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REALIZABLE HOMOTOPY COLIMITS

BEATRIZ RODRÍGUEZ GONZÁLEZ

Abstract. We show that the composition of a homotopically meaningful ‘geometric
realization’ (or simple functor) with the simplicial replacement produces all homotopy
colimits and Kan extensions in a relative category which is closed under coproducts.
Examples (and its duals) include model categories, ∆-closed classes and other concrete
examples such as complexes on (AB4) abelian categories, (filtered) commutative dg
algebras and mixed Hodge complexes. The resulting homotopy colimits satisfy the
expected properties as cofinality and Fubini, and are moreover colimits in a suitable 2-
category of relative categories. Conversely, the existence of homotopy colimits satisfying
these properties guarantees that hocolim∆◦ is a simple functor.

Introduction.

In the setting of model categories, the existence, properties and ways of computing homo-
topy (co)limits are well-known questions which have been widely studied in the literature
(see [H], [CS] and [C], among others). However, in the general case of a category C en-
dowed with a class W of weak equivalences (where a model structure is not necessarily
present), few tools are available to know whether (C,W) admits homotopy (co)limits or
not, as well as to obtain formulae to compute them.

In the present paper we study this question in the more tractable case of a closed-
under-coproducts class of weak equivalences. We show how a homotopically meaningful
‘geometric realization’ ∆◦C → C can be used to obtain homotopy colimits in (C,W) sat-
isfying the expected properties (and that, in addition, the converse is also true). Dually,
a homotopically meaningful totalization ∆C → C allows one to construct homotopy limits.

To possess a homotopically meaningful (co)totalization is precisely the core of the
notion of (co)simplicial descent category introduced in [R], which is a simplicial variant
of the cubical (co)homological descent categories of [GN]. More concretely, (C,W) is a
simplicial descent category if it is equipped with a simple functor s : ∆◦C → C subject
to five axioms guaranteeing it has the correct homotopical meaning. Namely, s must
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be compatible with W , the homotopy equivalences in ∆◦C, coproducts and must satisfy
an Eilenberg-Zilber and a normalization property. Examples include other abstract ax-
iomatic theories such as model categories and Voevodsky ∆-closed classes ([V]), as well
as further examples. Among these, we treat here the ones of positive complexes on (AB4)
abelian categories, (filtered) commutative dg algebras and mixed Hodge complexes. The
corresponding simple functors are, respectively, the total complex of a double complex,
Navarro’s Thom-Whitney simple ([N]) and Deligne’s cosimplicial construction ([De]).

Our main result, Theorem 3.1, states that the composition of the simple functor s
with the simplicial replacement of diagrams produces all homotopy colimits in (C,W),
which satisfy the expected properties such as cofinality, Fubini and preservation by form-
ing diagram categories. This generalizes the classical construction of homotopy (co)limits
for simplicial sets given in [BK], and allows one to obtain explicit formulae to compute
homotopy (co)limits in the previous examples of (co)simplicial descent categories.

The homotopy colimits constructed in this way are stronger than the ones in the sense
of Grothendieck or derived functors, defined only at the level of localized categories. In-
stead, they are indeed colimits in a suitable 2-category RelCat of ‘categories with weak
equivalences’ (or relative categories, following [BaK]). We call this kind of homotopy col-
imit realizable. Theorem 3.1 also states that, conversely, if (C,W) admits all realizable
homotopy colimits satisfying the cofinality property, then s = hocolim∆◦ : ∆◦C → C
makes (C,W) a simplicial descent category.
In addition, such a (C,W) admits pointwise homotopy Kan extensions. In the language
of Grothendieck derivators, this means that A 7→ CA◦ [W−1] defines a right derivator (see
Theorem 3.16). The bottom line of the results presented here is then that for relative
categories closed under coproducts, to posses a simple functor is the same thing than to
be homotopically cocomplete.

The paper is organized as follows. The first section is categorical in nature and contains
the formal definitions of the 2-category of relative categories and realizable homotopy col-
imits. The second section deals instead with simplicial homotopy theory and is devoted to
the explicit construction of homotopy colimits and Kan extensions for a particular (but
not less relevant) case of simplicial descent categories: those induced by a Voevodsky
∆-closed class. Once this is done the general case is treated in Section 3 where Theorems
3.1 and 3.16 are proved. Finally, in the last section we describe the formulae obtained for
homotopy (co)limits in the examples previously mentioned.
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2.14’s proof.

1. Relative categories and realizable homotopy colimits.

The homotopy (co)limits constructed in the subsequent sections are stronger than those in
the sense of Grothendieck derivators and derived functors. They are moreover (co)limits in
a suitable 2-category RelCat of relative categories. This section contains the 2-categorical
formalism needed to define and study them. After introducing the 2-category RelCat, we
study the associated notion of adjunction in this 2-category, and then we focus on the
particular case of colimits.

1.1. Relative categories as a 2-category.

1.2. Definition. A relative category consists of a pair (C,WC) formed by a category C
and a class of morphisms WC of C, whose elements are called weak equivalences. For
simplicity, we assume along the paper that the class WC, also denoted by W for brevity,
is saturated. That is, W is the inverse image by the localization functor γ : C → C[W−1]
of the isomorphisms of C[W−1].

Among all relative categories, we will mainly focus on those in which coproducts exist
and preserve the weak equivalences. The reason is that for this kind of relative categories
the formulas for homotopy colimits become simplified, as we will see later.

1.3. Definition. We say that a relative category (C,W) is closed under (finite) coprod-
ucts if C has an initial object 0 and both C and W are closed under (finite) coproducts.

