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STACKS AND SHEAVES OF CATEGORIES AS FIBRANT
OBJECTS, I

ALEXANDRU E. STANCULESCU

Abstract. We show that the category of categories fibred over a site is a generalized
Quillen model category in which the weak equivalences are the local equivalences and the
fibrant objects are the stacks, as they were defined by J. Giraud. The generalized model
category restricts to one on the full subcategory whose objects are the categories fibred
in groupoids. We show that the category of sheaves of categories is a model category
that is Quillen equivalent to the generalized model category for stacks and to the model
category for strong stacks due to A. Joyal and M. Tierney.

1. Introduction

The idea that stacks are the fibrant objects of a model category was developed by A. Joyal
and M. Tierney in [19] and by S. Hollander in [15]. The former paper uses internal
groupoids and categories in a Grothendieck topos instead of fibred categories, and the
latter only considers categories fibred in groupoids. The fibrant objects of the Joyal–
Tierney model category are called strong stacks (of groupoids or categories), and the
fibrant objects of Hollander’s model category are the stacks of groupoids. Using some
elaborate results from the homotopy theory of simplicial presheaves on a site, Hollander
shows that her model category is Quillen equivalent to the model category for strong
stacks of groupoids.

The purpose of this paper is to extend Hollander’s work to general stacks and to show
that the category of internal categories in a Grothendieck topos admits another model
category structure that is Quillen equivalent to the model category for strong stacks of
categories. Our approach is different from both [15] and [19], and it was entirely inspired
by J. Giraud’s book [11]. In fact, the influence of Giraud’s work on ours cannot be
overestimated.

Concerning general stacks, we give a realization of the thought that parts of Giraud’s
presentation of the theory of stacks [11, Chapitre II §1, §2] hint at a connection with left
Bousfield localizations of model categories as presented by P.S. Hirschhorn [14, Chapter
3]. In more detail, let E be a site, that is, a category E equipped with a Grothendieck
topology and let Fib(E) be the category of fibred categories over E and cartesian functors
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between them. Let C be the class of maps R ⊂ E/S of Fib(E), where S ranges through
the objects of E, E/S is the category of objects of E over S and R is a covering sieve
(or, refinement) of S. Then Giraud’s definition of stack resembles that of a C-local object
and his characterization of bicovering (bicouvrant in French) maps resembles the C-local
equivalences of [14, Definition 3.1.4(1)]. The bicovering maps are better known under the
name ‘local equivalences’.

The realization goes as follows. In order to deal with the absence of all finite limits
and colimits in Fib(E) we introduce, following a suggestion of A. Joyal, the notion of
generalized model category (see Definition 3.1). Many concepts and results from the
theory of model categories can be defined in the same way and have an exact analogue
for generalized model categories. We disregard that E has a topology and we show that
Fib(E) is naturally a generalized model category with the weak equivalences, cofibrations
and fibrations defined on the underlying functors (see Theorem 4.2). Then we show that
‘the left Bousfield localization of Fib(E) with respect to C exists’, by which we mean that
there is a generalized model category structure on Fib(E) having the bicovering maps as
weak equivalences and the stacks over E as fibrant objects (see Theorem 5.3). We call
this generalized model category the generalized model category for stacks over E and we
denote it by Champ(E).

To construct Champ(E) we make essential use of the functorial construction of the
stack associated to a fibred category (or, stack completion) and some of its consequences
[11, Chapitre II §2], and of a special property of bicovering maps (see Lemma 5.7).

We adapt the method of proof of the existence of Champ(E) to show that Fibg(E),
the full subcategory of Fib(E) whose objects are the categories fibred in groupoids, is a
generalized model category in which the weak equivalences are the bicovering maps and
the fibrant objects are the stacks of groupoids over E (see Theorem 6.3).

Concerning internal categories in a Grothendieck topos, let Ẽ be the category of
sheaves on E. We show that the category Cat(Ẽ) of internal categories and internal

functors in Ẽ (or, sheaves of categories) is a model category that is Quillen equivalent

to Champ(E) (see Theorem 7.2). We denote this model category by Stack(Ẽ)proj . The

fibrant objects of Stack(Ẽ)proj are the sheaves of categories that are taken to stacks by

the Grothendieck construction functor. To construct Stack(Ẽ)proj we make essential use
of the explicit way in which Giraud constructs the stack associated to a fibred category—
a way that highlights the role of sheaves of categories, and of a variation of Quillen’s
path object argument (see Lemma 7.3). The model category Stack(Ẽ)proj is also Quillen
equivalent via the identity functors to the model category for strong stacks [19, Theorem 4]
(see Proposition 7.6) and it behaves as expected with respect to morphisms of sites (see
Proposition 7.7).

The paper contains a couple of other results, essentially easy consequences of some of
the results we have proved so far: the bicovering maps and the natural fibrations make
Fib(E) a category of fibrant objects [7] (see Proposition 5.14), and the 2-pullback (or,
iso-comma object) of fibred categories is a model for the homotopy pullback in Champ(E)
(see Lemma 5.16).
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Appendix A is a review of Hollander’s characterization of stacks of groupoids in terms
of the homotopy sheaf condition [15, Theorem 1.1]. Appendix B studies the behaviour of
left Bousfield localizations of model categories under change of cofibrations. The result
contained in it is needed in Appendix C, which is a review of the model category for
strong stacks of categories [19, Theorem 4] made with the hope that it sheds some light
on the nature of strong stacks.

I wish to express my gratitude to the referee whose comments and suggestions greatly
improved the content of the paper. I wish to thank Jean Bénabou and Claudio Hermida
for very useful correspondence related to fibred categories.

2. Fibred categories

In this section we recall, for completeness and to fix notations, some results from the
theory of fibred categories.

We shall work in the setting of universes, as in [11], although we shall not mention the
universe in which we shall be working. We shall also use the axiom of choice.

We denote by SET the category of sets and maps, by CAT the category of categories
and functors and by GRPD its full subcategory whose objects are groupoids.

Let E be a category. We denote by Eop the opposite category of E. We let CAT/E be
the category of categories over E. Arrows of CAT/E will be called E-functors. If S is an
object of E, E/S stands for the category of objects of E over S.

If A and B are two categories, we denote by [A,B] the category of functors from A to
B and natural transformations between them.

We denote by ∗ the terminal object of a category, when it exists. We denote by J the
groupoid with two objects and one isomorphism between them.

2.1. Isofibrations. One says that a functor A → B is an isofibration (called trans-
portable in [13, Exposé VI]) if it has the right lifting property with respect to one of the
maps ∗ → J . A functor is both an isofibration and an equivalence of categories if and
only if it is an equivalence which is surjective on objects (surjective equivalence, for short).
Given a commutative diagram in CAT

A //

f
��

C

g
��

B // D

in which the horizontal arrows are surjective equivalences, if f is an isofibration then so
is g.

2.2. Fibrations and isofibrations. Let E be a category.
Let f :F → E be a functor. We denote by FS the fibre category over S ∈ Ob(E). An

E-functor u:F → G induces a functor uS:FS → GS for every S ∈ Ob(E).
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2.3. Lemma.

(1) Let u:F → G be an E-functor with F → E an isofibration. Then the underlying
functor of u is an isofibration if and only if for every S ∈ Ob(E), the map FS → GS

is an isofibration.

(2) Every fibration is an isofibration. Every surjective equivalence is a fibration.

(3) Let u:F → G be an E-functor such that the underlying functor of u is an equivalence.
If F is a fibration then so is G.

(4) Let u:F → G be an E-functor such that the underlying functor of u is an equivalence.
If G is a fibration and F → E is an isofibration then F is a fibration.

(5) Let F and G be two fibrations and u:F → G be an E-functor. If the underlying
functor of u is full and faithful then u reflects cartesian arrows.

(6) Let
F //

u
��

H

v
��

G // K

be a commutative diagram in CAT/E with F,G,H and K fibrations. If the underly-
ing functors of the horizontal arrows are equivalences, then u is a cartesian functor
if and only if v is cartesian.

Proof. (1) We prove sufficiency. Let β:u(x) → y be an isomorphism and let S = g(y).
Then g(β): f(x)→ S is an isomorphism therefore there is an isomorphism α:x→ x0 such
that f(α) = g(β) since f is an isofibration. The composite βu(α−1):u(x0) → y lives in
GS hence there is an isomorphism α′:x0 → x1 such that u(α′) = βu(α−1) since uS is an
isofibration. One has u(α′α) = β.

(2) is straightforward. (3) and (4) are consequences of [13, Exposé VI Corollaire 4.4
et Proposition 6.2].

(5) Let f :F → E and g:G → E be the structure maps. Let α:x → y be a map of
F such that u(α) is cartesian. We can factorize α as cγ, where c: z → y is a cartesian
map over f(α) and γ:x→ z is a vertical map. Since u(α) is cartesian and gu(α) = gu(c),
there is a unique ε:u(z) → u(x) such that u(α)ε = u(c). Then ε = u(β) since u is full,
where β: z → x. Hence c = αβ since u is faithful. Since c is cartesian it follows that γβ
is the identity, and since u(α) is cartesian it follows that βγ is the identity. Thus, γ is a
cartesian map.

(6) is a consequence of (5) and [13, Exposé VI, Corollaire 4.4 et Proposition 5.3(i)].
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A sieve of E is a collection R of objects of E such that for every arrow X → Y of E,
Y ∈ R implies X ∈ R. Let F → E be a fibration and R a sieve of F . The composite
R ⊂ F → E is a fibration and R ⊂ F is a cartesian functor.

A surjective equivalence takes sieves to sieves.

2.4. The 2-categories Fib(E) and Fibg(E). Let E be a category. We denote by
Fib(E) the category whose objects are the categories fibred over E and whose arrows are
the cartesian functors.

Let F and G be two objects of Fib(E). The cartesian functors from F to G and
the cartesian (sometimes called vertical) natural transformations between them form a
category which we denote by CartE(F,G). This defines a functor

CartE(−,−): Fib(E)op × Fib(E) // CAT

so that the fibred categories over E, the cartesian functors and cartesian natural trans-
formations between them form a 2-category which we denote by Fib(E).

The category Fib(E) has finite products. The product of two objects F and G is the
pullback F ×E G .

