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ON THE IMAGE OF THE ALMOST STRICT MORSE N -CATEGORY
UNDER ALMOST STRICT N -FUNCTORS

SONJA HOHLOCH

Abstract. In an earlier work, we constructed the almost strict Morse n-category X
which extends Cohen & Jones & Segal’s flow category. In this article, we define two
other almost strict n-categories V and W where V is based on homomorphisms between
real vector spaces and W consists of tuples of positive integers. The Morse index and
the dimension of the Morse moduli spaces give rise to almost strict n-category functors
F : X → V and G : X → W.

1. Introduction

The aim of the present paper is to gain a better understanding of the almost strict Morse
n-category X introduced in Hohloch [Ho] whose construction is quite involved. Thus we
now come up with another two almost strict n-categories V and W which retain some of
the properties of X , but are much more accessible. This imitates the idea of representation
theory of groups where one studies homomorphisms (‘representations’) from a given group
into a ‘nicer’ group.

The Morse n-category X extends the flow category introduced by Cohen & Jones &
Segal [CJS] whose objects are the critical points of a Morse function and whose morphisms
are the Morse moduli spaces between critical points.

Roughly, the construction of X goes as follows. Let M be a smooth compact m-
dimensional manifold and f0 : M → R a smooth Morse function, i.e. the Hessian D2f0

is nondegenerate on the set of critical points Crit(f0) = {x0 ∈ M | Df0(x) = 0}.
The Morse index Ind(x0) of a critical point x0 is given by the number of negative
eigenvalues of D2f0(x). We choose a ‘good’ metric g0 and consider the Morse mod-
uli space M(x0, y0, f0) := M(x0, y0, f0, g0) consisting of negative gradient flow lines
γ̇(t) = − gradg f0(γ(t)) from x0 ∈ Crit(f0) to y0 ∈ Crit(f0) which is a smooth man-
ifold of dimension Ind(x0) − Ind(y0). Dividing by the R-action induced by the flow
and suitably compactifying, we obtain the compact, unparametrized Morse moduli space
M̂(x0, y0, f0) :=M(x0, y0, f0)/R which is a (Ind(x0)− Ind(y0)− 1)-dimensional manifold
with corners.

What we just did on M , we repeat on M̂(x0, y0, f0) paying attention to the boundary
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strata: We pick a ‘good’ Morse function f1[x0y0 ] on M̂(x0, y0, f0) whose gradient vector

field is tangential to the boundary strata. ‘Good’ means in this context that the Morse
function needs to be compatible with the boundary structure of M̂(x0, y0) which consists
of cartesian products of unparametrized Morse moduli spaces of certain critical points and
that the negative gradient flow flows from higher dimensional strata to lower dimensional
strata, but never back. Moreover, pick a suitable metric g1[x0y0 ]. Then, for x1, y1 ∈

Crit(f1[x0y0 ]), the space M̂(x1, y1, f1[x0y0 ]) is again a manifold with corners on which we

can choose a ‘good’ Morse function f2[x1x0y1y0 ] and iterate again. Since the dimension drops

at least by one when passing from M to M̂(x0, y0, f0) and also from M̂(x0, y0, f0) to

M̂(x1, y1, f1[x0y0 ]) the iteration procedure terminates after a finite number of steps.

Obviously, this construction depends on the choice of a family of Morse functions
F := {f0, f1[x0y0 ], . . . } and metrics G := {g0, g1[x0y0 ], . . . }.

Since the definition of an almost strict n-category is quite lengthy we do not recall it
here in the introduction, but refer the reader to Definition 2.3. The following theorem is
proven in Hohloch [Ho].

1.1. Theorem. [Hohloch] The above described iteration of Morse moduli spaces admits
the structure of an almost strict n-category. The resulting n-category is denoted by X :=
X (F,G).

In a future project, we will investigate the dependence of X on the choices F and G.
But in the present paper, we fix a choice X := X (F,G) and look for other less complicated
almost strict n-categories which pertain some of the information of X .

More precisely, we will define an almost strict n-category V roughly consisting of
tuples of spaces of linear maps and a functor of almost strict n-categories F : X →
V which maps a moduli space M̂(xl, yl, fl[

xl−1,...,x0
yl−1,...,y0 ]) to Hom(RInd(xl),RInd(yl)) × · · · ×

Hom(RInd(x1),RInd(y1)).

There is another almost strict n-categoryW which roughly consists of tuples of natural
numbers (including zero) and a functor of almost strict n-categories G : X → W which

maps a moduli space M̂(xl, yl, fl[
xl−1,...,x0
yl−1,...,y0 ]) to the tuple

[
Ind(xl),...,Ind(x0)
Ind(yl),...,Ind(y0)

]
.

1.2. Theorem. V and W are almost strict n-categories.

This statement is proven in Theorem 4.3 and Theorem 4.6. For the definition of an
almost strict n-category functor, we refer the reader to Definition 2.3.

1.3. Theorem. There are almost strict n-category functors F : X → V and G : X → W
which are based on the dimension of the Morse moduli spaces and the Morse index.

This is proven in Theorem 4.8 and Theorem 4.9.
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Organization of the paper. In Section 2, we recall notions and definitions associated
to almost strict n-categories. In Section 3, we briefly sketch the idea of Morse moduli
spaces on smooth manifolds and on manifolds with corners before we recall the almost
strict Morse n-category X from Hohloch [Ho]. In section 4, we construct the almost strict
n-categories V and W and define the n-category functors F : X → V and G : X → W .
In Section 5, we compute (an example of) X and its image under the functors on the
2-torus.

2. Almost strict n-categories

Strict n-categories were originally introduced by Ehresmann. We will use the formulation
and conventions of Leinster’s book [Le].

2.1. Definition. Given n ∈ N, we define an n-globular set Y to be a collection of sets
{Y (l) | 0 ≤ l ≤ n} together with source and target functions s, t : Y (l)→ Y (l−1) for
1 ≤ l ≤ n satisfying s ◦ s = s ◦ t and t ◦ s = t ◦ t. Elements Al ∈ Y (l) are called l-cells.

To visualize n-globular sets, one can think of l-cells as l-dimensional disks like in Figure
1: (a) shows a 0-cell A0 ∈ Y (0), (b) displays a 1-cell A1 ∈ Y (1) with s(A1) = A0 ∈ Y (0)
and t(A1) = B0 ∈ Y (0), (c) sketches a 2-cell A2 ∈ Y (2) with s(A2) = A1, t(A2) = B1 ∈
Y (1) and therefore s(A1) = s(B1) = A0 and t(A1) = t(B1) = B0.

A0

A1

A0 B0

(b)(a)

A1

A0 A2 B0

B1

(c)

Figure 1: (a) 0-cell, (b) 1-cell, (c) 2-cell.

If we want to compose two l-cells x and x̃ along a p-cell, we need certain matching
conditions which are described by the set

Y (l)×p Y (l) := {(x̃, x) ∈ Y (l)× Y (l) | sl−p(x̃) = tl−p(x)}

where 0 ≤ p < l ≤ n.

2.2. Definition. Let n ∈ N. A strict n-category Y is an n-globular set Y equipped
with

� a function ◦p : Y (l) ×p Y (l) → Y (l) for all 0 ≤ p < l ≤ n. We set ◦p(Cl, Al) =:
Cl ◦p Al and call it composite of Al and Cl.
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� a function 1 : Y (l) → Y (l + 1) for all 0 ≤ l < n. We set 1Al
:= 1(Al) and call it

the identity on Al.

These have to satisfy the following axioms:

(a) (Sources and targets of composites) For 0 ≤ p < l ≤ n and (Cl, Al) ∈ Y (l)×p
Y (l) we require

for p = l − 1 : s(Cl ◦p Al) = s(Al) and t(Cl ◦p Al) = t(Cl),

for p ≤ l − 2 : s(Cl ◦p Al) = s(Cl) ◦p s(Al) and t(Cl ◦p Al) = t(Cl) ◦p t(Al).