If (D,W) is a relative category and C is a category, the category Fun(C,D) (or just
DC) of functors from C to D is again a relative category with the class WC of pointwise
weak equivalences. These are, by definition, the natural transformations τ : F → G such
that τc : F (c)→ G(c) is a weak equivalence of D for each object c of C. If C is understood,
we write WC simply as W .

1.4. Remark. The next 2-category structure on relative categories requires to deal with
large categories as Fun(C,D), and even further to invert morphisms there. To be able to
do this we assume Grothendieck’s axiom of universes. However, when we refer to a small
category, we always mean a small category with respect to a fixed universe U0.

1.5. Definition. A relative functor F : (C,W)→ (D,W) is a weak equivalence preserv-
ing functor F : C → D. A relative natural transformation between the relative functors
F,G : (C,W) → (D,W) is a morphism τ : F 99K G in Fun(C,D)[W−1]. More precisely,
τ is represented by a finite zigzag connecting F and G

F · · · • → • ← • → • · · ·G

formed by functors and natural transformation between them, such that those natural
transformations going to the left are pointwise weak equivalences.
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1.6. Lemma. Relative categories form a 2-category, with relative functors as 1-morphisms
and relative natural transformations as 2-morphisms.

The proof presents no difficulty and is left to the reader. The composition of relative
functors is just the usual composition of functors. The vertical and horizontal composi-
tions of relative functors with relative natural transformations are defined by localizing the
corresponding compositions in Cat with respect to the weak equivalences. The resulting
2-category of relative categories is denoted by RelCat.

1.7. Definition. A relative natural transformation that is an isomorphism in RelCat
will be called a relative isomorphism. As usual, a relative functor F : (C,W)→ (D,W) is
an equivalence of relative categories if there exists a relative functor G : (D,W)→ (C,W)

and relative isomorphisms τ : FG
∼
99K 1D, ρ : GF

∼
99K 1C. That is, τ and ρ are invertible

in Fun(D,D)[W−1] and Fun(C, C)[W−1], respectively.

1.8. Remark. Recall from [BaK, 3.3] that a homotopy equivalence of relative categories
is an equivalence of relative categories such that τ and ρ are in addition zigzags of natural
weak equivalences. We remark that an equivalence of relative categories needs not be a
homotopy equivalence. However, the two notions agree in case the weak equivalences con-
sidered admit a natural calculus of left (or right) fractions, or a natural 3-arrow calculus.
This is the case of Brown categories of (co)fibrant objects with functorial cylinders, and
of model categories (with functorial factorizations).

The following lemmas easily follow from the definitions.

1.9. Lemma. Localization by weak equivalences is a 2-functor

loc : RelCat→ Cat , (C,W) 7→ C[W−1]

1.10. Lemma. Given a small category I, exponentiation by I is a 2-functor

(−)I : RelCat→ RelCat , (C,W) 7→ (CI ,WI)

1.11. Relative adjunctions.

1.12. Definition. An adjunction in the 2-category RelCat will be called a relative ad-
junction. It consists of:
1. Relative functors F : (C,W)→ (D,W) and G : (D,W)→ (C,W).
2. Relative natural transformations α : FG 99K 1D and β : 1C 99K GF satisfying the
triangle identities. That is, the following compositions are the identity in RelCat

F
F ?β // FGF α?F // F

G
β?G // GFG F ?α // G

A relative adjunction will be denoted either by F : (C,W) � (D,W) : G, (F,G, α, β) or
just by (F,G). We will say that F is a left relative adjoint of (or relative left adjoint to)
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G and that G is a right relative adjoint of (or relative left adjoint to) F .
In case the relative natural transformations α and β are relative isomorphisms, (F,G) is
called a relative adjoint equivalence.
Given τ : FT ′ 99K T , the triangle identities allow to construct as usual the (relative)
adjoint natural transformation τ ′ : T ′ 99K GT , and conversely one can get a relative
natural transformation τ from such a τ ′.

1.13. Example. A relative adjunction F : (D, isos)� (C, isos) : G is just an adjunction
of categories. More generally, an adjunction l : D � C : r is a relative adjunction
l : (D,W)� (C,W) : r provided that both l and r preserve weak equivalences.

1.14. Example. Let l : M � N : r be a Quillen adjunction between the model cate-
gories (M,W) and (N ,W). If Q :M→M and R : N → N are, respectively, functorial
cofibrant and fibrant replacements, then the following is a relative adjunction

lQ : (M,W)� (N ,W) : rR

Next results follow from Lemmas 1.9 and 1.10, and the fact that 2-functors preserve
adjunctions.

1.15. Lemma. The localization of a relative adjunction F : (C,W) � (D,W) : G is an
adjunction F : C[W−1]� D[W−1] : G between the corresponding localized categories.

1.16. Lemma. If I is a small category and F : (C,W) � (D,W) : G is a relative
adjunction then F I : (CI ,W)� (DI ,W) : GI is again a relative adjunction.

Then, a relevant feature of a relative adjunction (F,G) is that it does not only pro-
vide an adjunction between the corresponding localized categories, but also an adjunction
F I : CI [W−1]� DI [W−1] : GI naturally defined for each small category I.

To finish, we introduce the next technical lemma for later use.

1.17. Lemma. Let (C,W), (D,W) be relative categories, Q : (D,W)→ (D,W) a relative
functor and ρ : Q → 1D a natural transformation which is a weak equivalence. Assume
there exists a natural isomorphism

C(FK,L) ' D(K,GL)

of bifunctors (imQ)◦ × C → Set, where F : imQ → C and G : C → D are functors such
that

i. FQ and G are relative functors.

ii. The relative natural transformations FρQ and FQρ agree.

