definition 3.2.
The key now is that since a, ℓ and r are icons, some additional coherence is implicit,

as follows. Each of these constraint icons has a source and target functor that must agree

on objects. So we must have, for all a
f

−→ b
g

−→ c
h

−→ d

(h⊗ g)⊗ f = h⊗ (g ⊗ f)

f ⊗ Ia = f

Ib ⊗ f = f

that is, composition of 1-cells in the a weak Icon-category is strict.
Then the 2-cell components of the constraint icons give the following data:

• for all composable triples of 2-cells as shown

a b c d

f

f ′

g

g′

h

h′

α β γ

invertible 3-cells

(h⊗ g)⊗ f

=

h⊗ (g ⊗ f)

(h′ ⊗ g′)⊗ f ′

=

h′ ⊗ (g′ ⊗ f ′)

(γ ⊗ β)⊗ α

γ ⊗ (β ⊗ α)

aγβα

f ⊗ I

=

f

f ′ ⊗ I

=

f ′

α⊗ 1

α

rα
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I ⊗ f

=

f

I ⊗ f ′

=

f ′

1⊗ α

α

ℓα

natural in all arguments.

It is straightforward to characterise the 1- and 2-cells in Icon-Icon in a similar fashion.

4.3. Remarks. We might regard a weak Icon-category as a “tricategory in which 1-cell
composition is strict” as in [20], where the notion is called “iconic tricategory”. However,
iconic tricategories and weak Icon-categories have differently shaped constraint cells for
the following reason. Recall that we think of icons as “identity component oplax nat-
ural transformations” although this is not strictly true, as the identity components are
omitted from the data, so the 2-cell data have different shapes, yielding different, stricter,
composition. Thus in a weak Icon-category, this phenomenon applies to the constraint
icons. For example, an associator 3-cell would look like

(h⊗ g)⊗ f (h′ ⊗ g′)⊗ f ′

h⊗ (g ⊗ f) h′ ⊗ (g′ ⊗ f ′)

(γ ⊗ β)⊗ α

γ ⊗ (β ⊗ α)

I I
aγβα

instead of the globular shape above, and then all the axioms involving it would be much
more complicated to take into account the unit 1-cells at the sides. The correct statement
should be that there is a bicategory of iconic tricategories and appropriate higher cells
between them, which is biequivalent to Icon-Icon. Shulman [20] alludes to this but does
not attempt the technicalities of producing the correct higher cells and their composition.

A weak Icon-category is not only stricter than a general tricategory but also more
streamlined. This is crucially what enables us to cut down the dimensions of the totality,
cleanly describe the correct higher cells, and produce the correct degenerate structures
corresponding to those in the periodic table.

Note, however, that if we consider icons between 2-categories and 2-functors (so every-
thing is strict), then these issues go away: icons in this case really are identity component
oplax natural transformations. Similarly Gray-categories really are a strict form of weak
Icon-category—those for which

• the homs are 2-categories,

• the composition and unit functors are cubical, and

• the icons a, ℓ, r are identities.
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Recall that in the usual tricategory of bicategories, 1-cells compose strictly. In fact,
a naturally occurring example of a (large) weak Icon-category is given by the totality of
bicategories, as follows.

4.4. Theorem. There is a large weak Icon-category with

• 0-cells all (small) bicategories, and

• given bicategories X, Y , Bicat(X, Y ) is the bicategory of weak functors, weak trans-
formations and modifications from X to Y .

Proof.We must give weak functors for units and composition, and icons for associativity
and unit constraints. It is not difficult to modify the proofs given in [12, Section 5.1] by
omitting the relevant identity components.

4.5. Example. The category of bicategories and weak functors is monoidal under the
cartesian product. A category enriched in this category can be viewed as a weak Icon-
category in which a, ℓ and r are identity icons. Thus not only is 1-cell composition strict,
but all composition along bounding 0-cells is strict. An example of such a structure is the
tricategory of topological spaces as constructed in [11].

4.6. Degeneracy.We now show that the framework of Icon-Icon is correct for study-
ing doubly degenerate 3-dimensional structures. That is, restricting Icon-Icon to the
doubly degenerate 0-cells gives us the 2-category of braided monoidal categories.

In fact, a careful study must proceed via the intermediate structure of “2-tuply
monoidal categories”. Essentially, these are categories with two monoidal structures and
interchange up to isomorphism; precisely, they are pseudomonoids in the monoidal 2-
category of monoidal categories and weak functors.

Joyal and Street state that 2-tuply monoidal categories are the same as braided
monoidal categories [14, Proposition 5.3 and Example 5.4] but do not give full details
about the totalities of such structures.

As we saw in [7], passing between these two types of structure is quite delicate in a
way that has a serious impact on doubly degenerate case. For this reason we separate our
comparison into two distinct steps.

1. Compare doubly degenerate weak Icon-categories with 2-tuply monoidal categories.

2. Compare 2-tuply monoidal categories with braided monoidal categories.

The present work makes the first step immediate, resolving the difficulties that arise
from more naive approaches. For the second we refer to [14].

4.7. Theorem. Let J be the full sub-2-category of Icon-Icon whose 0-cells are the doubly
degenerate weak Icon-categories. That is, the weak Icon-categories with only one object,
and whose single hom-bicategory has only one 0-cell. Let 2MonCat be the 2-category of
pseudomonoids in MonCat.