Let A be a category and F ∈ Fib(E). We denote by A× F the pullback of categories

A× F //

��

F

��

A× E // E

A× F is the product in Fib(E) of F and A× E. The construction defines a functor

−×−: CAT × Fib(E) // Fib(E)

We denote by F (A) the pullback of categories

F (A) //

��

[A,F ]

��

E // [A,E]

so that (F (A))S = [A,FS]. The functor − × F is left adjoint to CartE(F,−) and the
functor A×− is left adjoint to (−)(A). These adjunctions are natural in F and A. There
are isomorphisms that are natural in F and G

CartE(A× F,G) ∼= [A,CartE(F,G)] ∼= CartE(F,G(A)) (1)

so that Fib(E) is tensored and cotensored over the monoidal category CAT .
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Let F and G be two objects of Fib(E). We denote by CART(F,G) the object of
Fib(E) associated by the Grothendieck construction to the functor Eop → CAT which
sends S ∈ Ob(E) to CartE(E/S × F,G), so that

CART(F,G)S = CartE(E/S × F,G) (2)

There is a natural equivalence of categories

CartE(F ×G,H) ' CartE(F,CART(G,H)) (3)

The Grothendieck construction functor

[Eop ,CAT ] Φ // Fib(E)

has a right adjoint S given by SF (S) = CartE(E/S, F ). The functors Φ and S are 2-
functors and the adjoint pair (Φ, S) extends to a 2-adjunction between the 2-categories
[Eop ,CAT ] and Fib(E). The functor SF is a split fibration and S sends maps in Fib(E)
to split functors. The composite S = ΦS sends fibrations to split fibrations and maps in
Fib(E) to split functors. The counit of the 2-adjunction (Φ, S) is a 2-natural transforma-
tion v: S→ IdFib(E). For every object F of Fib(E) and every S ∈ Ob(E) the map

(vF )S:CartE(E/S, F )→ FS (4)

is a surjective equivalence.
The functor Φ has also a left adjoint L, constructed as follows. For any category A,

the functor
−× A: CAT → Fib(A)

has a left adjoint Lim(−/A) which takes F to the category obtained by inverting the
cartesian morphisms of F . If F ∈ Fib(E),

LF (S) = Lim(E/S ×E F/E/S)

where E/S is the category of objects of E under S. We denote by l the unit of the adjoint
pair (L,Φ). For every S ∈ Ob(E), the map (lF )S:FS → LF (S) is an equivalence of
categories. The adjoint pair (L,Φ) extends to a 2-adjunction between the 2-categories
[Eop ,CAT ] and Fib(E).

Let F be an object of Fib(E). We denote by F cart the subcategory of F which has the
same objects and whose arrows are the cartesian arrows. The composite F cart ⊂ F → E is
a fibration and F cart ⊂ F is a map in Fib(E). For each S ∈ Ob(E), (F cart)S is the maximal
groupoid associated to FS. A map u:F → G of Fib(E) induces a map ucart :F cart → Gcart

of Fib(E). In all, we obtain a functor (−)cart : Fib(E)→ Fib(E). One says that F is fibred
in groupoids if the fibres of F are groupoids. This is equivalent to saying that F cart = F
and, if f :F → E is the structure map of F , to saying that for every object x of F , the
induced map f/x:F/x → E/f(x) is a surjective equivalence.
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We denote by Fibg(E) the full subcategory of Fib(E) consisting of categories fibred in
groupoids. The inclusion functor Fibg(E) ⊂ Fib(E) has (−)cart as right adjoint. Fibg(E)
is a full subcategory of CAT/E.

We denote by Fibg(E) the full sub-2-category of Fib(E) whose objects are the cate-
gories fibred in groupoids. Fibg(E) is a GRPD-category. If F and G are two objects of
Fibg(E), we denote the GRPD-hom between F and G by CartgE(F,G). The 2-category
Fibg(E) is tensored and cotensored over GRPD with tensor and cotensor defined by the
same formulas as for Fib(E).

The 2-category Fib(E) becomes a GRPD-category by change of base along the max-
imal groupoid functor max: CAT → GRPD . Then the inclusion Fibg(E) ⊂ Fib(E)
becomes a GRPD-functor which has (−)cart as right GRPD-adjoint. In particular, we
have a natural isomorphism

CartgE(F,Gcart) ∼= maxCartE(F,G) (5)

A change of base. Let m:A→ B be a functor. There is a 2-functor

mfib
• : Fib(B)→ Fib(A)

given by mfib
• (F ) = F ×B A. If A is fibred in groupoids with structure map m, mfib

• has a
left 2-adjoint m• that is given by composing with m.

Let P be a presheaf on A and D: SET → CAT be the discrete category functor.
The functor D induces a functor D: [Eop , SET ] → [Eop ,CAT ]. We denote the category
ΦDP by A/P , often called the category of elements of P . As a consequence of the above
2-adjunction we have a natural isomorphism

CartA(A/P ,m
fib
• (F )) ∼= CartB(A/P , F ) (6)

Let E be a category and P a presheaf on E. Let m be the canonical map E/P → E. We
denote mfib

• (F ) by F/P . As a consequence of the above 2-adjunction we have a natural
isomorphism

CartE/P
(E/P , F/P ) ∼= CartE(E/P , F )

3. Generalized model categories

We shall need to work with a more general notion of (Quillen) model category than in the
current literature (like [14]). In this section we shall introduce the notion of generalized
model category. Many concepts and results from the theory of model categories can be
defined in the same way and have an exact analogue for generalized model categories. We
shall review below some of them.

3.1. Definition. A generalized model category is a category M together with three
classes of maps W, C and F (called weak equivalences, cofibrations and fibrations) satis-
fying the following axioms:
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A1: M has initial and terminal objects.

A2: The pushout of a cofibration along any map exists and the pullback of a fibration
along any map exists.

A3: W has the two out of three property.

A4: The pairs (C,F ∩W) and (C ∩W,F) are weak factorization systems.

If follows from the definition that the classes C and C ∩W are closed under pushout
and that the classes F and F ∩W are closed under pullback.

The opposite of the underlying category of a generalized model category is a general-
ized model category.

Let M be a generalized model category. A map of M is a trivial fibration if it is both
a fibration and a weak equivalence, and it is a trivial cofibration if it is both a cofibration
and a weak equivalence. An object of M is cofibrant if the map to it from the initial object
is a cofibration, and it is fibrant if the map from it to the terminal object is a fibration.
Let X be an object of M. For every cofibrant object A of M, the coproduct AtX exists
and the map A→ AtX is a cofibration. Dually, for every fibrant object Z, the product
Z ×X exists and the map Z ×X → X is a fibration.

The class of weak equivalences of a generalized model category is closed under retracts
[20, Proposition 7.8].

3.2. Let M be a generalized model category with terminal object ∗. Let f :X → Y be
a map of M between fibrant objects. We review the construction of the mapping path
factorization of f [7]. Let

Y s // PathY
p0×p1

// Y × Y

be a factorization of the diagonal map Y → Y × Y into a weak equivalence s followed by
a fibration p0 × p1. Consider the following diagram

Pf
q
//

πf
��

X × Y
f×Y

��

pX // X

f
��

Y s
// PathY

p0×p1
// Y × Y p0

//

p1
��

Y

��

Y // ∗

in which all squares are pullbacks. The object Pf is fibrant. There is a unique map
jf :X → Pf such that πfjf = sf and pXqjf = 1X . The map pXq is a trivial fibration,
hence the map jf is a weak equivalence. Put qf = p1(f × Y )q. Then qf is a fibration and
f = qfjf .

In a generalized model category, the pullback of a weak equivalence between fibrant
objects along a fibration is a weak equivalence [7, Lemma 2 on page 428].
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3.3. Let M be a generalized model category. A left Bousfield localization of M is a
generalized model category LM on the underlying category of M having the same class
of cofibrations as M and a bigger class of weak equivalences.

3.4. Lemma. Let M be a generalized model category with W, C and F as weak equiva-
lences, cofibrations and fibrations. Let W′ be a class of maps of M that contains W and
has the two out of three property. We define F′ to be the class of maps having the right
lifting property with respect to every map of C ∩W′.

Then LM = (W′,C,F′) is a left Bousfield localization of M if and only if the pair
(C∩W′,F′) is a weak factorization system. Moreover, (C∩W′,F′) is a weak factorization
system if and only if the class C ∩W′ is closed under codomain retracts and every arrow
of M factorizes as a map in C ∩W′ followed by a map in F′.

Proof. We prove the first statement. The necessity is clear. Conversely, since C ∩W ⊂
C∩W′ it follows that F′ ⊂ F. This implies that the second part of Axiom A2 is satisfied.
To complete the proof it suffices to show that F ∩W = F′ ∩W′. Since C ∩W′ ⊂ C, it
follows that F∩W ⊂ F′ and hence that F∩W ⊂ F′∩W′. We show that F′∩W′ ⊂ F∩W.
Let X → Y be a map in F′ ∩W′. We factorize it into a map X → Z in C followed by a
map Z → Y in F ∩W. Since W′ has the two out of three property, the map X → Z is
in C ∩W′. It follows that the commutative diagram

X

��

X

��

Z // Y

has a diagonal filler, hence X → Y is a (domain) retract of Z → Y . Thus, the map
X → Y is in F ∩W.

The second statement follows from a standard characterization of weak factorization
systems.

Let LM be a left Bousfield localization of M. A map of M between fibrant objects
in LM is a weak equivalence (fibration) in LM if and only if it is a weak equivalence
(fibration) in M. Let X → Y be a weak equivalence in M between fibrant objects in M.
Then X is fibrant in LM if and only if Y is fibrant in LM.

3.5. A generalized model category is left proper if every pushout of a weak equivalence
along a cofibration is a weak equivalence. Dually, a generalized model category is right
proper if every pullback of a weak equivalence along a fibration is a weak equivalence.
A generalized model category is proper if it is left and right proper. A left Bousfield
localization of a left proper generalized model category is left proper.

Let M be a right proper generalized model category. Let

X
g
// Z Y

f
oo (7)
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be a diagram in M. We factorize f as a trivial cofibration Y
if→ E(f) followed by a

fibration E(f)
pf→ Z. We factorize g as a trivial cofibration X

ig→ E(g) followed by a

fibration E(f)
pg→ Z. The homotopy pullback of diagram (7) is defined to be the pullback

of the diagram

E(g)
pg

// Z E(f)
pf

oo

The analogue of [14, Proposition 13.3.4] holds in this context. If X, Y and Z are fibrant, a
model for the homotopy pullback is X×ZPf , where Pf is the mapping path factorization
of f described in Section 3.2.

Let LM be a left Bousfield localization of M that is right proper. We denote by X×hZY
the homotopy pullback in M of diagram (7) and by X ×Lh

Z Y the homotopy pullback of
the same diagram, but in LM.

3.6. Proposition.

(1) Suppose that X, Y and Z are fibrant in LM. Then X ×hZ Y is weakly equivalent in
M to X ×Lh

Z Y .

(2) Suppose that the pullback of a map between fibrant objects in M that is both a fibra-
tion in M and a weak equivalence in LM is a weak equivalence in LM. Suppose that
X, Y and Z are fibrant in M. Then X×hZ Y is weakly equivalent in LM to X×Lh

Z Y .

Proof. (1) is a consequence of [14, Proposition 13.3.7]. To prove (2) we first factorize
f in LM as a trivial cofibration Y → Y0 in followed by a fibration Y0 → Z. Then we
factorize Y → Y0 in M as a trivial cofibration Y → Y ′ in followed by a fibration Y ′ → Y0.
By assumption the map X ×Z Y ′ → X ×Z Y0 is a weak equivalence in LM.

3.7. Let M and N be generalized model categories and F :M → N be a functor having
a right adjoint G. The adjoint pair (F,G) is a Quillen pair if F preserves cofibrations
and trivial cofibrations. Equivalently, if G preserves fibrations and trivial fibrations. If
the classes of weak equivalences of M and N have the two out of six property, then (F,G)
is a Quillen pair if and only if F preserves cofibrations between cofibrant objects and
trivial cofibrations if and only if G preserves fibrations between fibrant objects and trivial
fibrations (a result due to Joyal).