(b) (Sources and targets of identities) For 0 ≤ l < n and Al ∈ Y (l) we require

s(1Al
) = Al = t(1Al

).

(c) (Associativity) For 0 ≤ p < l ≤ n and Al, Cl, El ∈ Y (l) with (El, Cl), (Cl, Al) ∈
Y (l)×p Y (l) we require

(El ◦p Cl) ◦p Al = El ◦p (Cl ◦p Al).

(d) (Identities) For 0 ≤ p < l ≤ n and Al ∈ Y (l) we require

1l−p(tl−p(Al)) ◦p Al = Al = Al ◦p 1l−p(sl−p(Al)).

(e) (Binary interchange) For 0 ≤ q < p < l ≤ n and Al, Cl, El, Hl ∈ Y (l) with

(Hl, El), (Cl, Al) ∈ Y (l)×p Y (l) and (Hl, Cl), (El, Al) ∈ Y (l)×q Y (l)

we require
(Hl ◦p El) ◦q (Cl ◦p Al) = (Hl ◦q Cl) ◦p (El ◦q Al).

(f) (Nullary interchange) For 0 ≤ p < l < n and (Cl, Al) ∈ Y (l) ×p Y (l) we require
1Cl
◦p 1Al

= 1Cl◦pAl
.

If Y and Z are strict n-categories we define a strict n-functor f as a map f : Y → Z
of the underlying n-globular sets commuting with composition and identities. This defines
a category Str-n-Cat of strict n-categories.

If we slightly relax the requirements, we get

2.3. Definition. An almost strict n-category satisfies the requirements of a strict
n-category up to canonical isomorphism. Let A and B be two almost strict n-categories
with n-globular sets A and B. An almost strict n-category functor, briefly an n-
functor, F : A → B is a map F : A → B of the underlying n-globular sets commuting
with composition and identities. This defines the category C of almost strict n-categories.
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3. The almost strict Morse n-category

3.1. Morse moduli spaces on smooth manifolds without boundary. In the
following, we are interested in the dynamical approach to Morse theory via the negative
gradient flow of a Morse function as described for instance by Schwarz [Sch].

Let M be a closed m-dimensional manifold. A smooth function f : M → R is a Morse
function if its Hessian D2f is nondegenerate at the critical points Crit(f) := {x ∈ M |
Df(x) = 0}. The Morse index Ind(x) of a critical point x is the number of negative
eigenvalues of D2f(x). Given a Riemannian metric g on M, we denote by gradg f the
gradient of f w.r.t. the metric g. The autonomous ODE of the negative gradient flow ϕt
of the pair (f, g) is given by

ϕ̇t = − gradg f(ϕt).

The stable manifold of a critical point x ∈ Crit(f) is

W s(f, x) := W s(f, g, x) := {p ∈M | lim
t→+∞

ϕt(p) = x}

and the unstable manifold is

W u(f, x) := W u(f, g, x) := {p ∈M | lim
t→−∞

ϕt(p) = x}.

A pair (f, g) is called Morse-Smale if W s(f, g, x) and W u(f, g, y) intersect transversely
for all x, y ∈ Crit(f). The Morse moduli space between two critical points x and y is the
space of smooth curves

M(x, y) :=M(x, y, f, g) :=

γ : R→M

∣∣∣∣∣∣∣∣
γ̇(t) = − gradg f(γ(t)),

lim
t→−∞

γ(t) = x,

lim
t→+∞

γ(t) = y

 .

This are the negative gradient flow lines running from x to y. It can also be identified with
W u(x, f)∩W s(f, y). If (f, g) is Morse-SmaleM(x, y) is a smooth manifold of dimension
Ind(x) − Ind(y). If Ind(y) > Ind(x) then the space M(x, y) is empty. For γ ∈ M(x, y)
and σ ∈ R, the curve γσ with γσ(t) := γ(t+ σ) is also a gradient flow line. Thus there is
an action R ×M(x, y) → M(x, y), (γ, σ) 7→ γσ. Dividing by the action, we obtain the
unparametrized moduli space M(x, y)/R.

In order to describe Morse moduli spaces properly we need the notion of a manifold
with corners. An overview over the various definitions of manifolds with corners and
their differences may be found in Joyce [Jo] whose conventions we will use. An m-
dimensional manifold with corners is an m-dimensional manifold which is locally modeled
on Rm

+ := (R≥0)m. Let ψ = (ψ1, . . . , ψm) : U ⊆ N → Rm
+ be a chart of an m-dimensional

manifold with corners N . For x ∈ U , set

depth(x) := #{i | ψi(x) = 0, 1 ≤ i ≤ m}.
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A face of N is the closure of a connected component of {x ∈ N | depth(x) = 1}. If k is
the number of faces, we fix an order of the faces and denote them by ∂1N, . . . , ∂kN . The
connected components of {x ∈ N | depth(x) = l} =: DdimN−l are called the (dimN − l)-
strata of N .

3.2. Definition. Let N be an m-dimensional manifold with corners having k faces
∂1N, . . . , ∂kN . We call N a 〈k〉-manifold if

(a) Each x ∈ N lies in depth(x) faces.

(b) ∂1N ∪ · · · ∪ ∂kN = ∂N .

(c) For all 1 ≤ i, j ≤ k with i 6= j the intersection ∂iN ∩ ∂jN is a face of both ∂iN and
∂jN .

Here ∂iN ⊂ N is again a manifold with corners, but ∂N is not. We stick to Joyce’s
[Jo] definition where the integer 〈k〉 has a priori nothing to do with the dimension m of
the manifold N . Other authors like Laures [La] let ∂iN be a union of faces which admits
k = dimN . An example of a 〈k〉-manifold is Rk

+ with faces ∂iRk
+ := {x ∈ Rk

+ | xi = 0}.
〈0〉-manifolds are manifolds without boundary and 〈1〉-manifolds are manifolds with one
(smooth) boundary component.

Now let M be a smooth compact manifold with Morse-Smale pair (f, g) and x, y,
z ∈ Crit(f) with Ind(x) > Ind(y) > Ind(z). Figure 2 (a) displays a sequence of trajectories
(γn)n∈N from x to z which ‘break’ in the limit into trajectories γxy from x to y and γyz
from y to z. This phenomenon is called ‘breaking’ and plays an important role if one
wants to compactify unparametrized Morse moduli spaces. More precisely, one usually
compactifies an unparametrized moduli space by adding ‘broken trajectories’ as boundary
points. We denote this compactification of M(x, z)/R via adding broken trajectories by

M̂(x, z) := M(x, z)/R. In order to obtain a nice structure on the compactification one
needs to pose conditions on the metric. If f is a Morse function and if a metric g is
euclidean near the critical points of f the we call g an f -euclidean metric.

For x, y ∈ Crit(f) with x 6= y, we introduce the notation x > y if M(x, y) 6= ∅. The
following theorem was stated in different situations by Burghelea [Bu], Wehrheim [We]
and Qin [Qi1], [Qi2].

3.3. Theorem. [Burghelea, Wehrheim, Qin] Let M be compact and (f, g) be Morse-Smale
and assume g to be f -euclidean. Let x, z ∈ Crit(f) with x > z. Then there exists k ∈ N0

such that M̂(x, z) is an (Ind(x)− Ind(z)− 1)-dimensional 〈k〉-manifold with corners and
its boundary is given by

∂M̂(x, z) =
⋃

(Ind(x)−Ind(z)−1)≥l≥0
x>y1>···>yl>z

M̂(x, y1)× M̂(y1, y2)× . . .× M̂(yl−1, yl)× M̂(yl, z)

where y1, . . . , yl ∈ Crit(f). There is a canonical smooth structure on M̂(x, z).
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Figure 2: Breaking of trajectories: (a) in the interior, (b) on the boundary.