Then (FQ,G) is a relative adjoint pair.

Proof. The isomorphism C(FK,L) ' D(K,GL) associates a natural transformation
α : FQG→ 1C with ρ?G, and β′ : Q→ GFQ with 1?FQ. Then, it is not difficult to check

using ii that α and β : 1D
ρ←− Q

β′−→ GFQ do satisfy the triangle identities.
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1.18. Realizable homotopy colimits.

1.19. Definition. Given a small category I and a relative category (C,W), the constant
diagram functor cI : C → CI is defined by (cI(x))(i) = x for all i ∈ I and x ∈ C. Clearly,
cI : (C,W)→ (CI ,W) is a relative functor.

A realizable homotopy colimit in (C,W) is a relative adjunction (hocolimI , cI , α, β)
between (CI ,W) and (C,W). For simplicity, we will often drop the adjunction morphisms
and denote a realizable homotopy colimit just by hocolimI : (CI ,W) → (C,W). When
needed, we will write hocolimCI instead of hocolimI to emphasize the target category where
we are taking homotopy colimits.

A realizable homotopy limit is defined in the dual way. Throughout the paper we focus
on realizable homotopy colimits, but all the constructions and results presented here can
be dualized to the setting of realizable homotopy limits.

1.20. Example. Note that a usual colimit in C is the same thing as a realizable homotopy
colimit on (C,W = {isomorphisms}).

1.21. Example. If (M,W) is a combinatorial model category, the projective model
structure on (MI ,W) is such that (colimI , cI) is a Quillen adjunction. In view of example
1.14, realizable homotopy colimits exist in (M,W) and are the composition of colimI
with a cofibrant replacement. Realizable homotopy limits are constructed analogously,
this time using the injective model structure on (MI ,W) instead.

1.22. Example. For a general model category (M,W) the above argument is no longer
valid because a model structure on (MI ,W) does not necessarily exist. As a consequence,
the proof of the existence of homotopy (co)limits in (M,W) is more involved (see [CS],
[C] or [DHKS]). The arguments in these references may be adapted to the setting of
relative categories to show that (MI ,W) has all realizable homotopy (co)limits as well.
In addition, these realizable homotopy colimits may be computed using the Bousfield-Kan
homotopy colimit construction of [H] (see Section 4).

Further examples of realizable homotopy (co)limits will be given at the end of the pa-
per for chain complexes on (AB4) abelian categories, (filtered) commutative dg algebras
and mixed Hodge complexes.

Next we explore some of the properties of realizable homotopy colimits. Firstly we
observe that, after localizing by the weak equivalences, they are homotopy colimits in the
sense of Grothendieck derivators, hence also left derived functors of usual colimits.

1.23. Proposition. If hocolimI : (CI ,W) → (C,W) is a realizable homotopy colimit
in (C,W) then hocolimI : CI [W−1] → C[W−1] is a homotopy colimit in the sense of
Grothendieck derivators. In particular, if the colimit colimI : CI → C exists, then
the absolute left derived functor LcolimI of colimI exists and it agrees with hocolimI :
CI [W−1]→ C[W−1].
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Proof. By Lemma 1.15, the localization of a realizable homotopy colimit produces a left
adjoint hocolimI : CI [W−1] → C[W−1] of the localized constant diagram functor, i.e.,
a homotopy colimit in the sense of Grothendieck derivators. The second assertion then
follows from [RII, Proposition 4.2].

An advantage of working with realizable homotopy colimits is that, in contrast to
Lcolim, they are inherited by diagram categories.

1.24. Lemma. If hocolimI : (CI ,W)→ (C,W) is a realizable homotopy colimit in (C,W)
and J is a small category, then the relative functor hocolimJI : (CI×J ,W) → (CJ ,W)
induced pointwise is a realizable homotopy colimit in (CJ ,W).

Proof. This follows from Lemma 1.16.

Also, the Fubini property for realizable homotopy colimits is, as happens with colimits,
a formal consequence of adjointness.

1.25. Proposition. Let (C,W) be a relative category. Given small categories I and J ,
there is a unique relative isomorphism

hocolimI×J 99K hocolimIhocolimJ

compatible with the adjunction morphisms.

Proof. It follows from Lemma 1.24 and the fact that relative adjunctions are closed under
composition that hocolimIhocolimJ is relative left adjoint to cJcI = cI×J : (C,W) →
(CI×J ,W). But so is hocolimI×J , hence the claim follows.

There are other properties of colimits which are formal consequences of adjointness
in Cat, for instance, they are invariant under right cofinal changes of diagrams. In the
homotopical setting the property corresponding to right cofinality is the one of homotopy
right cofinality, which we proceed to recall.

1.26. Definition. A functor f : I → J is homotopy right cofinal if for each j ∈ J
the simplicial nerve N(j/f) of the undercategory (j/f) is weakly contractible. That is,
N(j/f)→ ∆[0] is a weak homotopy equivalence of simplicial sets.

1.27. Given a functor f : I → J between small categories, consider the relative natural
transformation

hocolim(f) : hocolimIf
∗ 99K hocolimJ

defined as the relative adjunct natural transformation of f ∗?β : f ∗ → f ∗cJhocolimJ =
cIhocolimJ , where β : 1CJ → cJhocolimJ is the adjunction morphism of (hocolimJ , cJ).