The adjoint pair (F,G) is a Quillen equivalence if (F,G) is a Quillen pair and if for
every cofibrant object A in M and every fibrant object X in N, a map FA→ X is a weak
equivalence in N if and only if its adjunct A→ GX is a weak equivalence in M.

4. The natural generalized model category on Fib(E)

We recall [19] that CAT is a model category in which the weak equivalences are the
equivalences of categories, the cofibrations are the functors that are injective on objects
and the fibrations are the isofibrations. Therefore, for every category E, CAT/E is a
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model category in which a map is a weak equivalence, cofibration or fibration if it is one
in CAT .

Let E be a category.

4.1. Definition. Let u:F → G be a map of Fib(E). We say that u is an E-equivalence
(isofibration) if the underlying functor of u is an equivalence of categories (isofibration).
We say that u is a trivial fibration if it is both an E-equivalence and an isofibration.

4.2. Theorem. The category Fib(E) is a proper generalized model category with the E-
equivalences as weak equivalences, the maps that are injective on objects as cofibrations
and the isofibrations as fibrations.

The proof of Theorem 4.2 will be given after some preparatory results.

4.3. Proposition. Let u:F → G be a map of Fib(E). The following are equivalent:

(1) u is an E-equivalence.

(2) For every S ∈ Ob(E), the map uS:FS → GS is an equivalence of categories.

(3) u is an equivalence in the 2-category Fib(E).

(4) CartE(u,X):CartE(G,X)→ CartE(F,X) is an equivalence for all X ∈ Fib(E).

(5) CartE(X, u):CartE(X,F )→ CartE(X,G) is an equivalence for all X ∈ Fib(E).

Proof. All is contained in [13, Exposé VI].

4.4. Corollary. A map u:F → G of Fib(E) is a trivial fibration if and only if for
every S ∈ Ob(E), uS:FS → GS is a surjective equivalence.

Proof. This follows from Lemma 2.3((1) and (2)) and Proposition 4.3.

For part (2) of the next result, let M be a class of functors that is contained in the
class of injective on objects functors. In our applications M will be the class of injective
on objects functors or the set consisting of one of the inclusions ∗ → J . Let M⊥ be the
class of functors that have the right lifting property with respect to every element of M .

4.5. Proposition. Let u:F → G be a map of Fib(E).

(1) u is an isofibration if and only if ucart is an isofibration.

(2) If u has the right lifting property with respect to the maps f × E/S, where f ∈ M
and S ∈ Ob(E), then uS ∈M⊥ for every S ∈ Ob(E).
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Proof. (1) This is a consequence of Lemma 2.3(1) and of the fact that for every S ∈
Ob(E) and every object F of Fib(E), (F cart)S is the maximal groupoid associated to FS.

(2) Let S ∈ Ob(E) and A→ B be an element of M . Consider the commutative solid
arrow diagram

CartE(E/S, F )

))

��

CartE(E/S, G)

��

A //

��

;;

FS

))
B //

66

GS

We recall that the category of arrows of CAT is a model category in which the weak
equivalences and fibrations are defined objectwise. A functor is cofibrant in this model
category if and only if it is injective on objects. If we regard the previous diagram as a
diagram in the category of arrows of CAT , then it has by 2.4(4) and the assumption on
M a diagonal filler, the two dotted arrows. From Section 2.4 and hypothesis this diagonal
filler has itself a diagonal filler, hence the bottom face diagram has one.

4.6. Lemma.

(1) Let
F ×H G //

��

G

v
��

F
u // H

be a pullback diagram in CAT/E. If F,G and H are fibrations, u and v are cartesian
functors and u is an isofibration, then F ×H G is a fibration and the diagram is a
pullback in Fib(E).

(2) Let

F
u //

v
��

G

��

H // G tF H

be a pushout diagram in CAT/E. If F,G and H are fibrations, u and v are cartesian
functors and u is injective on objects, then G tF H is a fibration and the diagram
is a pushout in Fib(E).

Proof. (1) The objects of F ×H G are pairs (x, y) with x ∈ Ob(F ), y ∈ Ob(G) such that

u(x) = v(y). We shall briefly indicate how the composite map F ×H G → F
p→ E is a

fibration. Let S ∈ Ob(E), (x, y) ∈ F ×H G and f :S → p(x). A cartesian lift of f is
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obtained as follows. Let yf → y and xf → x be cartesian lifts of f . Since H is a fibration,
u and v are cartesian functors and u is an isofibration, there is xf0 ∈ Ob(FS) such that
xf ∼= xf0 and u(xf0) = v(yf ). Then the obvious map (xf0 , y

f )→ (x, y) is a cartesian lift of
f . The universal property of the pullback is easy to see.

(2) The set of objects of G tF H can be identified with Ob(H) t (Ob(G) \ ImOb(u)).
Since the structure functors G → E and H → E are isofibrations, one can easily check
that the canonical map G tF H → E is an isofibration. We shall use Lemma 2.3(4) to
show that it is a fibration. Consider the following cube in CAT/E

F
u //

%%

��

G

**

��

H //

��

G tF H

��

ΦLF //

%%

ΦLG
**

ΦLH // ΦLG tΦLF ΦLH

(see Section 2.4 for the functors Φ and L). The top and bottom faces are pushouts and
the vertical arrows having sources F,G and H are weak equivalences. The map ΦLu is a
cofibration since u is one. By [14, Proposition 15.10.10(1)] the map

G tF H → ΦLG tΦLF ΦLH

is a weak equivalence. Since Φ is a left adjoint, the target of this map is in the image of
Φ, hence it is a fibration. It follows from Lemma 2.3(4) that G tF H is a fibration. The
canonical maps H → G tF H and G→ G tF H are cartesian functors by Lemma 2.3(6)
applied to the front and right faces of the above cube diagram. Finally, it remains to
prove that if

F u //

v
��

G

��

H // K

is a commutative diagram in Fib(E), then the resulting functor GtF H → K is cartesian.
This follows from Lemma 2.3(6) applied to the diagram

G tF H //

��

ΦLG tΦLF ΦLH

��

K // ΦLK

4.7. Remark. A consequence of Lemma 4.6(1) is that the fibre category (F ×H G)S is
the pullback FS ×HS

GS. Thus, if F,G and H are fibred in groupoids then so is F ×H G.
A consequence of Lemma 4.6(2) is that if F,G and H are fibred in groupoids then so is
G tF H.
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4.8. Example.

(1) Let u:F → G be a map of Fib(E) and H an object of Fib(E). Then the diagram

F ×H F×u
//

��

G×H

��

F u // G

in a pullback in Fib(E).

(2) Let
E/:E → CAT/E

be the functor which takes S ∈ Ob(E) to E/S. The functor E/ preserves all the
limits that exist in E. Therefore, if

U ×S T //

��

T

��

U // S

is a pullback diagram in E, then

E/U×ST
//

��

E/T

��

E/U // E/S

is a pullback diagram in Fib(E).

Proof of Theorem 4.2. Axioms A1 and A3 from Definition 3.1 are clear. Axiom A2
was dealt with in Lemma 4.6. We prove Axiom 4. Any map u:F → G of Fib(E) admits
a factorization u = vi:F → H → G in CAT/E, where i is injective on objects and the
underlying functor of v is a surjective equivalence. By Lemma 2.3(2) H is an object of
Fib(E). By Lemma 2.3(5) i is a cartesian functor. By [13, Exposé VI, Proposition 5.3(i)]
v is a cartesian functor. Any commutative diagram

F //

u
��

H

v
��

G // K

Fib(E) in which the underlying functor of u is injective on objects and v is a trivial fibra-
tion has a diagonal filler in CAT/E. By Lemma 2.3(5) (or [13, Exposé VI, Corollaire 5.4],
for example) this diagonal filler is a cartesian functor. Thus, the first part of Axiom 4 is
proved. The rest of the Axiom 4 is proved similarly, using Lemma 2.3((3) and (5)) and
[13, Exposé VI, Proposition 5.3(i)].

Properness is easy to see.
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4.9. Remark. Let F be an object of Fib(E). Let D2 be the discrete category with
two objects. By cotensoring the sequence D2 → J → ∗ with F we obtain a natural
factorization of the diagonal F → F × F as

F // F (J) // F × F

in which the map F → F (J) is an E-equivalence and the map F (J) → F × F is an isofi-
bration. We obtain the following model for the mapping path factorization (Section 3.2)
of a map u:F → G of Fib(E). The objects of a fibre category (Pu)S are triples (x, y, θ)
with x ∈ Ob(FS), y ∈ Ob(GS) and θ: y → u(x) an isomorphism in GS. The arrows are
pairs of arrows making the obvious diagram commute.

4.10. Proposition. [Compatibility with the 2-category structure] Let u:F → G be a
cofibration and v:H → K an isofibration. Then the canonical map

CartE(G,H) // CartE(G,K)×CartE(F,K) CartE(F,H)

is an isofibration that is a surjective equivalence if either u or v is an E-equivalence.

Proof. By Section 2.4 the diagram

∗ //

��

CartE(G,H)

��

J // CartE(G,K)×CartE(F,K) CartE(F,H)

has a diagonal filler if and only if the diagram

F //

��

H(J)

��

G // K(J) ×K H

has one (the pullback exists by Lemma 4.6(1)). The latter is true since the map H(J) →
K(J) ×K H is a trivial fibration using Remark 4.7 and Corollary 4.4. Suppose that u
is an E-equivalence. By Proposition 4.3 the functors CartE(u,H) and CartE(u,K)
are surjective equivalences. Since surjective equivalences are stable under pullback, the
functor

CartE(G,H)→ CartE(G,K)×CartE(F,K) CartE(F,H)

is an equivalence by the two out of three property of equivalences. Suppose that v is an
E-equivalence. Then CartE(F, v) and CartE(G, v) are equivalences and the functor

CartE(G,K)×CartE(F,K) CartE(F,H) // CartE(G,K)

is an equivalence being the pullback of an equivalence along an isofibration. Therefore
the canonical map is an equivalence.
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4.11. Corollary. A map u:F → G is an isofibration if and only if for every object X
of Fib(E), the map

CartE(X, u):CartE(X,F )→ CartE(X,G)

is an isofibration.

Proof. One half is a consequence of Proposition 4.10. The other half follows by putting
X = E/S, where S ∈ Ob(E), and using 2.4(4), Lemma 2.3(1) and Section 2.1.

4.12. Corollary. [Compatibility with the ‘internal hom’] Let u : F → G be a cofibra-
tion and v : H → K an isofibration. Then the canonical map

CART(G,H) // CART(G,K)×CART(F,K) CART(F,H)

is an isofibration that is a trivial fibration if either u or v is an E-equivalence.

Proof. The map CART(u,K) is an isofibration by 2.4(2) and Proposition 4.10, therefore
the pullback in the displayed arrow exists by Lemma 4.6(1). The result follows from
Remark 4.7, 2.4(2) and Proposition 4.10 applied to v and the cofibration E/S × u, S ∈
Ob(E).

We recall [19, Theorem 4] that the category [Eop ,CAT ] is a model category in which
a map is a weak equivalence or cofibration if it is objectwise an equivalence of categories
or objectwise injective on objects. We denote this model category by [Eop ,CAT ]inj .
We recall that the category [Eop ,CAT ] is a model category in which a map is a weak
equivalence or fibration if it is objectwise an equivalence of categories or objectwise an
isofibration. We denote this model category by [Eop ,CAT ]proj . The identity functors
form a Quillen equivalence between [Eop ,CAT ]proj and [Eop ,CAT ]inj .