The ‘inverse procedure’ of breaking is ‘gluing’ which takes a broken trajectory (γxy, γyz)

in M̂(x, y) × M̂(y, z) and ‘glues’ it to a Morse trajectory from x to z. Gluing multiply

broken trajectory (γ1, . . . , γl+1) ∈ M̂(x, y1)× . . .×M̂(yl, z) is well defined since gluing is
associative (cf. Qin [Qi3] and Wehrheim [We]).

3.4. Morse moduli spaces on 〈k〉-manifolds. For manifolds with smooth bound-
ary, there is a Morse theory approach via the gradient flow tangential to the boundary
(cf. Akaho [Ak], Kronheimer & Mrowka [KM]). Ludwig [Lu] defined Morse theory with
tangential gradient vector field on stratified spaces.

Let M be a smooth compact manifold. Let (f0, g0) be a Morse-Smale pair consisting of
a Morse function f0 with f0-euclidean metric g0. Let x0, z0 ∈ Crit(f0) be distinct critical

points and consider M̂(x0, z0, f0). If this moduli space is not empty then, by Theorem
3.3, it is a manifold (possibly) with corners whose boundary is of the form

∂M̂(x0, z0, f0) =
⋃

(Ind(x0)−Ind(z0)−1)≥l≥0

x0>y10>···>yl0>z0

M̂(x0, y
1
0, f0)× . . .× M̂(yl0, z0, f0)

where y1
0, . . . , yl0 ∈ Crit(f0). Using this formula recursively we can also write

∂M̂(x0, z0, f0) =
⋃

y0∈Crit(f0)

M̂(x0, y0, f0)× M̂(y0, z0, f0).

A moduli space may have several connected components. Choosing an ordering for the
components of depth one, we endow M̂(x0, z0, f0) with the structure of a 〈k〉-manifold

for some k ∈ N0. Note that M̂(x0, z0, f0) might share strata with other moduli spaces

M̂(x̃0, z̃0, f0) for x̃0, z̃0 ∈ Crit(f0). The following theorem is proven in Hohloch [Ho].

3.5. Theorem. [Hohloch] Let f be a Morse function on a compact 〈k〉-manifold whose
negative gradient flow is tangential to the boundary strata and flows from higher to lower
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strata, but not from lower to higher ones. Assume the metric to be euclidean near the
critical points. Let x, z ∈ Crit(f) with x > z. Then there exists k ∈ N0 such that M̂(x, z)
is an (Ind(x) − Ind(z) − 1)-dimensional 〈k〉-manifold with corners and its boundary is
given by

∂M̂(x, z) =
⋃

(Ind(x)−Ind(z)−1)≥l≥0
x>y1>···>yl>z

M̂(x, y1)× M̂(y1, y2)× . . .× M̂(yl−1, yl)× M̂(yl, z)

where y1, . . . , yl ∈ Crit(f). There is a canonical smooth structure on M̂(x, z).

3.6. The almost strict Morse n-category. In this subsection, we assume that all
Morse functions satisfy:

1) Their gradient vector field is tangential to the boundary strata.

2) The Morse function is compatible with the cartesian product structure of the boundary
of a Morse moduli space.

3) The negative gradient flow only flows from higher dimensional into lower dimensional
strata, but never from lower to higher dimensional strata, i.e. a behaviour like in Figure
2 (b) is prevented.

For the existence and construction of such Morse functions, we refer to Hohloch [Ho].

In the following, we summarize the construction of the almost strict Morse n-category
from the earlier work Hohloch [Ho]. Let M be a compact n-dimensional 〈k〉-manifold M
with a Morse function f0 and an f0-euclidean metric g0. We set

X(0) := {x0 | x0 ∈ Crit(f0)}.

Let x0, y0 ∈ Crit(f0) and choose on the space M̂(x0, y0, f0) a Morse function f1[x0y0 ] with

f1[x0y0 ]-euclidean metric g1[x0y0 ]. We define

X(1) := {(x1,M̂(x0, y0, f0)) | x0, y0 ∈ Crit(f0), x1 ∈ Crit(f1[x0y0 ])}.

The index of the Morse function f1[x0y0 ] or metric g1[x0y0 ] starts with the number of the

‘iteration level’ on which the function or metric lives and continues with the (history of)
critical points which gave rise to the moduli space. The upper row contains the source
points and the lower row the target points. To remember the ‘history’ of a moduli space
is essential. Iterating leads to

X(l) :=


(
xl,M̂(xl−1, yl−1, fl−1[

xl−2,...,x0
yl−2,...,y0 ])

) ∣∣∣∣∣∣∣∣
0 ≤ j ≤ l − 1,

xj, yj ∈ Crit(f
j
[xj−1,...,x0
yj−1,...,y0

]),
xl ∈ Crit(f

l[
xl−1,...,x0
yl−1,...,y0 ])


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for 2 ≤ l ≤ n. We define source and target functions

s : X(l)→ X(l − 1) and t : X(l)→ X(l − 1)

for 2 ≤ l ≤ n via

s
(
xl,M̂(xl−1, yl−1, fl−1[

xl−2,...,x0
yl−2,...,y0 ])

)
:=
(
xl−1,M̂(xl−2, yl−2, fl−2[

xl−3,...,x0
yl−3,...,y0 ])

)
,

t
(
xl,M̂(xl−1, yl−1, fl−1[

xl−2,...,x0
yl−2,...,y0 ])

)
:=
(
yl−1,M̂(xl−2, yl−2, fl−2[

xl−3,...,x0
yl−3,...,y0 ])

)

and set for s, t : X(1)→ X(0)

s
(
a1,M̂(x0, y0, f0)

)
:= x0 and t

(
a1,M̂(x0, y0, f0)

)
:= y0.

We proved in Hohloch [Ho]:

3.7. Lemma. [Hohloch] X := {X(l) | 0 ≤ l ≤ n} is an n-globular set.

The l-cells which can be composed along p-cells are described by

X(l)×p X(l) := {(Cl, Al) ∈ X(l)×X(l) | sl−p(Cl) = tl−p(Al)}.

Tuples (Cl, Al) ∈ X(l)×p X(l) can be displayed via

Al =

(
al,M̂(al−1, bl−1, fl−1

[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, fl−1

[ cl−2,...,cp+1,yp,αp−1,...,α0

dl−2,...,dp+1,zp,βp−1,...,β0

])
)
.

Being in X(l)×pX(l) means the following: Both l-cells arise, up to level (p−1), from the

same critical points
[ αp−1,...,α0

βp−1,...,β0

]
. At level p, we have the matching condition

[xpyp ]
[ ypzp ]

. There

are no additional conditions on the critical points on the higher levels

[ al−2,...,ap+1

bl−2,...,bp+1

]
[ cl−2,...,cp+1

dl−2,...,dp+1

] apart

from the ones required in the definition of X(l). The tuple
[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

]
is the

history of Al up to level (l − 2). If j = 1 in the two expressions above then there are no
a’s and b’s resp. c’s and d’s in the index of the function.

The identity functions 1 : X(l)→ X(l + 1) are defined as follows. Let x0 ∈ X(0) and

identify x0 with the moduli space M̂(x0, x0, f0). Then identify M̂(x0, x0, f0) with the only

critical point x1 ∈ Crit(f1[x0x0 ]) on M̂(x0, x0, f0). Thus we have x1 ' M̂(x0, x0, f0) ' x0

and we set
1x0 := 1(x0) := (x0,M̂(x0, x0, f0)).
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If l > 0, we set for Al =

(
al,M̂(al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

])
)
∈ X(l)

1Al
:= 1

(
al,M̂(al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

])
)

:=

(
al,M̂(al, al, fl

[ al−1,...,a0
bl−1,...,b0

])
)

:=

(
al+1,M̂(al, al, fl

[ al−1,...,a0
bl−1,...,b0

])
)

where we again identified al+1 ' al. For 0 ≤ l ≤ n− 1, this gives us functions

1 : X(l)→ X(l + 1).