1.28. Definition. We say that realizable homotopy colimits in (C,W) satisfy the co-
finality property if for each homotopy right cofinal functor f , hocolim(f) is a relative
isomorphism.
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1.29. Remark. There is no known example of (realizable) homotopy colimit which does
not satisfy this property. However, as remarked in [M, Remarque 4.23], it does not seem
to be a formal consequence of the definition.

To finish, we study the preservation of realizable homotopy colimits by relative func-
tors.

1.30. Definition. Given a relative functor F : (C,W) → (D,W), consider the relative
natural transformation

ρIF : hocolimDI F 99K F hocolimCI

adjoint to F ?β : F 99K FcIhocolimCI = cIF hocolimCI , where β : 1CI 99K cIhocolimCI is
the adjunction morphism of (hocolimCI , cI). Then, the relative functor F commutes with
I-homotopy colimits if ρIF is a relative isomorphism. Note that this definition does not
depend on the representatives chosen for hocolimCI and hocolimDI .
If F commutes with I-homotopy colimits for each small category I we simply say that
F commutes with homotopy colimits. In case F commutes with Ω-homotopy colimits for
each discrete category Ω, we say that F commutes with homotopy coproducts.

Next proposition follows from the fact that relative adjunctions are closed under com-
position and exponentiation.

1.31. Proposition. If F : (C,W)→ (D,W) is a relative left adjoint, then it commutes
with homotopy colimits.

2. Voevodsky homotopy colimits are realizable.

In this section we construct homotopy colimits and Kan extensions for relative categories
(∆◦C,S) such that the class of weak equivalences S is a ∆-closed class in the sense of [V].
These are indeed examples of simplicial descent categories for which the simple functor
is just the diagonal D : ∆◦∆◦C → ∆◦C. We will strongly use well-known results and
techniques from simplicial homotopy theory, as well as others not so standard, such as
Illusie’s bisimplicial decalage ([I]).

2.1. Simplicial preliminaries. We assume the reader is familiar with the basics on
simplicial objects, and is referred to the classical references [May] and [GZ] for further
details.

Recall that the simplicial category ∆ has as objects the ordered sets [n] = {0 < · · · < n},
n ≥ 0, and as morphisms the order preserving maps. The face and degeneracy maps are
denoted, respectively, by di : [n− 1]→ [n] and sj : [n+ 1]→ [n].

If D is a category, ∆◦D (resp. ∆◦∆◦D, ∆D) denotes the category of simplicial (resp.
bisimplicial, cosimplicial) objects in D. The diagonal functor D : ∆◦∆◦D → ∆◦D is given
by D({Zn,m}n,m≥0) = {Zn,n}n≥0. The constant functor c∆◦ : D → ∆◦D is written simply
as c. Given an object A of D and a simplicial object X, an augmentation ε : X → A is
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just a simplicial morphism ε : X → c(A). If X is a simplicial object, cI(X) and cII(X)
denote the bisimplicial objects which are constant in the first and second index, respec-
tively. That is, cI(X)n,m = Xm and cII(X)n,m = Xn.

There is a combinatorial notion of homotopic morphisms f ∼ g in ∆◦D. If D has
coproducts, this homotopy relation may be described as follows.

2.2. Definition. Consider the natural action ∆◦D×∆◦Set→ ∆◦D, sending (X,K) 7→
X ⊗K, where

(X ⊗K)n =
∐
Kn

Xn (1)

Recall that ∆[k] is the simplicial set with ∆[k]n = Hom∆([n], [k]). Then, X ⊗∆[1] is the
simplicial cylinder of X, and the maps d0, d1 : [0] → [1] induce dX0 , d

X
1 : X → X ⊗∆[1].

The simplicial morphisms f, g : X → Y are simplicially homotopic if there exists a
homotopy H : X ⊗ ∆[1] → Y such that HdX0 = f and HdX1 = g. Simplicial homotopy
equivalences are defined as usual.

We will use the construction and properties of Illusie’s bisimplicial decalage dec :
∆◦D → ∆◦∆◦D introduced in [I, p.7]. It is induced by the ordinal sum ∆ × ∆ → ∆,
[n] + [m] = [n+m+ 1].

2.3. Definition. Given a simplicial object X, dec(X) is the bisimplicial object given in
bidegree (n,m) by dec(X)n,m = Xn+m+1. The face and degeneracy maps of dec(X) are
defined as follows. On the one hand, dIk : dec(X)n,m → dec(X)n−1,m is dk : Xn+m+1 →
Xn+m, while sIk is sk : Xn+m+1 → Xn+m+2. On the other hand, dIIk : dec(X)n,m →
dec(X)n,m−1 is dn+k+1 : Xn+m+1 → Xn+m, and sII is sn+k+1 : Xn+m+1 → Xn+m+2.
There are two natural augmentations ΛI : dec(X) → cI(X) and ΛII : dec(X) → cII(X)
given respectively by ΛI

0,m = d0 : Xm+1 → Xm and ΛII
n,0 = dn+1 : Xn+1 → Xn.

2.4. Proposition. For each simplicial object X, the diagonals of the augmentations ΛI

and ΛII , D(ΛI),D(ΛII) : D(dec(X))→ X are simplicial homotopy equivalences which are
simplicially homotopic, and the homotopies involved are natural in X.

Proof. The first statement is [I, Proposition 1.6.2], while the last one follows from the
proof given in loc. cit..

To close the preliminaries we recall from [BK, XI.5] the simplicial replacement of
diagrams, which is the building block of Voevodsky homotopy colimits.