Recall from Section 2.4 the adjoint pairs (Φ, S) and (L,Φ).

4.13. Proposition. The adjoint pair (Φ, S) is a Quillen equivalence between Fib(E)
and [Eop ,CAT ]inj . The adjoint pair (L,Φ) is a Quillen equivalence between Fib(E) and
[Eop ,CAT ]proj .

Proof. The functor Φ: [Eop ,CAT ]inj → Fib(E) preserves and reflects weak equivalences
and preserves cofibrations. Since the map vF is a weak equivalence (2.4(4)), the pair
(Φ, S) is a Quillen equivalence.

The functor Φ: [Eop ,CAT ]proj → Fib(E) preserves fibrations. Since the map lF is a
weak equivalence, the pair (L,Φ) is a Quillen equivalence.

Let m:A → B be a category fibred in groupoids. Recall from Section 2.4 that the
functor mfib

• : Fib(B) → Fib(A) has a left adjoint m•. The proof of the next result is
straightforward.

4.14. Proposition. Let m:A → B be a category fibred in groupoids. The adjoint pair
(m•,mfib

• ) is a Quillen pair.

Let f :T → S be a map of E. The functor ffib
• : Fib(E/S) → Fib(E/T ) has a left

adjoint f •.
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4.15. Corollary. Let f :T → S be a map of E. The adjoint pair (f •, ffib
• ) is a Quillen

pair.

5. The generalized model category for stacks over a site

We briefly recall from [11, Chapitre 0, Définition 1.2] the notion of site. Let E be a
category. A topology on E is an application which associates to each S ∈ Ob(E) a non-
empty collection J(S) of sieves of E/S. This data must satisfy two axioms. The elements
of J(S) are called refinements of S. A site is a category endowed with a topology.

Every category E has the discrete topology (only E/S is a refinement of the object S)
and the coarse topology (every sieve of E/S is a refinement of S). Any other topology on
E is ‘in between’ the discrete one and the coarse one.

Let E be a site. Let C be the collection of maps R ⊂ E/S of Fib(E), where S ranges
through Ob(E) and R is a refinement of S.

Since CAT is a model category, the theory of homotopy fiber squares [14, Section 13.3.11]
is available.

5.1. Definition. A map F → G of Fib(E) has property P if for every element R ⊂ E/S
of C, the diagram

CartE(E/S, F ) //

��

CartE(R,F )

��

CartE(E/S, G) // CartE(R,G)

in which the horizontal arrows are the restriction functors, is a homotopy fiber square.
The map F → G is a C-local fibration if it is an isofibration and it has property P . An
object F of Fib(E) is C-local if the map F → E is a C-local fibration. The map F → G
is a C-local equivalence if for all C-local objects X, the map

CartE(u,X):CartE(G,X)→ CartE(F,X)

is an equivalence of categories.

It follows directly from Definition 5.1 and a standard property of homotopy fiber
squares that a C-local object is the same as a stack (=(E-)champ) in the sense of [11,
Chapitre II, Définition 1.2.1(ii)].

5.2. Example. We shall recall that ‘sheaves are stacks’.
Let Ê be the category of presheaves on E and η be the Yoneda embedding. Let

D: SET → CAT denote the discrete category functor; it induces a functor D: Ê →
[Eop ,CAT ]. For every objects X, Y of Ê there is a natural isomorphism

CartE(ΦDX,ΦDY ) ∼= DFib(E)(ΦDX,ΦDY )
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The composite functor ΦD: Ê → Fib(E) is full and faithful, hence we obtain a natural
isomorphism

CartE(ΦDX,ΦDY ) ∼= DÊ(ΦDX,ΦDY )

Let now S ∈ Ob(E) and R be a refinement of S. Let R′ be the sub-presheaf of η(S)
which corresponds to R. Since E/S = ΦDη(S) and R = ΦDR′, the previous natural
isomorphism shows that a presheaf X on E is a sheaf if and only if ΦDX is a stack. In
particular, η(S) is a sheaf if and only if E/S is a stack.

5.3. Theorem. There is a proper generalized model category Champ(E) on the category
Fib(E) in which the weak equivalences are the C-local equivalences and the cofibrations are
the maps that are injective on objects. The fibrant objects of Champ(E) are the stacks.

The proof of Theorem 5.3 will be given after some preparatory results.

5.4. Proposition.

(1) Every E-equivalence is a C-local equivalence.

(2) The class of maps having property P is invariant under E-equivalences.

(3) The class of maps having property P contains E-equivalences and all maps between
stacks.

(4) The class of maps having property P is closed under compositions, pullbacks along
isofibrations and retracts.

Proof. (1) follows from Proposition 4.3. (2) says that for every commutative diagram

F //

u
��

H

v
��

G // K

in which the horizontal maps are E-equivalences, u has property P if and only if v has it.
This is so by Proposition 4.3 and [14, Proposition 13.3.13]. (3) follows from a standard
property of homotopy fiber squares. (4) follows from standard properties of homotopy
fiber squares and the fact that equivalences are closed under retracts.

5.5. Lemma. A map between stacks has the right lifting property with respect to all maps
that are both cofibrations and C-local equivalences if and only if it is an isofibration.

Proof (sufficiency). Let H → K be an isofibration between stacks and F → G a map
that is both a cofibration and a C-local equivalence. A commutative diagram

F //

��

H

��

G // K
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has a diagonal filler if and only if the functor

CartE(G,H)→ CartE(G,K)×CartE(F,K) CartE(F,H)

is surjective on objects. We show that it is a surjective equivalence. The functor is an
isofibration by Proposition 4.10. Hence it suffices to show that it is an equivalence. The
maps CartE(G,K) → CartE(F,K) and CartE(G,H) → CartE(F,H) are surjective
equivalences by assumption and Proposition 4.10. Since surjective equivalences are stable
under pullback, the required functor is an equivalence by the two out of three property
of equivalences.

For the notion of bicovering (=bicouvrant) map in Fib(E) we refer the reader to [11,
Chapitre II, Définition 1.4.1]. As in [loc. cit., Chapitre II 1.4.1.1], we informally say that
a map is bicovering if it is ‘locally bijective on arrows’ and ‘locally essentially surjective
on objects’.

5.6. Example. For every S ∈ Ob(E) and every refinement R of S, R ⊂ E/S is a bicov-
ering map.

By [11, Chapitre II, Proof of Théorème d’existence 2.1.3] there are a 2-natural trans-
formation a : IdFib(E) → A and a 2-functor A: Fib(E) → Fib(E) such that AF is a stack
and aF is bicovering for every object F of Fib(E). By [11, Chapitre II, Corollaire 2.1.4]
the class of bicovering maps coincides with the class of C-local equivalences in the sense
of Definition 5.1.

5.7. Lemma. Bicovering maps are closed under pullbacks along isofibrations.

Proof. Let

F ×H G u′ //

��

G

v
��

F
u // H

be a pullback diagram in Fib(E) with v an isofibration (see Lemma 4.6(1)).
Step 1. Suppose that the above pullback diagram is a pullback diagram of split

fibrations and split functors with v an arbitrary split functor and u ‘locally bijective on
arrows’. We prove that u′ is ‘locally bijective on arrows’. Let S ∈ Ob(E) and (x, y), (x′, y′)
be two objects of (F ×H G)S. Then, in the notation of [11, Chapitre I, 2.6.2.1] and the
terminology of [11, Chapitre 0, Définition 3.5] we have to show that the map

HomS((x, y), (x′, y′)) // HomS(y, y′)

of presheaves on E/S is bicovering, where E/S has the induced topology [11, Chapitre 0,
3.1.4]. This map is the pullback of the map

HomS(x, x′) // HomS(u(x), u(x′))
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which is by assumption bicovering. But bicovering maps of presheaves are stable under
pullbacks [11, Chapitre 0, 3.5.1].

Step 2. Suppose that in the above pullback diagram the map u is ‘locally essentially
surjective on objects’. We prove that u′ is ‘locally essentially surjective on objects’. Let
S ∈ Ob(E) and y ∈ Ob(GS). Let R′ be the set of maps f :T → S such that there are
x ∈ Ob(FT ) and y′ ∈ Ob(GT ) with uT (x) = vT (y′) and y′ ∼= f ∗(y) in GT . We have to
show that R′ is a refinement of S. Let R be the set of maps f :T → S such that there
is x ∈ Ob(FT ) with uTx ∼= f ∗vS(y) in HT . By assumption R is a refinement of S. Since
vTf

∗(y) ∼= f ∗vS(y) we have R′ ⊂ R. Conversely, let f :T → S be in R and x as above.
Let ξ be the isomorphism uT (x) ∼= vTf

∗(y). By assumption there are y′ ∈ Ob(GT ) and
an isomorphism y′ ∼= f ∗(y) in GT which is sent by vT to ξ. In particular uT (x) = vT (y′)
and so R ⊂ R′.

Step 3. Suppose that in the above pullback diagram the map u is bicovering. We can
form the cube diagram

SF ×SH SG
(Su)′

//

''

��

SG
Sv
''

��

SF Su //

��

SH

��

F ×H G //

''

G
v

''
F u // H

One clearly has S(F ×H G) ∼= SF ×SH SG. By 2.4(4) the vertical arrows of the cube
diagram are trivial fibrations and the map Sv is an isofibration. By Proposition 5.4(1) Su
is bicovering, hence by Steps 1 and 2 the map (Su)′ is bicovering, so u′ is bicovering.

5.8. Corollary. Let F ∈ Fib(E) and u be a bicovering map. Then F×u is a bicovering
map.

Proof. This follows from Example 4.8(1) and Lemma 5.7.

The next result is the first part of [11, Chapitre II, Corollaire 2.1.5], with a different
proof.

5.9. Corollary. If G is a stack then so is CART(F,G) for every F ∈ Fib(E).

Proof. This follows from 2.4(3), Example 5.6 and Corollary 5.8.

5.10. Lemma. An object of Fib(E) that has the right lifting property with respect to all
maps that are both cofibrations and C-local equivalences is a stack.

Proof. Let F be as in the statement of the Lemma. Using Theorem 4.2 we factorize the
map aF :F → AF as a cofibration F → G followed by a trivial fibration G → AF . By
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Proposition 5.4(2) G is a stack. By hypothesis the diagram

F

��

F

G

has a diagonal filler, therefore F is a retract of G. By Proposition 5.4(4) F is a stack.

Proof of Theorem 5.3. We shall apply Lemma 3.4 to the natural generalized model
category Fib(E) (Theorem 4.2). Since we have Proposition 5.4(1), it only remains to prove
that every map F → G of Fib(E) can be factorized as a map that is both a cofibration and
a C-local equivalence followed by a map that has the right lifting property with respect
to all maps that are both cofibrations and C-local equivalences. Consider the diagram

F
aF //

��

AF

��

G aG // AG

We can factorize the map AF → AG as a map AF → H that is an E-equivalence followed
by an isofibration H → AG. By Proposition 5.4(2) H is a stack, so by Lemma 5.5
the map H → AG has the right lifting property with respect to all maps that are both
cofibrations and C-local equivalences. Therefore the pullback map G ×AG H → G has
the right lifting property with respect to all maps that are both cofibrations and C-local
equivalences. By Lemma 5.7 the map G×AGH → H is bicovering, therefore the canonical
map F → G ×AG H is bicovering. We factorize it as a cofibration F → K followed by
a trivial fibration K → G ×AG H. The desired factorization is F → K followed by the
composite K → G×AG H → G.