The composite ◦p for l > p ≥ 0 is defined as follows.

Case l ∈ N and p = 0: There are no α’s and β’s such that the ‘history index’ starts with
x0, y0, z0. We set(

cl,M̂(cl−1, dl−1, fl−1
[ cl−2,...,c1,y0
dl−2,...,d1,z0

])
)
◦0

(
al,M̂(al−1, bl−1, fl−1

[ al−2,...,a1,x0
bl−2,...,b1,y0

])
)

:=

(
(al, cl),M̂

(
(al−1, cl−1), (bl−1, dl−1), f

l−1

[
(al−2,cl−2),...,(a1,c1),x0
(bl−2,dl−2),...,(b1,d1),z0

])) .
Case l ∈ N and l − 2 ≥ p ≥ 1: We set(

cl,M̂(cl−1, dl−1, fl−1
[ cl−2,...,cp+1,yp,αp−1,...,α0

dl−2,...,dp+1,zp,βp−1,...,β0

])
)

◦p
(
al,M̂(al−1, bl−1, fl−1

[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

])
)

:=

(
(al, cl),M̂

(
(al−1, cl−1), (bl−1, dl−1), f

l−1

[
(al−2,cl−2),...,(ap+1,cp+1),xp,αp−1,...,α0

(bl−2,dl−2),...,(bp+1,dp+1),zp,βp−1,...,β0

])) .
Case l ∈ N and p = l − 1: There are no a’s, b’s, c’s and d’s in the ‘history index’ which
ends with xl−1, yl−1, zl−1. We set(

cl,M̂(yl−1, zl−1, fl−1
[αl−2,...,α0

βl−2,...,β0

])
)
◦l−1

(
al,M̂(xl−1, yl−1, fl−1

[αl−2,...,α0

βl−2,...,β0

])
)

:=

(
(al, cl),M̂(xl−1, zl−1, fl−1

[αl−2,...,α0

βl−2,...,β0

])
)
.

Note that this construction depends on the choice of a family of Morse functions
F := {f0, f1[x0y0 ], . . . } and metrics G := {g0, g1[x0y0 ], . . . }. In the earlier work Hohloch [Ho],

we proved:
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3.8. Theorem. [Hohloch] The above defined n-globular set X = {X(l) | 0 ≤ l ≤ n}
together with the above defined identity functions 1 and composites ◦p is an almost strict
n-category X := X (F,G), called the almost strict Morse n-category.

4. Functors to the almost strict n-categories V and W
Let M be a smooth compact manifold. Denote by X = X (F,G) the almost strict Morse n-

category depending on Morse data F =

(
f

0,[ . . .]
, . . .

)
and G =

(
g

0,[ . . .]
, . . .

)
as defined

in Subsection 3.6. In the present section, we introduce two almost strict n-categories V
and W and provide n-functors F : X → V and F : X → W . Since V and W are more
accessible and easier to understand than X the functors help to understand the nature of
X .

The idea is similar to representation theory of groups, where one studies homomor-
phisms from a given, often complicated group into an easier one, hoping to gain some
knowledge of the complicated group via its image.

4.1. The almost strict n-categories V and W. We define the n-globular set V =
{V (l) | 0 ≤ l ≤ n} as follows. We set

V (0) := {Ri0 | i0 ∈ N0}

and

V (1) :=

{
(Ri1 ,Hom(Ri0 ,Rj0))

∣∣∣∣∣ 0 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0

}

and

V (2) :=

(Ri2 ,Hom(Ri1 ,Rj1),Hom(Ri0 ,Rj0)
) ∣∣∣∣∣∣∣

0 ≤ i2 < i1 − j1,

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


and generally for n ≥ l ≥ 1

V (l) :=


(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ il < il−1 − jl−1

0 ≤ jl−1 ≤ il−1 < il−2 − jl−2

...

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


.
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We define the source functions s : V (l)→ V (l−1) and target functions t : V (l)→ V (l−1)
as follows. For n ≥ l ≥ 2 set

s
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
:=
(
Ril−1 ,Hom(Ril−2 ,Rjl−2), . . . ,Hom(Ri0 ,Rj0)

)
,

t
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
:=
(
Rjl−1 ,Hom(Ril−2 ,Rjl−2), . . . ,Hom(Ri0 ,Rj0)

)
,

and

s
(
Ri1 ,Hom(Ri0 ,Rj0)

)
:= Ri0 ,

t
(
Ri1 ,Hom(Ri0 ,Rj0)

)
:= Rj0 .

4.2. Lemma. V is an n-globular set with s as source and t as target function.

Proof. We have to show s ◦ s = s ◦ t and t ◦ t = t ◦ s. We compute exemplarily

s
(
s
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

))
= s
(
Ril−1 ,Hom(Ril−2 ,Rjl−2), . . . ,Hom(Ri0 ,Rj0)

)
=
(
Ril−2 ,Hom(Ril−3 ,Rjl−3), . . . ,Hom(Ri0 ,Rj0)

)
which coincides with

s
(
t
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

))
= s
(
Rjl−1 ,Hom(Ril−2 ,Rjl−2), . . . ,Hom(Ri0 ,Rj0)

)
=
(
Ril−2 ,Hom(Ril−3 ,Rjl−3), . . . ,Hom(Ri0 ,Rj0)

)
.

As identity functions 1 : V (l)→ V (l + 1), we set on V (0)

1(Ri0) :=
(
R0,Hom(Ri0 ,Ri0)

)
=
(
Ri0−i0 ,Hom(Ri0 ,Ri0)

)
and on V (l) for 1 ≤ l ≤ n− 1

1
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
:=
(
R0,Hom(Ril ,Ril),Hom(Ril−1 ,Rjl−1) . . . ,Hom(Ri0 ,Rj0)

)
=
(
Ril−il ,Hom(Ril ,Ril),Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
.

In order to define the composite ◦p on V (l)×p V (l) for l > p ≥ 0 let us have a closer look
at V (l)×p V (l) first. A tuple (Rl, Ql) ∈ V (l)×p V (l) is in fact of the form

Ql =
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
=
(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Rip+1 ,Rjp+1),

Hom(Rup ,Rvp),Hom(Rρp−1 ,Rσl−1), . . . ,Hom(Rρ0 ,Rσ0)
)
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and

Rl =
(
Rµl ,Hom(Rµl−1 ,Rνl−1), . . . ,Hom(Rµ0 ,Rν0)

)
=
(
Rµl ,Hom(Rµl−1 ,Rνl−1), . . . ,Hom(Rµp+1 ,Rνp+1),

Hom(Rvp ,Rwp),Hom(Rρp−1 ,Rσl−1), . . . ,Hom(Rρ0 ,Rσ0)
)

where the indices ik = µk =: ρk and jk = νk =: σk coincide for 0 ≤ k ≤ p − 1. For
k = p, we have the matching condition ip =: up, jp = µp =: vp and νp =: wp. For
p + 1 ≤ k ≤ l, there are no conditions on ik, jk, µk and νk. Using these conventions for
(Rl, Ql) := V (l)×p V (l), we define

Rl ◦p Ql

:=
(
Ril+µl ,Hom(Ril−1+µl−1 ,Rjl−1+νl−1), . . . ,Hom(Rip+1+µp+1 ,Rjp+1+νp+1),

Hom(Rup ,Rwp),Hom(Rρp−1 ,Rσl−1) Hom(Rρ0 ,Rσ0)
)

where we canonically identify Ril+µl ' Ril × Rµl etc.

4.3. Theorem. The n-globular set V = {V (l) | 0 ≤ l ≤ n} together with the above
defined identity functions 1 and the composite ◦p yields an almost strict n-category V.