2.5. Definition. The simplicial replacement functor qI : DI −→ ∆◦D maps the diagram
X : I → D to the simplicial object qIX given in degree n by

qInX =
∐

i={i0→···→in}

X(i0)i

where X(i0)i is a copy of X(i0). The coproduct is indexed over the n-simplices of the
simplicial nerve of I. The face map dk : qInX → qIn−1X is the coproduct of 1 : X(i0)i →
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X(i0)dk(i) if k > 0, and of X(i0 → i1) : X(i0)i → X(i1)d0(i) if k = 0. The degeneracy map
sk : qInX → qIn+1X is the coproduct of the maps 1 : X(i0)i → X(i0)sk(i). The cosimplicial
replacement functor ΠI : DI −→ ∆D is the dual construction.

Note that the colimit of X, if it exists, agrees with the colimit of qIX, giving rise to
an augmentation qIX → colimIX. To finish, let us note that qI is natural in I. Indeed,
given a morphism (f, τ) : X → Y between the diagrams X : I → D and Y : J → D - that
is, a functor f : I → J and a natural transformation τ : X → f ∗Y - then the morphisms
τi0 : X(i0)i → Y (f(i0))f(i) induce in a natural way

q•(f, τ) : qIX → qJY (2)

2.6. Voevodsky homotopy colimits. To begin with, let us recall the definition and
first properties of ∆-closed classes.

2.7. Definition. ([V]) A class S of morphisms in ∆◦C is ∆-closed if it satisfies the
following axioms:

0. The class S satisfies the 2-out-of-3 property.

1. The class S contains the simplicial homotopy equivalences.

2. If F = F·,· : Z·,· → T·,· is a morphism of bisimplicial objects in C such that Fn,· ∈ S (or
F·,n ∈ S) for all n ≥ 0, the diagonal D(F ) of F is in S.

3. The class S is closed under finite coproducts. That is, F qG ∈ S whenever F , G ∈ S.

Note that hypothesis 0 always holds in our context, since we restrict ourselves to
classes of weak equivalences which are saturated.

Also, we remark that assumption 3 is not included in Voevodsky’s original defini-
tion. We opt to include it here because the resulting ∆-closed classes support a richer
homotopical structure. For instance, they produce natural Brown structures of cofibrant
objects ([Br]). This implies, in particular, the existence of a calculus of left fractions up
to homotopy, and of cofiber sequences enjoying the usual properties.

2.8. Definition. ([V]) A morphism F : X → Y in ∆◦C is a termwise coprojection if
for each n ≥ 0 there exists an object A(n) of C and a commutative diagram

Xn
Fn //

((

Yn
o

Xn q A(n)

where Xn → Xn q A(n) is the canonical morphism.

2.9. Proposition. ([R, Proposition 4.9]) Let (∆◦C,S) be a relative category such that S
is ∆-closed. Then (∆◦C,S) is a Brown category of cofibrant objects, where the cofibrations
are the termwise coprojections.
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2.10. Remark. By Lemma 2.25 and Proposition 2.9, under the previous assumptions
(∆◦C,S) is moreover an ABC cofibration category in the sense of [RB]. As proved in loc.
cit. this already guarantees the existence of homotopy colimits in ∆◦C[S−1]. We will see
below that in addition they may be computed by Voevodsky’s formula, and satisfy the
cofinality property.

2.11. Definition. [V, p. 11] The Voevodsky homotopy colimit

hocolimV
I : ∆◦CI −→ ∆◦C

is the composition of the diagonal functor D : ∆◦∆◦C → ∆◦C with the simplicial replace-
ment qI : ∆◦CI → ∆◦∆◦C. Given Z : J → ∆◦C, then in degree n

(hocolimV
I Z)n =

∐
i0→···→in

Zn(i0)

If f : I → J , there is a natural morphism hocolimV
I f
∗Z → hocolimV

JZ defined as
the diagonal of q(f, 1f∗Z) (see ( 2)). Also, if colimIZ exists, the augmentation qIZ →
colimIZ induces a natural simplicial morphism hocolimV

I Z → colimIZ.

Unless otherwise stated, we assume from now on that S is ∆-closed The rest of the
section is devoted to proving the following two facts:

(i) hocolimV
I is a realizable homotopy colimit, and it moreover produces pointwise

homotopy left Kan extensions (Theorem 2.14).

(ii) hocolimV
I satisfies the cofinality property (Corollary 2.23).

2.12. Homotopy Kan extensions. Recall that given a cocomplete category D and a
functor f : I → J between small categories, the left adjoint f! : DI → DJ of f ∗ is

(f!X)(j) = colim(f/j)u
∗
jX

where uj : (f/j) → I maps {f(i) → j} to i. Next we prove that replacing colim with
hocolimV in the above formula does produce a relative left adjoint of f ∗ in RelCat.

2.13. Definition. Define fV
! : (∆◦CI ,S)→ (∆◦CJ ,S) as

(fV
! X)(j) = hocolimV

(f/j)u
∗
jX

2.14. Theorem. Let f : I → J be a functor between small categories. Assume given a
∆-closed class S which is in addition closed under coproducts of cardinality #I. Then,
(fV

! , f
∗) is a relative adjoint pair between (∆◦CI ,S) and (∆◦CJ ,S).

Here #I means the cardinality of the set of morphisms of I. This ensures that all the
hocolimV

(f/j) make sense and preserve weak equivalences. Note also that this property is
implied by assumption 3 in case I is a finite category.
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2.15. Remark. In particular, for J = [0], the above theorem states that hocolimV
I is a

realizable homotopy colimit.