The fact that the fibrant objects of Champ(E) are the stacks follows from Lemmas 5.5
and 5.10. Left properness of Champ(E) is a consequence of the left properness of Fib(E)
and right properness is a consequence of Lemma 5.7.

5.11. Proposition. Every fibration of Champ(E) is a C-local fibration.

Proof. Let F → G be a fibration of Champ(E). The argument used in the proof of
Theorem 5.3 shows that F → G is a retract of the composite K → G ×AG H → G. We
conclude by Proposition 5.4((3) and (4)).

5.12. Proposition. [Compatibility with the 2-category structure] Let u:F → G be a
cofibration and v:H → K a fibration in Champ(E). Then the canonical map

CartE(G,H) // CartE(G,K)×CartE(F,K) CartE(F,H)

is an isofibration that is a surjective equivalence if either u or v is a C-local equivalence.
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Proof. The first part is contained in Proposition 4.10 since every fibration of Champ(E)
is an isofibration. If v is a C-local equivalence then v is a trivial fibration and the Propo-
sition is contained in Proposition 4.10. Suppose that u is a C-local equivalence. By
adjunction it suffices to prove that for every injective on objects functor A → B, the
canonical map

A×G tA×F B × F // B ×G

is a cofibration and a C-local equivalence (the pushout in the displayed arrow exists by
Lemma 4.6(2)). This follows, for example, from Corollary 5.8.

5.13. Corollary. [Compatibility with the ‘internal hom’] Let u:F → G be a cofibration
and v:H → K a fibration in Champ(E). Then the canonical map

CART(G,H) // CART(G,K)×CART(F,K) CART(F,H)

is a trivial fibration if either u or v is a C-local equivalence.

Proof. If v is a C-local equivalence then v is a trivial fibration and the Corollary is
Corollary 4.12. If u is a C-local equivalence the result follows from Proposition 5.12.

5.14. Proposition. The classes of bicoverings and isofibrations make Fib(E) a category
of fibrant objects [7].

Proof. A path object was constructed in Remark 4.9. Since we have Lemma 4.6(1), we
conclude by the next result.

5.15. Lemma. The maps that are both bicoverings and isofibrations are closed under
pullbacks.

Proof. A proof entirely similar to the proof of Lemma 5.7 can be given. We shall give
a proof that uses Lemma 5.7. Let

F ×H G u′ //

��

G

v
��

F u // H

be a pullback diagram in Fib(E) with u both an isofibration and a bicovering map. We
factorize v as v = pj:G → K → H, where j is an E-equivalence and p is an isofibration
and then we take successive pullbacks. The map F ×H K → K is a bicovering map by
Lemma 5.7 and an isofibration. The map F ×H G → F ×H K is an E-equivalence. By
Proposition 5.4(1) the map u′ is bicovering.
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We give now, as Lemma 5.16, the analogues, in our context, of [16, Lemma 2.2 and
Remark 2.3].

Let E be a category. Let

F u // H Gvoo (8)

be a diagram in Fib(E). The discussion from Section 3.5 and Remark 4.9 suggest the
following model for the homotopy pullback of diagram (8). The objects of the fibre
category over S ∈ Ob(E) are triples (x, y, θ) with x ∈ Ob(FS), y ∈ Ob(GS) and θ:u(x)→
v(y) an isomorphism in HS. The arrows are pairs of arrows making the obvious diagram
commute. This model is commonly known as the 2-pullback or the iso-comma object of
u and v and from now on we shall designate it by F ×hH G.

5.16. Lemma. [Homotopy pullbacks in Champ(E)] Suppose that E is a site.

(1) If F,G and H are stacks, then F×hHG is weakly equivalent in Fib(E) to the homotopy
pullback in Champ(E) of diagram (8).

(2) F ×hH G is weakly equivalent in Champ(E) to the homotopy pullback in Champ(E)
of diagram (8).

Proof. (1) follows from Proposition 3.6(1). (2) follows from Proposition 3.6(2) and
Lemma 5.15.

Let E and E ′ be two sites and f :E → E ′ be a category fibred in groupoids. Then for
every S ∈ Ob(E), the induced map f/S:E/S → E ′/f(S) sends sieves to sieves. Recall from

Section 2.4 the adjoint pair (f •, ffib
• ).

5.17. Proposition. [A change of base] Let E and E ′ be two sites and f :E → E ′ be
a category fibred in groupoids. Suppose that for every S ∈ Ob(E), the map f/S sends a
refinement of S to a refinement of f(S). Then the adjoint pair (f •, ffib

• ) is a Quillen pair
between Champ(E) and Champ(E ′).

Proof. Since we have Proposition 4.14, it suffices to show that ffib
• preserves stacks

(Sections 3.7 and 3.3). Let F be a stack in Fib(E ′), S ∈ Ob(E) and R be a refinement
of S. The map f/S is an E ′-equivalence and its restriction to R is an E ′-equivalence
f/S:R → f/S(R). It follows from Proposition 4.3 that the maps CartE′(f/S, F ) are
equivalences. We have the following commutative diagram (see 2.4(6))

CartE′(E
′
/f(S), F ) //

��

CartE′(E/S, F )

��

∼= // CartE(E/S, f
fib
• F )

��

CartE′(f/S(R), F ) // CartE′(R,F )
∼= // CartE(R, ffib

• F )

The left vertical arrow is an equivalence by assumption, hence ffib
• F is a stack.
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6. Categories fibred in groupoids

Let E be a category. In this section we give the analogues of Theorems 4.2 and 5.3 for
the category Fibg(E) defined in Section 2.4.

6.1. Theorem. The category Fibg(E) is a proper generalized model category with the
E-equivalences as weak equivalences, the maps that are injective on objects as cofibrations
and the isofibrations as fibrations.

Proof. It only remains to check axiom A2 from Definition 3.1. This is satisfied by
Remark 4.7.

Suppose now that E is a site. Notice that for every S ∈ Ob(E) and every refinement
R of S, E/S and R are objects of Fibg(E). We recall from [11, Chapitre II, Définition
1.2.1(ii)] that an object F of Fib(E) is a prestack if for every S ∈ Ob(E) and every
refinement R ⊂ E/S of S, the restriction functor

CartE(E/S, F )→ CartE(R,F )

is full and faithful.

6.2. Lemma. ([11] and [21, Proposition 4.20]) If an object F of Fib(E) is a stack, so is
F cart . The converse holds provided that F is a prestack.

Proof. We recall that max: CAT → GRPD denotes the maximal groupoid functor. We
recall that an arbitrary functor f is essentially surjective if and only if the functor max(f)
is so and that if f is full and faithful then so is max(f). The Lemma follows then from
the following commutative diagram (see 2.4(5))

CartgE(E/S, F
cart)

∼= //

��

maxCartE(E/S, F )

��

CartgE(R,F cart)
∼= // maxCartE(R,F )

Let F be an object of Fibg(E), G an object of Fib(E) and u:F → G a bicovering
map. We claim that ucart is a bicovering map as well. For, consider the diagram

F cart

ucart

��

F

u

��

Gcart // G

One can readily check that the inclusion map Gcart → G is an isofibration and that
by Lemma 4.6(1) the above diagram is a pullback. We conclude by Lemma 5.7. If, in
addition, G is a stack, then the map Gcart → G is a bicovering map between stacks (see
Lemma 6.2), hence by [11, Chapitre II, Proposition 1.4.5] it is an E-equivalence. It follows
that G is an object of Fibg(E).
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6.3. Theorem. There is a proper generalized model category Champg(E) on the category
Fibg(E) in which the weak equivalences are the bicovering maps, the cofibrations are the
maps that are injective on objects and the fibrations are the fibrations of Champ(E).

Proof. Using Theorem 6.1 and Lemma 3.4 it only remains to prove the factorization
of an arbitrary map of Fibg(E) into a map that is both a cofibration and bicovering
followed by a map that has the right lifting property with respect to all maps that are
both cofibrations and bicoverings. The argument is the same as the one given in the
proof of Theorem 5.3. For it to work one needs the functor A to send objects of Fibg(E)
to objects of Fibg(E). This is so by the considerations preceding the statement of the
Theorem, applied to the map F → AF .

7. Sheaves of categories

We begin by recalling the notion of sheaf of categories.
Let E be a small site. We recall that Ê is the category of presheaves on E and

η:E → Ê is the Yoneda embedding. We denote by Ẽ the category of sheaves on E and
by a the associated sheaf functor, left adjoint to the inclusion functor i: Ẽ → Ê.

We denote by Hom the internal CAT -hom of the 2-category [Eop ,CAT ] and by X(A)

the cotensor of X ∈ [Eop ,CAT ] with a category A. Let Ob: CAT → SET denote the set

of objects functor; it induces a functor Ob: [Eop ,CAT ]→ Ê.

7.1. Lemma. Let X be an object of [Eop ,CAT ]. The following are equivalent.

(a) For every category A, ObX(A) is a sheaf [1, Exposé ii Définition 6.1].

(b) For every S ∈ Ob(E) and every refinement R of S, the natural map

Hom(Dη(S), X)→ Hom(DR′, X)

is an isomorphism, where R′ is the sub-presheaf of η(S) which corresponds to R.

(c) For every S ∈ Ob(E) and every refinement R of S, the natural map

X(S)→ lim
Rop

(X|R)

is an isomorphism, where (X|R) is the composite Rop → (E/S)op → Eop X→ CAT .

An object X of [Eop ,CAT ] is a sheaf on E with values in CAT (simply, sheaf of cate-
gories) if it satisfies one of the conditions of Lemma 7.1. We denote by Faisc(E; CAT ) the
full subcategory of [Eop ,CAT ] whose objects are the sheaves of categories. The category

[Eop ,CAT ] is equivalent to the category Cat(Ê) of internal categories and internal func-

tors in Ê and Faisc(E; CAT ) is equivalent to the category Cat(Ẽ) of internal categories

and internal functors in Ẽ [1, Exposé ii, Proposition 6.3.1].
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Consider now the adjunctions

Fib(E) L // Cat(Ê)
Φ
oo

a // Cat(Ẽ)
i

oo

(see Section 2.4 for the adjoint pair (L,Φ)). We denote the unit of the adjoint pair (a, i)
by k.

7.2. Theorem. There is a right proper model category Stack(Ẽ)proj on the category

Cat(Ẽ) in which the weak equivalences and the fibrations are the maps that Φ takes into
weak equivalences and fibrations of Champ(E). The adjoint pair (aL,Φi) is a Quillen

equivalence between Champ(E) and Stack(Ẽ)proj .

The prove the existence of the model category Stack(Ẽ)proj we shall use Lemma 7.3
below and the following facts:

(1) if X is a sheaf of categories then ΦX is a prestack [11, Chapitre II 2.2.1];

(2) for every X ∈ [Eop ,CAT ], the natural map Φk(X): ΦX → ΦiaX is bicovering [11,
Chapitre II, Lemme 2.2.2(ii)];

(3) if X is a sheaf of categories then ΦiaSΦX is a stack (which is a consequence of) [11,
Chapitre II, Lemme 2.2.2(iv)].