Before we turn to the proof of Theorem 4.3, let us define a second almost strict n-
category. For k ∈ N0, abbreviate Nk

0 := (N0)k and define W = {W (l) | 0 ≤ l ≤ n}
via

W (0) := N0

and

W (1) :=

{(
i1,

[
i0

j0

])
∈ N0 × N2

0

∣∣∣∣∣ 0 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0

}
and

W (2) :=


(
i2,

[
i1, i0

j1, j0

])
∈ N0 × (N2

0)2

∣∣∣∣∣∣∣
0 ≤ i2 < i1 − j1,

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


and generally for n ≥ l ≥ 1

W (l) :=


(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
∈ N0 × (N2

0)l

∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ il < il−1 − jl−1

0 ≤ jl−1 ≤ il−1 < il−2 − jl−2

...

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


.

Let us make the following important observation.



34 SONJA HOHLOCH

4.4. Remark. Although V and W are clearly different sets, we can abbreviate elements
in V (l) by means of elements in W (l) via identifying

(
Ril ,Hom(Ril−1 ,Rjl−1), . . . ,Hom(Ri0 ,Rj0)

)
=̂

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
which simplifies the notation considerably. Since the dimensions of the vector spaces in
V satisfy the same constraints as the integers in W we can even use this short notation
in proofs, keeping in mind the different canonical isomorphisms of V and W .

For 1 ≤ l ≤ n, in analogy to V , we have the source and target functions s : W (l) →
W (l − 1) and t : W (l)→ W (l − 1)

s

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
:=

(
il−1,

[
il−2, . . . , i0

jl−2, . . . , j0

])
,

t

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
:=

(
jl−1,

[
il−2, . . . , i0

jl−2, . . . , j0

])
for l > 1 and

s

(
i1,

[
i0

j0

])
:= i0, t

(
i1,

[
i0

j0

])
:= j0

for l = 1.

4.5. Lemma. W is an n-globular set with s as source and t as target function.

Proof. Using Remark 4.4, the claim follows from Lemma 4.2.

Similar to V , as identity functions 1 : W (l)→ W (l + 1), we set on W (0)

1(i0) :=

(
0,

[
i0

i0

])
and on W (l) with l > 0

1

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
:=

(
0,

[
il, il−1 . . . , i0

il, jl−1, . . . , j0

])
.

Let us introduce the composite for W . A tuple (Rl, Ql) ∈ W (l)×pW (l) is of the form

Ql =

(
il,

[
il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])
,

Rl =

(
µl,

[
µl−1, . . . , µp+1, vp, ρp−1, . . . , ρ0

νl−1, . . . , νp+1, wp, σp−1, . . . , σ0

])
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where the indices are defined as in the case of the composite on V . We define

Rl ◦p Ql

=

(
µl,

[
µl−1, . . . , µp+1, vp, ρp−1, . . . , ρ0

νl−1, . . . , νp+1, wp, σp−1, . . . , σ0

])
◦p

(
il,

[
il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])

:=

(
(il + µl),

[
(il−1 + µl−1), . . . , (ip+1 + µp+1), up, ρp−1, . . . , ρ0

(jl−1 + νl−1), . . . , (jp+1 + νp+1), wp, σp−1, . . . , σ0

])

4.6. Theorem. The n-globular set W = {W (l) | 0 ≤ l ≤ n} together with the above
defined identity functions 1 and the composite ◦p yields an almost strict n-category denoted
by W.

Proof of Theorem 4.3 and Theorem 4.6. Using Remark 4.4, we can prove Theorem
4.3 and Theorem 4.6 simultanously if we point out the different underlying canonical
isomorphisms accordingly.

(a) Source and target functions of composites: Let (Rl, Ql) ∈ V (l) ×p V (l). We have
to show that s(Rl ◦p Ql) = s(Ql) and t(Rl ◦p Ql) = t(Rl) for p = l − 1. We calculate for
l ≥ 1

s(Rl ◦p Ql)

= s

((
µl,

[
vl−1, ρl−2, . . . , ρ0

wl−1, σl−2, . . . , σ0

])
◦p

(
il,

[
ul−1, ρl−2, . . . , ρ0

vl−1, σl−2, . . . , σ0

]))

= s

(
(il + µl),

[
ul−1, ρl−2, . . . , ρ0

wl−1, σl−2, . . . , σ0

])

=

(
ul−1,

[
ρl−2, . . . , ρ0

σl−2, . . . , σ0

])

= s

(
il,

[
ul−1, ρl−2, . . . , ρ0

vl−1, σl−2, . . . , σ0

])
= s(Ql).

For l = 1 we find

s

((
µ1,

[
v0

w0

])
◦0

(
i1,

[
u0

v0

]))
= s

(
i1 + µ1,

[
u0

w0

])
= u0 = s

(
i1,

[
u0

v0

])

and similar calculations prove the claim for the target function t. Now we address the case
0 ≤ p ≤ l−2. For (Rl, Ql) ∈ V (l)×pV (l), we have to show that s(Rl◦pQl) = s(Rl)◦ps(Ql)
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and t(Rl ◦p Ql) = t(Rl) ◦p t(Ql). We compute

s(Rl ◦p Ql)

= s
(

(µl, [
µl−1,...,µp+1,vp,ρp−1,...,ρ0
νl−1,...,νp+1,wp,σp−1,...,σ0 ]) ◦p

(
il,
[

il−1,...,ip+1,up,ρp−1,...,ρ0
jl−1,...,jp+1,vp,σp−1,...,σ0

]))
= s

(
(il + µl),

[
(il−1+µl−1),...,(ip+1+µp+1),up,ρp−1,...,ρ0
(jl−1+νl−1),...,(jp+1+νp+1),wp,σp−1,...,σ0

])
=
(

(il−1 + µl−1),
[

(il−2+µl−2),...,(ip+1+µp+1),up,ρp−1,...,ρ0
(jl−2+νl−2),...,(jp+1+νp+1),wp,σp−1,...,σ0

])
= (µl−1, [

µl−2,...,µp+1,vp,ρp−1,...,ρ0
νl−2,...,νp+1,wp,σp−1,...,σ0 ]) ◦p

(
il−1,

[
il−2,...,ip+1,up,ρp−1,...,ρ0
jl−2,...,jp+1,vp,σp−1,...,σ0

])
= s (µl, [

µl−1,...,µp+1,vp,ρp−1,...,ρ0
νl−1,...,νp+1,wp,σp−1,...,σ0 ]) ◦p s

(
il,
[

il−1,...,ip+1,up,ρp−1,...,ρ0
jl−1,...,jp+1,vp,σp−1,...,σ0

])
= s(Rl) ◦p s(Ql).

The claim follows similarly for the target function.

(b) Sources and targets of identities: We show s(1(Ql)) = Ql = t(1(Ql)) via

s(1(Ql)) = s

(
1

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

]))
= s

(
0,

[
il, il−1, . . . , i0

il, jl−1, . . . , j0

])

=

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
= t

(
0,

[
il, il−1, . . . , i0

il, jl−1, . . . , j0

])
= t(1(Ql)).