The proof of previous theorem relies on the particular case of f! corresponding to
f = 1I : I → I. The resulting Q = 1V

! : ∆◦CI → ∆◦CI is analogous to Dugger’s
‘replacement’ functor [D, p. 30], that is,

(QX)(j) = hocolimV
(I/i)u

∗
iX

To begin with, let us construct a natural transformation ρ : Q → 1∆◦CI which is a
point-wise weak equivalence. Consider the triangle

(I/i) π //

u∗iX

τ⇒

%%

[0]

X(i)
��

∆◦C

where τα:i′→i = X(α) : X(i′)→ X(i). Then, ρX : QX → X is given by

ρX(i) = hocolimV(π, τ) : hocolimV
(I/i)u

∗
iX → hocolimV

[0]X(i) = X(i)

2.16. Lemma. The natural transformation ρ is a point-wise weak equivalence.

Proof. For each i ∈ I the augmentation ρX(i) has an extra degeneracy sn+1 : q(I/i)
n X →

q(I/i)
n+1 X which sends the component X(i0) with index i = {i0 → . . . → in → i} to the

component X(i0) with index {i0 → . . . → in → i → i}. Then, ρX(i) is a simplicial
homotopy equivalence and in particular it belongs to S.

Moreover, Q is a kind of ‘resolution functor’ for f!:

2.17. Lemma. Given X ∈ ∆◦CI , the left Kan extension f! exists for any diagram of the
form QX and

f!QX = fV
! X

Proof. The result is a direct consequence of the canonical isomorphism

colimα:f(i)→j q(I/i) v∗iX ' q(f/j)u∗jX

and the fact that colimits of simplicial objects are computed degreewise.

Proof of Theorem 2.14. Note that fV
! : (∆◦CI ,S) → (∆◦CJ ,S) is a relative functor

under the hypotheses made on f and S. We will make use of Lemma 1.17 with F = f!

and G = f∗. In view of Lemmas 2.16 and 2.17, it only remains to show that the relative
natural transformations f!ρQ, f!Qρ : f!Q

2 → f!Q agree. But unravelling the definitions
one finds that (f!Q

2X)(j) = hocolimα:f(i)→jhocolim(I/i)u
∗
iX is precisely the diagonal

of Dec(q(f/j)u∗jX). Moreover, (f!ρQ)(j) and (f!Qρ)(j) correspond, respectively, to the
diagonals of the augmentations ΛII and ΛI of Definition 2.3. Hence, by Proposition 2.4,
we conclude that f!ρQ and f!Qρ are simplicially homotopic, and consequently they agree
as relative natural transformations.
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2.18. Cofinality. To close the section we now show that hocolimV satisfies the cofinal-
ity property. This is a consequence of the following stronger property, that will be used
later to show that a simplicial descent category (in particular our (∆◦C,S)) produces a
right derivator.

2.19. Theorem. Let f : I → J and g : J → K be functors between small categories and
set h = gf : I → K. Assume that for each k ∈ K the natural transformation

hocolimV
(k/h)c(k/h) → hocolimV

(k/g)c(k/g)

induced by f belongs (pointwise) to S. Then, the natural transformation

hocolimV
I h
∗ −→ hocolimV

J g
∗

belongs (pointwise) to S as well.

For the proof we will need the following connection between the bar construction and
Illusie’s bisimplicial decalage.

2.20. Definition. The simplicial two-sided bar construction associated with a bifunctor
F : I × I◦ → D is the simplicial object W(F ) given by

Wn(F ) =
∐

i={i0→···→in}

F (i0, in)i

where F (i0, in)i is a copy of F (i0, in). The face map dk : Wn(F ) → Wn−1(F ) is the
coproduct of the morphisms 1 : F (i0, in)i → F (i0, in)dk(i) if 0 < k < n, of F (i0 → i1, 1in) :
F (i0, in)i → F (i1, in)d0(i) if k = 0 and of F (1i0 , in−1 → in) : F (i0, in)i → F (i0, in−1)dn(i)

if k = n. To finish, the degeneracy map sk : Wn(F ) → Wn+1(F ) is the coproduct of
1 : F (i0, in)i → F (i0, in)sk(i).

2.21. Example. Given a functor f : I → J and a diagram Y : J → D, we have an
induced bifunctor Y ⊗ N(·/f) : J × J◦ → ∆◦D defined as

(Y ⊗ N(·/f)) (j, j′) = Y (j)⊗ N(j′/f)

Then W(X ⊗ N(·/f)) is the bisimplicial object given in bidegree (n,m) by

Wn,m(X ⊗ N(·/f)) =
∐

j0→···→jn

∐
jn→f(i0)→···→f(im)

Y (j0)

It has two natural augmentations α : W(Y ⊗ N(·/f)) → cI(qIf ∗Y ) and β : W(Y ⊗
N(·/f))→ cII(qJY ) given respectively by

αn,m :
∐

j0 →···→ jn↓
f(im)←···←f(i0)

Y (j0) −→
∐

i0→···→im

Y (f(i0)) βn,m :
∐

j0 →···→ jn↓
f(im)←···←f(i0)

Y (j0) −→
∐

j0→···→jn

Y (j0)

When f = 1I : I → I, the resulting W(Y ⊗ N(·/I)), α and β admit the following
equivalent description.
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2.22. Lemma. For any diagram X : I → D, W(X ⊗ N(·/I)) is canonically isomorphic
to Illusie’s decalage dec(qIX) of qIX in such a way that α corresponds to ΛI : W(X ⊗
N(·/I))→ cI(qIX) and β corresponds to ΛII : W(X ⊗ N(·/I))→ cII(qIX).