See the end of this section for another proof of (1).

We recall that the weak equivalences of Stack(Ẽ)proj have a simplified description. Let

f be a map of Cat(Ẽ). By [11, Chapitre II, Proposition 1.4.5] the map Φf is bicovering
if and only if Φf is full and faithful and Φf is ‘locally essentially surjective on objects’.
Given any map u of Fib(E), the underlying functor of u is full and faithful if and only
if for every S ∈ Ob(E), uS is full and faithful [13, Exposé VI Proposition 6.10]. Hence
f is a weak equivalence if and only if f is full and faithful and Φf is ‘locally essentially
surjective on objects’.

7.3. Lemma. Let M be a generalized model category. Suppose that there is a set I of
maps of M such that a map of M is a trivial fibration if and only if it has the right lifting
property with respect to every element of I. Let N be a complete and cocomplete category
and let F :M � N:G be a pair of adjoint functors. Assume that

(1) the set F (I) = {F (u) | u ∈ I} permits the small object argument [14, Defini-
tion 10.5.15];

(2) M is right proper;

(3) N has a fibrant replacement functor, which means that there are

(i) a functor F̂:N→ N such that for every object X of N the object GF̂X is fibrant
and
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(ii) a natural transformation from the identity functor of N to F̂ such that for every

object X of N the map GX → GF̂X is a weak equivalence;

(4) every fibrant object of N has a path object, which means that for every object X of
N such that GX is fibrant there is a factorization

X
s // PathX

p0×p1
// X ×X

of the diagonal map X → X×X such that G(s) is a weak equivalence and G(p0×p1)
is a fibration.

Then N becomes a right proper model category in which the weak equivalences and the
fibrations are the maps that G takes into weak equivalences and fibrations.

The adjoint pair (F,G) is a Quillen equivalence if and only if for every cofibrant object
A of M, the unit map A→ GFA of the adjunction is a weak equivalence.

Proof. Let f be a map of N. We say that f is a trivial fibration if G(f) is a trivial
fibration and we say that f is a cofibration if it is an F (I)-cofibration in the sense of [14,
Definition 10.5.2(2)]. By (1) and [14, Corollary 10.5.23] every map of N can be factorized
into a cofibration followed by a trivial fibration and every cofibration has the left lifting
property with respect to every trivial fibration.

Let f :X → Y be a map of N such that GX and GY are fibrant. Then (4) implies
that we can construct the mapping path factorization of f (see Section 3.2, for instance),
that is, f can be factorized into a map X → Pf that is a weak equivalence followed by a
map Pf → Y that is a fibration. Moreover, GPf is fibrant.

We show that every map f :X → Y of N can be factorized into a map that is both a
cofibration and a weak equivalence followed by a map that is a fibration. By (3) we have
a commutative diagram

X //

f

��

F̂X

F̂f
��

Y // F̂Y

The map F̂f can be factorized into a map F̂X → P F̂f that is a weak equivalence followed
by a map P F̂f → F̂Y that is a fibration. Let Z be the pullback of P F̂f → F̂Y along
Y → F̂Y . By (2) the map Z → P F̂f is a weak equivalence, therefore the canonical
map X → Z is a weak equivalence. We factorize X → Z into a map X → X ′ that is a
cofibration followed by a map X ′ → Z that is a trivial fibration. The desired factorization
of f is X → X ′ followed by the composite X ′ → Z → Y .

We show that every commutative diagram in N

A //

j
��

X

p
��

B // Y
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where j is both a cofibration and a weak equivalence and p is a fibration has a diagonal
filler. We shall construct a commutative diagram

A //

j
��

X ′ //

q
��

X

p

��

B // Y ′ // Y

with q a trivial fibration. We factorize the map B → Y into a map B → Y ′ that is
both a cofibration and a weak equivalence followed by a map Y ′ → Y that is a fibration.
Similarly, we factorize the canonical map A→ Y ′ ×Y X into a map A→ X ′ that is both
a cofibration and a weak equivalence followed by a map X ′ → Y ′×Y X that is a fibration.
Let q be the composite map X ′ → Y ′. Then q is a trivial fibration.

The model category N is right proper since M is right proper.
Suppose that (F,G) is a Quillen equivalence. Let A be a cofibrant object of M. We can

find a weak equivalence f :FA → X with X fibrant. The composite map A → GFA →
GX is the adjunct of f , hence it is a weak equivalence. Thus, A → GFA is a weak
equivalence. Conversely, let A be a cofibrant object of M and X a fibrant object of N.
If FA → X is a weak equivalence then its adjunct is the composite A → GFA → GX,
which is a weak equivalence. If f :A → GX is a weak equivalence, then it factorizes as

A→ GFA
Gf ′→ GX, where f ′ is the adjunct of f . Hence Gf ′ is a weak equivalence, which

means that f ′ is a weak equivalence.

Proof of Theorem 7.2. In Lemma 7.3 we take M = Champ(E), N = Cat(Ẽ), F = aL,
G = Φi and I to be the set of maps {f ×E/S} with S ∈ Ob(E) and f ∈M , where M is
the set of functors such that a functor is a surjective equivalence if and only if it has the
right lifting property with respect to every element of M .

By Theorem 4.2 and Proposition 4.5(2) a map of Fib(E) is a trivial fibration if and
only if it has the right lifting property with respect to every element of I.

We shall now check the assumptions (1)–(4) of Lemma 7.3. (1) and (2) are clear.

We check (3). Let X be a sheaf of categories. We put F̂X = iaSΦX and the natural

transformation from the identity functor of Cat(Ẽ) to F̂ to be the composite map

X // SΦX
k(SΦX)

// iaSΦX

Assumption (3) of Lemma 7.3 is fulfilled by the facts (2) and (3) mentioned right after
the statement of Theorem 7.2. We check (4). Let X be a sheaf of categories such that
ΦX is a stack. Let J be the groupoid with two objects and one isomorphism between
them. The diagonal X → X ×X factorizes as

X s // X(J) p0×p1
// X ×X

Since Φ preserves cotensors and the cotensor of a stack and a category is a stack (2.4(1)),
(4) follows from Remark 4.9.
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We now prove that (aL,Φi) is a Quillen equivalence. For this we use Lemma 7.3. For
every object F of Fib(E), the unit F → ΦiaLF of this adjoint pair is the composite

F
lF // ΦLF

Φk(LF )
// ΦiaLF

which is a bicovering map.

7.4. Theorem. The model category Cat(Ê)proj admits a proper left Bousfield localization

Stack(Ê)proj in which the weak equivalences and the fibrations are the maps that Φ takes
into weak equivalences and fibrations of Champ(E). The adjoint pair (L,Φ) is a Quillen

equivalence between Champ(E) and Stack(Ê)proj .

Proof. The proof is similar to the proof of Theorem 7.2, using the adjoint pair (L,Φ)
and the fibrant replacement functor

X // SΦX
S(aΦX)

// SAΦX

7.5. Proposition. [Compatibility with the 2-category structure] Let A → B be an

injective on objects functor and X → Y a fibration of Stack(Ẽ)proj . Then the canonical
map

X(B) // X(A) ×Y (A) Y (B)

is a fibration that is a trivial fibration if A→ B is an equivalence of categories or X → Y
is a weak equivalence.

Proof. Since Φ preserves cotensors, the Proposition follows from Proposition 5.12.

We recall [19, Theorem 4] that Cat(Ẽ) is a model category in which the weak equiva-
lences are the maps that Φ takes into bicovering maps and the cofibrations are the internal
functors that are monomorphisms on objects. See Appendix C for another approach to
this result. We denote this model category by Stack(Ẽ)inj .

7.6. Proposition. The identity functors on Cat(Ẽ) form a Quillen equivalence between

Stack(Ẽ)proj and Stack(Ẽ)inj .

Proof. We show that the identity functor Stack(Ẽ)proj → Stack(Ẽ)inj preserves cofibra-
tions. For that, it suffices to show that for every object F of Fib(E) and every injective on

objects functor f , the map aL(f × F ) is a cofibration of Stack(Ẽ)inj . The map L(f × F )
is objectwise injective on objects (see the proof of Proposition 4.13), which translates in

Cat(Ê) as: L(f × F ) is an internal functor having the property that is a monomorphism
on objects. But the associated sheaf functor a is known to preserve this property.

Since the classes of weak equivalences of the two model categories are the same, the
result follows.



STACKS AND SHEAVES OF CATEGORIES, I 683

Let E ′ be another small site and f−1:E → E ′ be the functor underlying a morphisms
of sites f :E ′ → E [11, Chapitre 0, Définition 3.3]. The adjoint pair f ∗: Ẽ � Ẽ ′: f∗ induces

an adjoint pair f ∗: Cat(Ẽ) � Cat(Ẽ ′): f∗.

7.7. Proposition. [Change of site] The adjoint pair (f ∗, f∗) is a Quillen pair between

Stack(Ẽ)proj and Stack(Ẽ ′)proj .

Proof. Consider the diagram

Fib(E) Fib(E ′)
ffib
•oo

[Eop ,CAT ]

Φ

OO

[E ′op ,CAT ]

Φ′

OO

f∗
oo

Cat(Ẽ)

i

OO

Cat(Ẽ ′)
f∗

oo

i′

OO

where ffib
• was defined in Section 2.4 and f∗: [E ′op ,CAT ] → [Eop ,CAT ] is the functor

obtained by composing with f . It is easy to check that the functor ffib
• preserves isofi-

brations and trivial fibrations. By [11, Chapitre II, Proposition 3.1.1] it also preserves
stacks. Since ffib

• Φ′ = Φf∗, it follows that f∗ preserves trivial fibrations and the fibrations
between fibrant objects.

Let p:C → I be a fibred site [2, Exposé vi 7.2.1] and p̃: C̃/I → I be the (bi)fibred
topos associated to p [2, Exposé vi 7.2.6]. Using the above considerations we obtain a

bifibration Cat(C̃/I)→ I whose fibres are isomorphic to Cat(C̃i), hence by they are model
categories. Moreover, by Proposition 7.7 the inverse and direct image functors are Quillen
pairs.

An elementary example of a fibred site is the Grothendieck construction associated to
the functor that sends a topological space X to the category O(X) whose objects are the
open subsets of X and whose arrows are the inclusions of subsets.

7.8. Proposition. Let E and E ′ be two small sites and f :E → E ′ be a category fibred in
groupoids. Suppose that for every S ∈ Ob(E), the map E/S → E ′/f(S) sends a refinement

of S to a refinement of f(S). Then f induces a Quillen pair between Stack(Ẽ)proj and

Stack(Ẽ ′)proj .
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Proof. The proof is similar to the proof of Proposition 7.7. Consider the solid arrow
diagram

Fib(E) Fib(E ′)
ffib
•oo

[Eop ,CAT ]
f! //

Φ

OO

a
��

[E ′op ,CAT ]

a′
��

Φ′

OO

f∗
oo

Cat(Ẽ)

i

OO

Cat(Ẽ ′)
f∗

oo

i′

OO

where f! is the left adjoint to the functor f ∗ obtained by composing with f . We claim that
the composition with f functor f ∗: Ê ′ → Ê preserves sheaves. Let X be a sheaf on E ′. By
Example 5.2 it suffices to show that ΦDf ∗X is a stack. But ΦDf ∗X = ffib

• Φ′DX, so f ∗X

is a sheaf by Proposition 5.17. Therefore, f ∗ induces a functor f ∗: Cat(Ẽ ′) → Cat(Ẽ).
Since f ∗i′ = if ∗, a formal argument implies that a′f!i is left adjoint to f ∗.