(c) Associativity of the composite: Let 0 ≤ p < l ≤ n and (Rl, Ql), (Sl, Rl) ∈ V (l) ×p
V (l) and show (Sl ◦p Rl) ◦p Ql = Sl ◦p (Rl ◦p Ql). We write

Ql =

(
il,

[
il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])
,

Rl =

(
κl,

[
κl−1, . . . , κp+1, vp, ρp−1, . . . , ρ0

λl−1, . . . , λp+1, wp, σp−1, . . . , σ0

])
,

Sl =

(
µl,

[
µl−1, . . . , µp+1, wp, ρp−1, . . . , ρ0

νl−1, . . . , νp+1, xp, σp−1, . . . , σ0

])
and compute

(Sl ◦p Rl) ◦p Ql

=

(
(κl + λl) + il,

[
(κl−1 + µl−1) + il−1, . . . , (κp+1 + µp+1) + ip+1, up, ρp−1, . . . , ρ0

(λl−1 + νl−1) + jl−1, . . . , (λp+1 + νp+1) + jp+1, xp, σp−1, . . . , σ0

])

=

(
κl + (λl + il),

[
κl−1 + (µl−1 + il−1), . . . , κp+1 + (µp+1 + ip+1), up, ρp−1, . . . , ρ0

λl−1 + (νl−1 + jl−1), . . . , λp+1 + (νp+1 + jp+1), xp, σp−1, . . . , σ0

])
= Sl ◦p (Rl ◦p Ql).
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For V , we considered the cartesian product and the composition of matrices as associative
using canonical isomorphisms. In case of W , we need the associativity of the addition of
integers.

(d) Identities: For 0 ≤ p < l ≤ n and Ql ∈ V (l), we have to show

1l−p(tl−p(Ql)) ◦p Ql = Ql = Ql ◦p 1l−p(sl−p(Ql)).

For

Ql =

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])
compute

1l−p(tl−p(Ql)) ◦p Ql

= 1l−p

(
tl−p

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

]))
◦p

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])

= 1l−p

(
jp,

[
ip−1, . . . , i0

jp−1, . . . , j0

])
◦p

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])

=

(
0,

[
0, . . . , 0, jp, ip−1, . . . , i0

0, . . . , 0, jp, jp−1, . . . , j0

])
◦p

(
il,

[
il−1, . . . , i0

jl−1, . . . , j0

])

=

(
il,

[
il−1, . . . , ip+1, ip, ip−1, . . . , i0

jl−1, . . . , jp+1, jp, jp−1, . . . , j0

])
= Ql.

Note that for V , in the above calculation, we used canonical isomorphims like R0×Ril '
Ril a couple of times. The assertion Ql = Ql ◦p 1l−p(sl−p(Ql)) follows analogously.

(e) Binary interchange: Given 0 ≤ q < p < l ≤ n and (Rl, Ql), (Tl, Sl) ∈ V (l)×p V (l)
and (Tl, Rl), (Sl, Ql) ∈ V (l)×q V (l), we need to show

(Tl ◦p Sl) ◦q (Rl ◦p Ql) = (Tl ◦q Rl) ◦p (Sl ◦p Ql).
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Ql, Rl, Sl and Tl are of the form

Ql =

(
il,

[
il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])
,

Rl =

(
κl,

[
κl−1, . . . , κp+1, vp, ρp−1, . . . , ρ0

λl−1, . . . , λp+1, wp, σp−1, . . . , σ0

])
,

Sl =

(
µl,

[
µl−1, . . . , µp+1, ūp, ξp−1 . . . , ξq+1, σq, ρq−1, . . . , ρ0

νl−1, . . . , νp+1, v̄p, τp−1, . . . , τq+1, τq, σq−1, . . . , σ0

])
,

Tl =

(
ϕl,

[
ϕl−1, . . . , ϕp+1, v̄p, ξp−1 . . . , ξq+1, σq, ρq−1, . . . , ρ0

ψl−1, . . . , ψp+1, w̄p, τp−1, . . . , τq+1, τq, σq−1, . . . , σ0

])
.

We compute

(Tl ◦p Sl) ◦q (Rl ◦p Ql)

=

(
(µl + ϕl),

[
(µl−1 + ϕl−1), . . . , (µp+1 + ϕp+1), ūp, ξp−1 . . . , ξq+1, σq, ρq−1, . . . , ρ0

(νl−1 + ψl−1), . . . , (νp+1 + ψp+1), w̄p, τp−1, . . . , τq+1, τq, σq−1, . . . σ0

])

◦q

(
(il + kl),

[
(il−1 + κl−1), . . . , (ip+1 + κp+1), up, ρp−1, . . . , ρ0

(jl−1 + λl−1), . . . , (jp+1 + λp+1), wp, σp−1, . . . , σ0

])
= ((il + kl) + (µl + ϕl),Γ)

where

Γ :=

[ (
(il−1+κl−1)+(µl−1+ϕl−1)

)
,...,
(

(ip+1+κp+1)+(µp+1+ϕp+1)
)
,(

(jl−1+λl−1)+(νl−1+ψl−1)
)
,...,
(

(jp+1+λp+1)+(νp+1+ψp+1)
)
,

(up+ūp),(ρp−1+ξp−1),...,(ρq+1+ξq+1),ρq ,ρq−1,...,ρ0
(wp+w̄p),(σp−1+τp−1),...,(σq+1+τq+1),τq ,σq−1,...,σ0

]
.

On the other hand, we have

(Tl ◦q Rl) ◦p (Sl ◦p Ql)

=
(

(κl + ϕl),
[

(κl−1+ϕl−1),...,(κp+1+ϕp+1),(vp+v̄p),(ρp−1+ξp−1)...,(ρq+1+ξq+1),ρq ,ρq−1,...,ρ0
(λl−1+ψl−1),...,(λp+1+ψp+1),(wp+w̄p),(σp−1+τp−1),...,(σq+1+τq+1),τq ,σq−1,...,σ0

])
◦q
(

(il + µl),
[

(il−1+µl−1),...,(ip+1+µp+1),(up+ūp),(ρp−1+ξp−1)...,(ρq+1+ξq+1),ρq ,ρq−1,...,ρ0
(jl−1+νl−1),...,(jp+1+νp+1),(vp+v̄p),(σp−1+τp−1),...,(σq+1+τq+1),τq ,σq−1,...,σ0

])
= ((il + µl) + (κl + ϕl),∆)

where

∆ :=

[ (
(il−1+µl−1)+(κl−1+ϕl−1)

)
,...,
(

(ip+1+µp+1)+(κp+1+ϕp+1)
)
,(

(jl−1+νl−1)+(λl−1+ψl−1)
)
,...,
(

(jp+1+νp+1)+(λp+1+ψp+1)
)
,

(up+ūp),(ρp−1+ξp−1)...,(ρq+1+ξq+1),ρq ,ρq−1,...,ρ0
(wp+w̄p),(σp−1+τp−1),...,(σq+1+τq+1),τq ,σq−1,...,σ0

]
.
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Up to canonical isomorphisms of the type

R(il+µl) × R(κl+ϕl) ' Ril+µl+κl+ϕl ' R(il+κl) × R(µl+ϕl),

we proved the claim for V . For W , we need commutativity and associativity of the
addition of integers.

(f) Nullary interchange: For 0 ≤ p < l < n and (Rl, Ql) ∈ V (l) ×p V (l), we need to
show 1Rl

◦p 1Ql
= 1Rl◦pQl

. Consider

Ql =

(
il,

[
il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])
,

Rl =

(
κl,

[
κl−1, . . . , κp+1, vp, ρp−1, . . . , ρ0

λl−1, . . . , λp+1, wp, σp−1, . . . , σ0

])
and compute

1Rl
◦p 1Ql

=
(
0,
[ κl,κl−1,...,κp+1,vp,ρp−1,...,ρ0
κl,λl−1,...,λp+1,wp,σp−1,...,σ0

])
◦p
(

0,
[
il,il−1,...,ip+1,up,ρp−1,...,ρ0
il,jl−1,...,jp+1,vp,σp−1,...,σ0

])
=
(

0,
[

(il+κl),(il−1+κl−1),...,(ip+1+κp+1),up,ρp−1,...,ρ0
(il+κl),(jl−1+λl−1),...,(jp+1+λp+1),wp,σp−1,...,σ0

])
= 1Rl◦pQl

.