Proof of Theorem 2.19. The assumption made on f and g means that for each k ∈ K
and X ∈ ∆◦C, the morphism X ⊗ N(k/h) → X ⊗ N(k/g) belongs to S. Given Y :
K → ∆◦C, the natural morphism hocolimV

I h
∗Y −→ hocolimV

J g
∗Y is by definition the

diagonal of the bisimplicial morphism qInh∗Ym → qJng∗Ym induced by f . Since S is ∆-
closed, we may assume that Y is constant in m, i.e. Y : J → C, and we must prove that
qIh∗Y → qJg∗Y is in S. Under the notations of Example 2.21, we have a commutative
square

qIh∗Y // qJg∗Y

DW(Y ⊗ N(·/h)) Φ //

D(α)

OO

DW(Y ⊗ N(·/g))

D(α′)

OO

and it suffices to see that Φ, D(α) and D(α′) belong to S. By definition, Φ is the diagonal
of the bisimplicial morphism

φn,m :
∐

k0→···→kn

Y (k0)⊗ Nm(kn/h)→
∐

k0→···→kn

Y (k0)⊗ Nm(kn/g)

But for fixed n, φn,· is just the coproduct of the morphisms Y (k0)⊗Nm(kn/h)→ Y (k0)⊗
Nm(kn/g), that belong to S by hypothesis. Hence Φ = D(φ) is in S. To finish, it remains
to show that D(α) ∈ S (the same would hold for α′). Note that α is in bidegree (n,m)
given by ∐

i0→···→im

∐
k0→···→kn→h(i0)

Y (k0) −→
∐

i0→···→im

Y (h(i0))

so α·,m is the coproduct of the morphisms αi·,m : q(K/h(i0))Y → Y (h(i0)) induced by the

final object of (K/h(i0)). By Lemma 2.16, αi·,m = ρY (h(i0)) ∈ S.

2.23. Corollary. If f : I → J is a homotopy right cofinal functor, then for each
diagram Z : J → ∆◦C the induced morphism hocolimV

I f
∗Z → hocolimV

JZ is in S.
Consequently, hocolimV satisfies the cofinality property.

Applying previous theorem to Z = cJ(∆[0]) : J → ∆◦Set, we obtain another proof for
Quillen’s Theorem A (cf. [Q]).

Proof. For each j ∈ J , N(j/f)→ ∆[0] is by assumption a weak homotopy equivalence,
and then so is the natural map N(j/f) → N(j/J). It follows from Lemma 2.24 below
that for each j ∈ J , the induced morphism X ⊗ N(j/f) → X ⊗ N(j/J) is in S. Hence,
the hypothesis of previous theorem hold for f and g = 1J : J → J . We then conclude
that the induced map hocolimV

I f
∗ → hocolimV

J is pointwise in S as required.
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2.24. Lemma. If f : L → K is a map in ∆◦Set which is a weak homotopy equivalence,
then for each simplicial object X it holds that X ⊗ f : X ⊗ L→ X ⊗K is in S.

Proof. The proof uses an standard argument based on the Ex∞ fibrant replacement
of simplicial sets and anodyne extensions. The resolution functor Ex∞ provides, for
each simplicial set L, a natural weak homotopy equivalence εL : L → Ex∞(L) such
that Ex∞(L) is fibrant. In addition, εL is an an anodyne extension (see [GZ, p. 68]).
If f : L → K is a weak homotopy equivalence, we conclude that Ex∞(f) is a weak
homotopy equivalence between fibrant simplicial sets, and hence a simplicial homotopy
equivalence. If X is a simplicial object of C, it follows that X ⊗ Ex∞(f) ∈ S, and it
suffices to prove that X ⊗ εK and X ⊗ εL are in S. Therefore, we may assume that f
is an anodyne extension. Recall that anodyne extensions form the smallest class A of
inclusions of simplicial sets containing the horn-fillers ik,n : Λk[n] → ∆[n] for 0 ≤ k ≤ n,
and such that it is closed under retracts, cobase change, small coproducts and sequential
colimits (see [GZ, IV.2]). Let W′ be the class of morphisms consisting of the inclusions
f : K → L of simplicial sets such that the resulting termwise coprojection X ⊗ f of ∆◦C
is in S for each simplicial object X. Since the horn-fillers ik,n are simplicial homotopy
equivalences, they are in W′. Also, W′ is closed under retracts and small coproducts
because S is. Finally, W′ is closed under cobase change and sequential colimits because
trivial termwise coprojections in (∆◦C,S) are closed under them by Proposition 2.9 and
Lemma 2.25. Consequently, f ∈ A ⊂W′.

2.25. Lemma. Assume given a sequence X0
a0

� X1
a1

� · · ·
am−1

� Xm
am

� · · · of termwise
coprojections in ∆◦C. Then colimmX

m exists, and if in addition each am ∈ S, the
canonical morphism X0 → colimmX

m is in S as well.