The fact that (a′f!i, f
∗) is a Quillen pair follows from Proposition 5.17.

Here is an application of Proposition 7.8. For every S ∈ Ob(E), the category E/S
has the induced topology [11, Chapitre 0, 3.1.4]. A map T → S of E induces a category
fibred in groupoids E/T → E/S. The assumption of Proposition 7.8 is satisfied. By [11,
Chapitre II, Proposition 3.4.4] we obtain a stack over E whose fibres are model categories
and such that the inverse and direct image functors are Quillen pairs.

Sheaves of categories are prestacks. Let E be a site. We recall that an object F
of Fib(E) is a prestack if for every S ∈ Ob(E) and every refinement R ⊂ E/S of S, the
restriction functor

CartE(E/S, F )→ CartE(R,F )

is full and faithful.
We give here an essentially-from-the-definition proof of [11, Chapitre II 2.2.1], namely

that if X ∈ [Eop ,CAT ] is a sheaf of categories then ΦX is a prestack.
Let first X ∈ [Eop ,CAT ]. Let D: SET → CAT be the discrete category functor;

it induces a functor D: Ê → [Eop ,CAT ]. Let R′ be the sub-presheaf of η(S) which
corresponds to R. We have the following commutative diagram

CartE(E/S,ΦX) //

��

(ΦX)S = Hom(Dη(S), X)

(I)
��

Hom(DR′, X)

(II)
��

CartE(R,ΦX) // Hom(DR′, SΦX)

The top horizontal arrow is a surjective equivalence (2.4(4)). Since (Φ, S) is a 2-adjunction,
the bottom horizontal arrow is an isomorphism. We will show below that the map (II)
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is full and faithful. If X is now a sheaf of categories, then the map (I) is an isomorphism
by Lemma 7.1, therefore in this case ΦX is a prestack.

Let P ∈ Ê. We denote by E/P the category ΦDP . Let m:E/P → E be the canonical
map. The natural functor

m∗: [Eop ,CAT ]→ [(E/P )op ,CAT ]

has a left adjoint m! that is the left Kan extension along mop . Since mop is an opfibration,
m! has a simple description. For example, let A be a category and let cA ∈ [(E/P )op ,CAT ]
be the constant object at A; then m!cA is the tensor between A and DP in the 2-category
[Eop ,CAT ]. It follows that for every X ∈ [Eop ,CAT ] we have an isomorphism

lim
(E/P )op

m∗X ∼= Hom(DP,X)

The map X → SΦX is objectwise both an equivalence of categories and injective on
objects, hence so is the map m∗X → m∗SΦX. Therefore the map

lim
(E/P )op

m∗X → lim
(E/P )op

m∗SΦX

is both full and faithful and injective on objects.

Appendices

A. Stacks vs. the homotopy sheaf condition

Throughout this section E is a site whose topology is generated by a pretopology.

A.1. We recall that the model category CAT is a simplicial model category. The cotensor
A(K) between a category A and a simplicial set K is constructed as follows.

Let S be the category of simplicial sets. Let cat :S → CAT be the fundamental
category functor, left adjoint to the nerve functor. Let (−)−1

1 : CAT → GRPD be the free
groupoid functor, left adjoint to the inclusion functor. Then

A(K) = [(catK)−1
1 , A]

One has A(∆[n]) = [Jn, A], where Jn is the free groupoid on [n].
Let X be a cosimplicial object in CAT . The total object of X [14, Definition 18.6.3]

is calculated as
TotX = Hom(J,X)

where Hom is the CAT -hom of the 2-category [∆,CAT ] and J is the cosimplicial object
in CAT that Jn defines. The category Hom(J,X) has a simple description. For n ≥ 2,
Jn is constructed from J1 by iterated pushouts, so by adjunction an object of Hom(J,X)
is a pair (x, f), where x ∈ Ob(X0) and f : d1(x) → d0(x) is an isomorphism of X1 such
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that s0(f) is the identity on x and d1(f) = d0(f)d2(f). An arrow (x, f) → (y, g) is an
arrow u:x→ y of X0 such that d0(u)f = gd1(u).

If X moreover a coaugmented cosimplicial object in CAT with coaugmentation X−1,
there is a natural map

X−1 → TotX

We recall [14, Theorem 18.7.4(2)] that if X is Reedy fibrant in [∆,CAT ], then the natural
map

TotX→ holimX

is an equivalence of categories.

A.2. For each S ∈ Ob(E) and each covering family S = (Si → S)i∈I there is a simplicial
object E/S in Fib(E) given by

(E/S )n =
∐

i0,...,in∈In+1

E/Si0,...,in

where Si0,...,in = Si0 ×S ...×S Sin . E/S is augmented with augmentation E/S.

A.3. Proposition. An object F of Fib(E) is a stack if and only if for every S ∈ Ob(E)
and every covering family S = (Si → S), the natural map

CartE(E/S, F )→ TotCartE(E/S , F )

is an equivalence of categories.

Proof. The proof consists of unraveling the definitions.

Following [15], we say that an object F of Fib(E) satisfies the homotopy sheaf condition
if for every S ∈ Ob(E) and every covering family S = (Si → S), the natural map

CartE(E/S, F )→ holimCartE(E/S , F )

is an equivalence of categories.

A.4. Proposition. [15, Theorem 1.1] An object of Fib(E) satisfies the homotopy sheaf
condition if and only if it is a stack.

Proof. This follows from Proposition A.3 and Lemma A.5.

A.5. Lemma. For every S ∈ Ob(E), every covering family S = (Si → S)i∈I and every
object F of Fib(E), the cosimplicial object in CAT CartE(E/S , F ) is Reedy fibrant.

Proof. By Proposition 4.10 the adjoint pair

F (−): CAT � Fib(E)op :CartE(−, F )

is a Quillen pair. Therefore, to prove the Lemma it suffices to show that E/S is Reedy
cofibrant, by which we mean that for every [n] ∈ Ob(∆) the latching object of E/S at [n],
denoted by LnE/S , exists and the natural map LnE/S → (E/S )n is injective on objects.
A way to prove this is by using Lemma A.7.
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A.6. Latching objects of simplicial objects. In general, the following consider-
ations may help deciding whether a simplicial object in a generalized model category is
Reedy cofibrant.

Let M be a category and X a simplicial object in M. We recall that the latching
object of X at [n] ∈ Ob(∆) is

LnX = colim
∂([n]↓
←−
∆ )op

X

provided that the colimit exists. Here
←−
∆ is the subcategory of ∆ consisting of the surjec-

tive maps and ∂([n] ↓ ←−∆) is the full subcategory of ([n] ↓ ←−∆) containing all the objects
except the identity map of [n]. Below we shall review the construction of LnX.

The category ([n] ↓ ←−∆) has the following description [12, VII 1]. The identity map of
[n] is its initial object. Any other object is of the form si1 ...sik : [n] → [n − k], where sj

denotes a codegeneracy operator, 1 ≤ k ≤ n and 0 ≤ i1 ≤ ... ≤ ik ≤ n− 1.
For n ≥ 0 we let n be the set {1, 2, ..., n}, with the convention that 0 is the empty

set. We denote by P(n) the power set of n. P(n) is a partially ordered set. We set
P0(n) = P(n) \ {∅} and P1(n) = P(n) \ {n}. There is an isomorphism

([n] ↓ ←−∆) ∼= P(n)

which sends the identity map of [n] to ∅ and the object si1 ...sik : [n]→ [n− k] as above to

{i1 + 1, ..., ik + 1}. Under this isomorphism the category ∂([n] ↓ ←−∆) corresponds to P0(n),

therefore ∂([n] ↓ ←−∆)op is isomorphic to P1(n). The displayed isomorphism is natural in
the following sense. Let Dec1: ∆→ ∆ be Dec1([n]) = [n] t [0] ∼= [n+ 1]. Then we have a
commutative diagram

([n] ↓ ←−∆)
∼= //

Dec1

��

P(n)

��

([n+ 1] ↓ ←−∆)
∼= // P(n+ 1)

in which the unlabelled vertical arrow is the inclusion. Restricting the arrow Dec1 to ∂
and then taking the opposite category we obtain a commutative diagram in which the
unlabelled vertical arrow becomes − ∪ {n+ 1}:P1(n)→ P1(n+ 1).

For n ≥ 1 the category P1(n) is constructed inductively as the Grothendieck construc-
tion applied to the functor (2 ← 1 → 0) → CAT given by ∗ ← P1(n− 1) = P1(n− 1).
Therefore colimits indexed by P1(n) have the following description. Let Y:P1(n) → M.
We denote by Y the precomposition of Y with the inclusion P1(n− 1) ⊂ P1(n); then
colimP1(n) Y is the pushout of the diagram

colim
P1(n−1)

Y //

��

colim
P1(n−1)

Y(− ∪ {n})

Yn−1
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provided that the pushout and all the involved colimits exist.
Let
←−
X be the restriction of X to (

←−
∆)op . Notice that the definition of the latching

object of X uses only
←−
X. Summing up, LnX is the pushout of the diagram

Ln−1
←−
X //

��

Ln−1Dec1(
←−
X)

Xn−1

provided that the pushout and all the involved colimits exist, where
←−
X → Dec1(

←−
X) is

induced by sn: [n] t [0]→ [n]. Thus, we have

A.7. Lemma. Let M be a generalized model category and X a simplicial object in M. Let
n ≥ 1. If Ln−1

←−
X and Ln−1Dec1(

←−
X) exist and the map Ln−1

←−
X → Xn−1 is a cofibration,

then LnX exists.

B. Left Bousfield localizations and change of cofibrations

In this section we essentially propose an approach to the existence of left Bousfield lo-
calizations of ‘injective’-like model categories. The approach is based on the existence
of both the un-localized ‘injective’-like model category and the left Bousfield localization
of the ‘projective’-like model category. We give a full description of the fibrations of
these localized ‘injective’-like model categories; depending on one’s taste, the description
may or may not be satisfactory. The approach uses only simple factorization and lifting
arguments.

Let M1 = (W,C1,F1) and M2 = (W,C2,F2) be two model categories on a category
M, where, as usual, W stands for the class of weak equivalences, C stands for the class
of cofibrations, and F for the class of fibrations. We assume that C1 ⊂ C2. Let W′ be
a class of maps of M that contains W and has the two out of three property. We define
F′1 to be the class of maps having the right lifting property with respect to every map
of C1 ∩W′, and we define F′2 to be the class of maps having the right lifting property
with respect to every map of C2 ∩W′. One can think of M1 as the ‘projective’ model
category, of M2 as the ‘injective’ model category, and of W′ as the class of ‘local’, or
‘stable, equivalences’. Of course, other adjectives can be used. Recall from Section 3.3
the notion of left Bousfield localization of a (generalized) model category.