Then there is a 2-equivalence J ≃ 2MonCat.
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Proof. We characterise J explicitly and will see that the only difference between J and
2MonCat is in a choice of unique 0- and 1-cell.

An object of J consists of

• a monoidal category M with unit I, say,

• a monoidal functor

1 U
M

∗ u,

• a monoidal functor ⊠ : M ×M M ,

• monoidal natural isomorphisms

(x⊠ y)⊠ z
ax,y,z

x⊠ (y ⊠ z)

x⊠ u
rx

x

u⊠ x
ℓx

x

and axioms making (M,u, r, ℓ, a) into a monoidal category. This is exactly the structure
of a 2-tuply monoidal category.

A 1-cell F : M M ′ of J consists of

• a monoidal functor F : M M ′ (monoidal with respect to ⊗),

• a monoidal isomorphism

M ×M M ′ ×M ′,

M M ′

F × F

F

⊠ ⊠
′

φ2

• a monoidal isomorphism

1 M

M ′

U

U ′

F
φ0

and axioms making (F, φ2, φ0) into a monoidal functor with respect to ⊠ and ⊠
′.
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A 2-cell

M M ′

F

F ′

α

of J consists of a monoidal transformation α with respect to ⊗ (because icons between
degenerate bicategories are precisely monoidal transformations between the corresponding
monoidal categories, together), and axioms making it monoidal with respect to ⊠.

Thus once we have forgotten the unique 0- and 1-cells from the doubly degenerate
objects of J, we have exactly the 0-, 1- and 2-cells of 2MonCat.

Note that we could perform the icon construction again to produce the 2-category
Cat-3Icon = Icon-Icon-Icon. Triply degenerate 0-cells of this are 3-tuply monoidal
categories; Joyal and Street [14] observe that these correspond to symmetric monoidal
categories.

4.8. Theorem. Let K be the full sub-2-category of Icon-Icon-Icon whose 0-cells are the
triply degenerate ones. Let 3MonCat be the 2-category of pseudomonoids in 2MonCat.
Then there is a 2-equivalence K ≃ 3MonCat.

We now propose a general construction that should provide the correct totality of k-
degenerate (n+k)-categories for every n and k. The idea is that a priori the k-degenerate
(n+ k)-categories form an (n+ k+1)-category, but when we regard them as n-categories
with extra structure, they should form an (n + 1)-category; naive methods of making
this dimension change do not produce the correct structure. However, iterating the icon
construction does produce the correct structure.

The generalised icon construction described in this paper gives the case n = 1. The
case for n > 1 involves the (n + 1)-category of weak n-categories, a structure that is not
very well understood at present. Nevertheless, we conjecture the following generalisations
of the above constructions.

4.9. Conjecture. Given a symmetric monoidal (n + 1)-category E, we can define a
symmetric monoidal (n + 1)-category E-Icon of “categories weakly enriched in E”, weak
functors, and icon-like higher morphisms.

Note also that the weakness of the enrichment increases as n increases.
However, the higher morphisms must be iconic only for the lowest dimension of com-

ponent, indexed by 0-cells. For example, a transformation between tricategories is in
general given by

• for every 0-cell in the source, a 1-cell in the target,

• for every 1-cell in the source, a 2-cell in the target, and

• for every 2-cell in the source, a 3-cell in the target.



ITERATED ICONS 975

Thus the icon version omits the 1-cell data, and alters the shape of the 2- and 3-cell data.
Likewise, a modification between tricategories is in general given by

• for every 0-cell in the source, a 2-cell in the target, and

• for every 1-cell in the source, a 3-cell in the target,

so an “icon-like” modification would omit the 2-cell data, and alter the shape of the 3-cell
data accordingly. For higher cells with more dimensions of icon-like behaviour, we need
to iterate the construction. We propose the following definition, although the formalism
to make it precise does not yet exist.

4.10. Conjecture. Fix n ≥ 1. We define a symmetric monoidal (n + 1)-category En,k

for each k ≥ 0 as follows.

• En,0 = n-Cat, and

• En,k = En,k−1-Icon.

Thus objects of En,k are a bit like “slightly strict” (n+ k)-categories.

4.11. Remark. This indexing is convenient for considering the k-degenerate version,
but another point of view is to fix the total dimension and ask what lower dimensional
totalities of m-category we have, lower than the canonical (m+ 1)-category thereof. The
idea is that we should now get a k-category of m-categories for every k ≤ m as well, but
for different values of k we have different starting points in the above iteration. Thus in
each case we have a different notion of slightly strict m-category. This is different from
the approach of [9] in which low-dimensional totalities of tricategories are studied but the
tricategories and functors remain fully weak; constructing a tricategory of such is then
very complex.

Finally we make the following conjectures for k-degenerate (n+ k)-categories ones.

4.12. Conjecture.Given a symmetric monoidal (n+1)-category E there is a symmetric
monoidal (n+1)-category Mon(E) of weak monoids in E. Iterating this construction, we
write

• 0Mon(E) = E, and

• (k+1)Mon(E) = Mon(kMon(E)).

4.13. Conjecture. Write Jn,k for the full sub (n+1)-category of En,k whose objects are
the k-degenerate ones. Then there is an equivalence of (n+ 1)-categories

Jn,k ≃ kMon(n-Cat).

It remains to compare the k-tuply monoidal n-categories with the appropriate entry in
the Periodic Table.
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