(g) The conditions on the indices in V and W : Either one can show directly that the
composite and the identity functions preserve the index requirements in the definition of
V and W or one consults (d) in the proof of Theorem 4.8. This finishes the proof of
Theorem 4.3 and Theorem 4.6.

4.7. The functors F : X → V and G : X → W. Let us now define the n-functor
F : X → V . The functor will preserve the levels of the n-globular sets X = {X(l) | 0 ≤
l ≤ n} and V = {V (l) | 0 ≤ l ≤ n}. We assume the notations and setting of Subsection
3.6. Recall that the Morse index of a critical point x is denoted by Ind(x). We set

F : X(0) = Crit(f0)→ V (0) = {Ri0 | i0 ∈ N0}, x0 7→ RInd(x0)

and

F : X(1) = {(x1,M̂(x0, y0, f0)) | . . . } → V (1) = {(Ri1 ,Hom(Ri0 ,Rj0)) | . . . }
(x1,M̂(x0, y0, f0)) 7→ (RInd(x1),Hom(RInd(x0),RInd(y0)))

and generally for 1 ≤ l ≤ n using short notation

F : X(l)→ V (l)(
al,M̂

(
al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

])) 7→ (
Ind(al),

[
Ind(al−1),...,Ind(a0)
Ind(bl−1),...,Ind(b0)

])
.
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4.8. Theorem. F is an almost strict n-functor from X to V.

Before we prove Theorem 4.8 we define an n-functor G from X to W . We set

G : X(0) = Crit(f0)→ W (0) = N0, x0 7→ Ind(x0)

and

G : X(1) = {(x1,M̂(x0, y0, f0)) | . . . } → W (1)

(x1,M̂(x0, y0, f0)) 7→

(
Ind(x1),

[
Ind(x0)

Ind(y0)

])

and generally for 1 ≤ l ≤ n

G : X(l)→ W (l)(
al,M̂

(
al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

])) 7→ (
Ind(al),

[
Ind(al−1),...,Ind(a0)
Ind(bl−1),...,Ind(b0)

])
.

4.9. Theorem. G is an almost strict n-functor from X to W.

Proof of Theorem 4.8 and Theorem 4.9. Using Remark 4.4 we can prove Theorem
4.8 and Theorem 4.9 simultanously, i.e. it is sufficient to show the claim for F .

(a) F is compatible with source and target functions: Let Al ∈ X(l) with

Al =

(
al,M̂

(
al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

]))
and compute for the source function

F(s(Al)) = F
(
al−1,M̂

(
al−2, bl−2, fl−2

[ al−3,...,a0
bl−3,...,b0

]))
=
(

Ind(al−1),
[

Ind(al−2),...,Ind(a0)
Ind(bl−2),...,Ind(b0)

])
= s

(
Ind(al),

[
Ind(al−1),...,Ind(a0)
Ind(bl−1),...,Ind(b0)

])
= s(F(Al)).

The claim for the target function follows similarly.

(b) F is compatible with the identity functions: Let Al ∈ X(l) as in (a) and compute

F(1(Al)) = F
(
al,M̂

(
al, al, fl

[ al−1,...,a0
bl−1,...,b0

])) =
(

0,
[

Ind(al),Ind(al−1),...,Ind(a0)
Ind(al),Ind(bl−1),...,Ind(b0)

])
= 1

(
Ind(al),

[
Ind(al−1),...,Ind(a0)
Ind(bl−1),...,Ind(b0)

])
= 1(F(Al)).
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(c) F is compatible with the composite: Let (Cl, Al) ∈ X(l)×p X(l) with

Al =

(
al,M̂(al−1, bl−1, fl−1

[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, fl−1

[ cl−2,...,cp+1,yp,αp−1,...,α0

dl−2,...,dp+1,zp,βp−1,...,β0

])
)

and compute

F(Cl ◦p Al)

= F

(
(al, cl),M̂

(
(al−1, cl−1), (bl−1, dl−1), f

l−1

[
(al−2,cl−2),...,(ap+1,cp+1),xp,αp−1,...,α0

(bl−2,dl−2),...,(bp+1,dp+1),zp,βp−1,...,β0

]))
=
(

Ind(al)+Ind(cl) ,
[

(Ind(al−1)+Ind(cl−1)),...,(Ind(ap+1)+Ind(cp+1)),Ind(xp),Ind(αp−1),...,Ind(α0)
(Ind(bl−1)+Ind(dl−1)),...,(Ind(bp+1)+Ind(dp+1)),Ind(zp),Ind(βp−1),...,Ind(β0)

])
=
(

Ind(cl),
[

Ind(cl−1),...,Ind(cp+1),Ind(yp),Ind(αp−1),...,Ind(α0)
Ind(dl−1),...,Ind(dp+1),Ind(zp),Ind(βp−1),...,Ind(β0)

])
◦p
(

Ind(al),
[

Ind(al−1),...,Ind(ap+1),Ind(xp),Ind(αp−1),...,Ind(α0)
Ind(bl−1),...,Ind(bp+1),Ind(yp),Ind(βp−1),...,Ind(β0)

])
= F(Cl) ◦p F(Al).

(d) F is compatible with the index requirements of the elements in the globular set V :
In fact, the index requirements of V were set up with X in mind. Consider(

al,M̂
(
al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

])) = Al ∈ X(l)

with al−1 6= bl−1 and note

dimM
(
al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

]) = Ind(al−1)− Ind(bl−1)

and
dimM̂

(
al−1, bl−1, fl−1

[ al−2,...,a0
bl−2,...,b0

]) = Ind(al−1)− Ind(bl−1)− 1.

If al−1 6= bl−1 then Ind(al−1)− Ind(bl−1) ≥ 1 since we are considering a negative gradient

flow. If al−1 = bl−1 then we formally consider bothM(al−1, al−1, . . . ) and M̂(al−1, al−1, . . . )

as zero dimensional. Since al lives on the unparametrized space M̂(al−1, bl−1, . . . ) we have
0 ≤ Ind(al) < Ind(al−1) − Ind(bl−1) for all 1 ≤ l ≤ n. This satisfies the index conditions
in the definition of V (l) and concludes the proof of Theorem 4.8 and Theorem 4.9.

5. Example: The 2-torus T2

Consider the 2-torus T2 = R2/Z2 with the flat metric and the Morse function f0(x, y) =
cos(2πx) + cos(2πy) whose critical points are {(k

2
, l

2
) | k, l ∈ Z}. Let us work on the
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fundamental domain [0, 1] × [0, 1] which has four critical points w := w0 = (0, 0) =
(1, 0) = (0, 1) = (1, 1) and x := x0 = (1

2
, 0) = (1

2
, 1) and y := y0 = (0, 1

2
) = (1, 1

2
) and

z := z0 = (1
2
, 1

2
) as in Figure 5. We suppress the level indices in w0, x0, y0, z0 since it would

complicate the notation.

z
y

w

w wx

x

y

�

�

� � �

� ?

?

?

?

w
?

?

Figure 3: Morse trajectories on T2

We have Ind(w) = 2, Ind(x) = Ind(y) = 1 and Ind(z) = 0 and the moduli spaces

M̂(w, x), M̂(w, y), M̂(x, z) and M̂(y, z) are zero dimensional and have two connected

components each. We denote them by M̂(w, x) = M̂(w, x)� ∪ M̂(w, x)? etc.
If we consider a (component of a) zero dimensional moduli space as a point instead

of a space, we write m̂(·, ·) instead of M̂(·, ·) in the following.