B.1. Theorem.

(1) (Restriction) If LM2 = (W′,C2,F
′
2) is a left Bousfield localization of M2, then the

class of fibrations of LM2 is the class F2 ∩ F′1 and LM1 = (W′,C1,F
′
1) is a left

Bousfield localization of M1.

(2) (Extension) If LM1 = (W′,C1,F
′
1) is a left Bousfield localization of M1 that is right

proper, then LM2 = (W′,C2,F
′
2) is a left Bousfield localization of M2.
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For future purposes we display the conclusion of Theorem B.1(2) in the diagram

M2

LM2 M1

LM1

The proofs of the existence of the left Bousfield localizations in parts (1) and (2) are
different from one another. As it will be explained below, the existence of the left Bousfield
localization in part (1) is actually well-known, but perhaps it has not been formulated in
this form. Also, the right properness assumption in part (2) is dictated by the method of
proof.

Proof of Theorem B.1. We prove part (1). We first show that F′2 = F2 ∩F′1. Clearly,
we have F′2 ⊂ F2 ∩ F′1. Conversely, we must prove that every commutative diagram in M

A //

j
��

X

p
��

B // Y

where j is in C2 ∩W′ and p is in F2 ∩ F′1, has a diagonal filler. The idea, which we shall
use again, is very roughly that a commutative diagram

• //

��

•

��
• // •

in an arbitrary category has a diagonal filler when, for example, viewed as an arrow going
from left to right in the category of arrows, it factors through an isomorphism.

We first construct a commutative diagram

A //

j
��

X ′ //

q
��

X

p

��

B // Y ′ // Y

with q in F2 ∩W. Then, since j is in C2, the left commutative square diagram has a
diagonal filler.

We factorize the map B → Y into a map B → Y ′ in C2 ∩W′ followed by a map
Y ′ → Y in F′2. We factorize the canonical map A → Y ′ ×Y X into a map A → X ′ in
C2 ∩W′ followed by a map X ′ → Y ′ ×Y X in F′2. Let q be the composite map X ′ → Y ′;
then q is in F2 being the composite of two maps in F2. On the other hand, q is in F′1
since F′2 ⊂ F′1 and since F′1 is stable under pullbacks and compositions. By the two out of
three property q is in W′, therefore q belongs to F′1 ∩W′ = F1 ∩W. In all, q is in F2 ∩W.
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We now prove the existence of LM1. This can be seen as a consequence of a result of
M. Cole [8, Theorem 2.1] (or of B.A. Blander [4, Proof of Theorem 1.5]). In our context
however, since we have Lemma 3.4 we only need to check the factorization of an arbitrary
map of M into a map in C1 ∩W′ followed by a map in F′1. This proceeds as in [8, 4]; for
completeness we reproduce the argument.

Let f :X → Y be a map of M. We factorize it as a map X → Z in C2 ∩W′ followed
by a map Z → Y in F′2. We further factorize X → Z into a map X → Z ′ in C1 followed
by a map Z ′ → Z in F1 ∩W. The desired factorization of f is X → Z ′ followed by the
composite Z ′ → Y .

We prove part (2). By Lemma 3.4, it only remains to check the factorization of an
arbitrary map of M into a map in C2 ∩W′ followed by a map in F′2. Mimicking the
argument given in part (1) for the existence of LM1 does not seem to give a solution. We
shall instead expand on an argument due to A.K. Bousfield [6, Proof of Theorem 9.3],
that’s why we assumed right properness of LM1.

Step 1. We give an example of a map in F′2. We claim that every commutative diagram
in M

A //

j
��

X

p
��

B // Y

where j is in C2 ∩W′, p is in F2, and X and Y are fibrant in LM1, has a diagonal filler.
For this we shall construct a commutative diagram

A //

j
��

X ′ //

q
��

X

p

��

B // Y ′ // Y

with q in W. Factorizing then q as a map in C2 followed by a map in F2∩W and using two
diagonal fillers, we obtain the desired diagonal filler. We factorize the map B → Y into
a map B → Y ′ in C1 ∩W′ followed by a map Y ′ → Y in F′1. We factorize the canonical
map A→ Y ′ ×Y X into a map A→ X ′ in C1 ∩W′ followed by a map X ′ → Y ′ ×Y X in
F′1. Let q be the composite map X ′ → Y ′. By the two out of three property q is in W′.
Since Y is fibrant in LM1, so is Y ′. The map Y ′ ×Y X → X is in F′1 and X is fibrant in
LM1, therefore Y ′ ×Y X, and hence X ′, are fibrant in LM1. It follows that the map q is
in W. The claim is proved.

Step 2. Let f :X → Y be a map of M. We can find a commutative diagram

X //

f
��

X ′

f ′

��

Y // Y ′

in which the two horizontal arrows are in W′ and both X ′ and Y ′ are fibrant in LM1. We



STACKS AND SHEAVES OF CATEGORIES, I 691

can find a commutative diagram

X ′ //

f ′

��

X ′′

g
��

Y ′ // Y ′′

in which the two horizontal arrows are in W, g is in F2, and both X ′′ and Y ′′ are fibrant
in M1. It follows that both X ′′ and Y ′′ are fibrant in LM1. The map g is a fibration in
LM1, since F2 ⊂ F1. Putting the two previous commutative diagrams side by side we
obtain a commutative diagram

X //

f
��

X ′′

g
��

Y // Y ′′

in which the two horizontal arrows are in W′. Since LM1 is right proper, the map Y ×Y ′′
X ′′ → X ′′ is in W′, therefore the canonical map X → Y ×Y ′′ X ′′ is in W′. By the claim,
the map Y ×Y ′′X ′′ → Y is in F′2. We factorize the map X → Y ×Y ′′X ′′ into a map X → Z
that is in C2 followed by a map Z → Y ×Y ′′ X ′′ that is in F2 ∩W. Since F2 ∩W ⊂ F′2,
we obtain the desired factorization of f into a map in C2 ∩W′ followed by a map in F′2.
The proof of the existence of LM2 is complete.

Some results in the subject of ‘homotopical sheaf theory’ can be seen as consequences
of Theorem B.1. Here are a couple of examples.

Let C be a small category. The category of presheaves on C with values in simplicial
sets is a model category in two standard ways: it has the so-called projective and injective
model structures. The class of cofibrations of the projective model category is contained
in the class of cofibrations of the injective model category. If C is moreover a site, a result
of Dugger-Hollander-Isaksen [10, Theorem 6.2] says that the projective model category
admits a left Bousfield localization UCL at the class L of local weak equivalences. The
fibrations of UCL are the objectwise fibrations that satisfy descent for hypercovers [10,
Theorem 7.4]. The model category UCL is right proper (for an interesting proof, see
[9, Proposition 7.1]). Therefore, by Theorem B.1(2), Jardine’s model category, denoted
by sPre(C)L in [10], exists. Moreover, by Theorem B.1(1) its fibrations are the injective
fibrations that satisfy descent for hypercovers: this is exactly the content of the first part of
[10, Theorem 7.4]. As suggested in [9], this approach to sPre(C)L reduces the occurrence
of stalks and Boolean localization technique. The category of presheaves on C with values
in simplicial sets also admits the so-called flasque model category [18, Theorem 3.7(a)].
The class of cofibrations of the projective model category is contained in the class of
cofibrations of the flasque model category [18, Lemma 3.8]. Using UCL and Theorem B.1
it follows that the local flasque model category [18, Definition 4.1] exists.

Other examples can be found on page 199 of [17]: the existence of both therein called
the S model and the injective stable model structures, together with the description of
their fibrations, can be seen as consequences of Theorem B.1.
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C. Strong stacks of categories revisited

Let E be a small site. Recall from Theorem 7.2 the model category Stack(Ẽ)proj .

C.1. Lemma. The class of weak equivalences of Stack(Ẽ)proj is accessible.

Proof. Let f :X → Y be a map of Cat(Ẽ). Consider the commutative square diagram

X //

f

��

F̂X

F̂ f
��

Y // F̂ Y

with F̂X defined in the proof of Theorem 7.2. Then f is a weak equivalence if and only
if iF̂ f is a weak equivalence in [Eop ,CAT ]proj . The functors i and F̂ preserve κ-filtered
colimits for some regular cardinal κ. Since the class of weak equivalences of [Eop ,CAT ]proj

is accessible, the result follows.

Recall from Theorem 7.4 the (right proper) model category Stack(Ê)proj . By Theo-

rem B.1(2) we have the model category Stack(Ê)inj , which we display in the diagram

[Eop ,CAT ]inj

Stack(Ê)inj [Eop ,CAT ]proj

Stack(Ê)proj

By Theorem B.1(1), an object X of [Eop ,CAT ] is fibrant in Stack(Ê)inj if and only if ΦX
is a stack and X is fibrant in [Eop ,CAT ]inj .

C.2. Theorem. [19, Theorem 4] There is a model category Stack(Ẽ)inj on the category

Cat(Ẽ) in which the weak equivalences are the maps that Φ takes into bicovering maps
and the cofibrations are the internal functors that are monomorphisms on objects. A sheaf
of categories X is fibrant in Stack(Ẽ)inj (aka X is a strong stack) if and only if ΦX is a
stack and X is fibrant in [Eop ,CAT ]inj .

Proof. We shall use J. Smith’s recognition principle for model categories [3, Theo-
rem 1.7]. We take in op. cit. the class W to be the class of weak equivalences of

Stack(Ẽ)proj . By Lemma C.1, W is accessible. Let I0 be a generating set for the class
C of cofibrations of [Eop ,CAT ]inj , so that C = cof(I0). We put I = aI0. The functors
a and i preserve the property of internal functors of being a monomorphism on objects.
Using that i is full and faithful it follows that aC is the class of internal functors that
are monomorphisms on objects, and that moreover aC = cof(I). By adjunction, every
map in inj(I) is objectwise an equivalence of categories, so in particular every such map
is in W. Recall that for every object X of [Eop ,CAT ], the natural map X → iaX is a
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weak equivalence (see fact (2) stated below Theorem 7.2). Thus, by Lemma C.3 all the

assumptions of Smith’s Theorem are satisfied, so Cat(Ẽ) is a model category, which we

denote by Stack(Ẽ)inj .

Let f be a fibration in this model category. Then clearly if is a fibration in Stack(Ê)inj .

Conversely, if if is a fibration in Stack(Ê)inj , then, since i is full and faithful, f is a

fibration in Stack(Ẽ)inj .

C.3. Lemma. Let M be a model category. We denote by C the class of cofibrations of M.
Let N be a category and let R:M � N:K be a pair of adjoint functors with K full and
faithful. We denote by W the class of maps of N that K takes into weak equivalences.
Assume that

(1) KRC ⊂ C and

(2) for every object X of M, the unit map X → KRX is a weak equivalence.

Then the class W ∩RC is stable under pushouts and transfinite compositions.

Proof. We first remark that by (2), the functor R takes a weak equivalence to an element
of W. Let

X
f
//

��

Y

��

Z g
// P

be a pushout diagram in N with f ∈W ∩ RC. Then g is obtained by applying R to the
pushout diagram

KX
Kf
//

��

KY

��

KZ // P ′

By the assumptions it follows that g ∈ W ∩ RC. The case of transfinite compositions is
dealt with similarly.
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