5.1. The almost strict Morse n-category. M̂(w, z) is 1-dimensional and has

four connected components. We choose a Morse function f1[wz ] on M̂(w, z) which is

strictly monotone and has its critical points on the endpoints of the intervals. Let f1[wz ]
be maximal on the critical point (m̂(w, y)i, m̂(y, z)j) and minimal on the critical point
(m̂(w, x)i, m̂(x, z)j) for i, j ∈ {�, ?}. We have

X(0) = {w, x, y, z}

and we compute

X(1) =


(m̂(w, x)i,M̂(w, x)), (m̂(w, y)i,M̂(w, y)),

(m̂(x, z)i,M̂(x, z)), (m̂(y, z)i,M̂(y, z)),

((m̂(w, x)i, m̂(x, z)j),M̂(w, z)),

((m̂(w, y)i, m̂(y, z)j),M̂(w, z))

∣∣∣∣∣∣∣∣∣∣∣
i, j ∈ {�, ?}


.
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and obtain

X(1)×0 X(1) = {(ξ̃, ξ) ∈ X(1)×X(1) | s(ξ̃) = t(ξ)}

=


(

(m̂(x, z)i,M̂(x, z)), (m̂(w, x)j,M̂(w, x))
)
,(

(m̂(y, z)i,M̂(y, z)), (m̂(w, y)j,M̂(w, y))
)
∣∣∣∣∣∣ i, j ∈ {�, ?}


and concatenate exemplarily(

m̂(w, x)i,M̂(w, x)
)
◦0

(
m̂(x, z)j,M̂(x, z)

)
=
(

(m̂(w, x)i, m̂(x, z)j),M̂(w, z)
)
.

We set

� :=
(
(m̂(w, y)?, m̂(y, z)�), (m̂(w, x)�, m̂(x, z)?)

)
,

N :=
(
(m̂(w, y)�, m̂(y, z)�), (m̂(w, x)�, m̂(x, z)�)

)
,

♠ :=
(
(m̂(w, y)�, m̂(y, z)?), (m̂(w, x)?, m̂(x, z)�)

)
,

♣ :=
(
(m̂(w, y)?, m̂(y, z)?), (m̂(w, x)?, m̂(x, z)?)

)
and compute

X(2) =



Hwx :=
(
m̂(w, x)i,M̂(m̂(w, x)i, m̂(w, x)i)

)
,

Hwy :=
(
m̂(w, y)i,M̂(m̂(w, y)i, m̂(w, y)i)

)
,

Hxz :=
(
m̂(x, z)i,M̂(m̂(x, z)i, m̂(x, z)i)

)
,

Hyz :=
(

(m̂(y, z)i,M̂(m̂(y, z)i, m̂(y, z)i)
)
,(

m̂(�),M̂(�)
)
,
(
m̂(N),M̂(N)

)
,(

m̂(♠),M̂(♠)
)
,
(
m̂(♣),M̂(♣)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i ∈ {�, ?}



.

We calculate for i ∈ {�, ?} and q ∈ {x, y}:

s2
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
= s

(
m̂(w, q)i,M̂(w, q)

)
= w,

t2
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
= t
(
m̂(w, q)i,M̂(w, q)

)
= q,

s2
(
m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)

)
= s

(
m̂(q, z)i,M̂(q, z)

)
= q,

t2
(
m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)

)
= t
(
m̂(q, z)i,M̂(q, z)

)
= z,
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and

s2
(

(m̂((m̂(w, y)?, m̂(y, z)�), (m̂(w, x)�, m̂(x, z)?)),M̂(�)
)

= s
(

(m̂(w, y)?, m̂(y, z)�),M̂(w, z)
)

= w,

s2
(
m̂((m̂(w, y)�, m̂(y, z)�), (m̂(w, x)�, m̂(x, z)�)),M̂(N)

)
= s

(
(m̂(w, y)�, m̂(y, z)�),M̂(w, z)

)
= w,

s2
(
m̂((m̂(w, y)�, m̂(y, z)?), (m̂(w, x)?, m̂(x, z)�)),M̂(♠)

)
= s

(
(m̂(w, y)�, m̂(y, z)?),M̂(w, z)

)
= w,

s2
(
m̂((m̂(w, y)?, m̂(y, z)?), (m̂(w, x)?, m̂(x, z)?)),M̂(♣)

)
= s

(
(m̂(w, y)?, m̂(y, z)?),M̂(w, z)

)
= w

and

t2
(

(m̂((m̂(w, y)?, m̂(y, z)�), (m̂(w, x)�, m̂(x, z)?)),M̂(�)
)

= t
(

(m̂(w, x)�, m̂(x, z)?),M̂(w, z)
)

= z,

t2
(
m̂((m̂(w, y)�, m̂(y, z)�), (m̂(w, x)�, m̂(x, z)�)),M̂(N)

)
= t
(

(m̂(w, x)�, m̂(x, z)�),M̂(w, z)
)

= z,

t2
(
m̂((m̂(w, y)�, m̂(y, z)?), (m̂(w, x)?, m̂(x, z)�)),M̂(♠)

)
= t
(

(m̂(w, x)?, m̂(x, z)�),M̂(w, z)
)

= z,

t2
(
m̂((m̂(w, y)?, m̂(y, z)?), (m̂(w, x)?, m̂(x, z)?)),M̂(♣)

)
= t
(

(m̂(w, x)?, m̂(x, z)?),M̂(w, z)
)

= z
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This yields

X(2)×1 X(2)

= {(ξ̃, ξ) ∈ X(2)×X(2) | t(ξ) = s(ξ̃)}

=


((

m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)
)
,
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

))
((

m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)
)
,
(
m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)

))
for i ∈ {�, ?}, q ∈ {x, y}


where we compute for example(

m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)
)
◦1

(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
=
(

(m̂(w, q)i, m̂(w, q)i),M̂((m̂(w, q)i, m̂(w, q)i), (m̂(w, q)i, m̂(w, q)i))
)

'
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
since the underlying space is a singleton. We find

X(2)×0 X(2)

= {(ξ̃, ξ) ∈ X(2)×X(2) | t2(ξ) = s2(ξ̃)}

=


((

m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)
)
,
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

))
for i ∈ {�, ?}, q ∈ {x, y}


and we compute(

m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)
)
◦0

(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
=
(

(m̂(w, q)i, m̂(q, z)i),M̂((m̂(w, q)i, m̂(q, z)i), (m̂(w, q)i, m̂(q, z)i))
)
.

Note that all elements of X(l) for l ≥ 3 will be of the form (ξ,M̂(ξ, ξ)) such that they do
not contribute any new information.

5.2. The image of the Morse n-category under the functors. The elements
of X(0), X(1) and X(2) look quite complicated. Let us now consider their image under
F and G. For sake of readability, we will always use the short notation introduced in
Remark 4.4 which expresses the functor F in terms of G. Thus it is sufficient to calculate
the image of X under G.

For X(0) = {w, x, y, z}, we obtain

G(w) = 2, G(x) = 1, G(y) = 1, G(z) = 0.
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which are the indices of the critical points. Now consider X(1) and obtain for the first
four elements

G(m̂(w, x)i,M̂(w, x)) =

(
0

[
2
1

])
,

G(m̂(w, y)i,M̂(w, y)) =

(
0

[
2
1

])
,

G(m̂(x, z)i,M̂(x, z)) =

(
0

[
1
0

])
,

G(m̂(y, z)i,M̂(y, z)) =

(
0

[
1
0

])
and for the last two elements

G((m̂(w, x)i, m̂(x, z)j),M̂(w, z)) =

(
0

[
2
0

])
,

G((m̂(w, y)i, m̂(y, z)j),M̂(w, z)) =

(
1

[
2
0

])
.

For the elements of X(2), we calculate

G(Hwx) = G(Hwy) =

(
0

[
0 2
0 1

])
,

G(Hxz) = G(Hyz) =

(
0

[
0 1
0 0

])
,

G(�,M̂(�)) = G(N,M̂(N)) = G(♠,M̂(♠)) = G(♣,M̂(♣)) =

(
0

[
1 2
0 0

])
.

Thus the functors simplify the picture considerably by providing an overview of the history
of the indices of the critical points resp. the dimension of the involved moduli spaces.
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