Proof. Assume given termwise coprojections am : Xm�Xm+1 for each m ≥ 0. Being
C closed under coproducts, colimmX

m does exist in ∆◦C because it exists degreewise.
Denote by N the category given by the poset of natural numbers, and consider the com-
mutative square

hocolimV
NX

0 = X0 ⊗ N(N) α′ //

f
��

hocolimV
NX

•

g

��
X0 α // colimNX

•

where f and g are the natural morphisms from the Voevodsky homotopy colimit to the
colimit of a diagram, while α and α′ are induced by the morphism of diagrams Λ : X0 →
X• with Λm = am−1 · · · a0 : X0 → Xm. If am is in S for all m ≥ 0, so is Λm and then
also α′. To finish, let us see that g ∈ S. In this case, taking Xk = X0 for all k we get
that f ∈ S as well. Note that g is the diagonal of the bisimplicial morphism G given in
bidegree (n,m) by Gn,m : (hocolimV

NX
•
n)m → colimNX

•
n. Then it suffices to prove that

Gn,· is in S for each n ≥ 0. Therefore, we may assume that our sequence {Xk, ak}k≥0
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is A0 → A0 q A1 → · · · → A0
∐
· · ·

∐
Ak → · · · . Hence, colimkX

k =
∐

l≥0A
l, and

{Xk, ak}k≥0 is the coproduct of the sequences

τlA : 0→l−1· · ·→ 0→ Al → Al → Al → · · ·
Since by definition hocolimV

I commutes with coproducts,

hocolimV
NX

• =
∐
l≥0

hocolimV
NτlA =

∐
l≥0

Al ⊗ N(l/N)

Then g =
∐

l≥0 g
(l) ∈ S, since g(l) : Al⊗N(l/N)→ Al is a simplicial homotopy equivalence.

3. Characterization of realizable homotopy colimits.

We are now ready to prove the main result of the paper, characterizing homotopically
cocomplete relative categories which are closed by coproducts.

3.1. Theorem. For a relative category (C,W) closed under coproducts, the following are
equivalent:

i. (C,W) has realizable homotopy colimits, which satisfy the cofinality property.
ii. (C,W) is a simplicial descent category.

More concretely, if ii holds then hocolimI = sqI is a realizable homotopy colimit. Con-
versely, if i holds then s = hocolim∆◦ is a simple functor for (C,W).

The dual result applies to relative categories (C,W) closed under products, and states
that (C,W) has realizable homotopy limits satisfying the (dual) cofinality property if and
only if (C,W) is a cosimplicial descent category.

The proof of previous theorem needs some preparatory material on simplicial descent
categories and will be given later. Once this is done we show in Theorem 3.16 that, under
the previous equivalent conditions, (C,W) produces a right derivator. Before going into
further detail, let us first explore some consequences of Theorem 3.1. We begin with the
following result about preservation of homotopy colimits by relative functors.

3.2. Corollary. Let F be a relative functor between relative categories that satisfy the
equivalent conditions of the previous theorem. Then F commutes with homotopy colimits
if and only if it commutes with homotopy coproducts and ∆◦-homotopy colimits.

Proof. If F : (C,W) → (D,W) commutes with homotopy coproducts, then given X :
I → C and n ≥ 0 the canonical morphism

qi0→···→inF (X(i0)) −→ F (qi0→···→inX(i0))

is a weak equivalence. Hence, the canonical morphism ε : qIF → FqI is a pointwise weak
equivalence. By assumption, hocolimC∆◦qI and hocolimD∆◦qI are I-homotopy colimits.
Then ρIF is a relative isomorphism since it is the composition of the weak equivalence
hocolimC∆◦?ε with the relative isomorphism ρ∆◦

F
?qI .
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3.3. Remark. Theorem 3.1 together with previous corollary can be stated as an equiv-
alence of categories between the category formed by the relative categories satisfying
hypothesis i, and the one formed by the relative categories satisfying hypothesis ii.

A second consequence of previous theorem concerns the relation between homotopy
colimits and triangulated structures. Recall that if (C,W) produces a stable Grothendieck
derivator (in particular both homotopy colimits and homotopy limits are assumed to exist)
then CI [W−1] carries a natural triangulated structure. However, for a right derivator (that
is, only homotopy colimits are required to exist) it is not clear how to construct cofiber
sequences in CI [W−1], and hence triangulated structures.

One of the advantages of working with the stronger notion of realizable homotopy
colimit is that, by contrast, cofiber sequences can be defined in a natural way. Namely,
if (C,W) satisfies the hypothesis of Theorem 3.1 and C is a pointed category, the Cone
functor Fl(C) → C is just Cone(f) = hocolim{∗ ← X

f→ Y } and the suspension is
ΣX = Cone(X → ∗). Since (C,W) is a simplicial descent category, [R, Corollary 5.6]
implies that these cofiber sequences endow C[W−1] with a left triangulated structure,
which is triangulated if Σ : C[W−1]→ C[W−1] is an equivalence of categories.

3.4. Simplicial descent categories. Next we recall the definition of simplicial de-
scent category, whose main feature is that it comes equipped with a simple functor
s : ∆◦C → C that is a well behaved ‘geometric realization’.

3.5. Definition. Let (C,W) be a relative category closed under finite coproducts. A
simplicial descent structure on (C,W) is a triple (s : ∆◦C → C, µ : sD 99K ss, λ : sc 99K 1C)
satisfying the following axioms:

(S1) The canonical morphism sX q s(Y )→ s(X q Y ) is in W for all X, Y in ∆◦C.

(S2) The simple functor s : (∆◦C,W)→ (C,W) is a relative functor.

(S3) µ : sD 99K ss is a relative isomorphism.

(S4) λ : sc 99K 1C is a relative isomorphism, compatible with µ in the sense of ( 3.6).

(S5) For each object A of C, s(dA0 ) : s(A)→ s(A⊗∆[1]) is in W.

A simplicial descent category is a relative category closed under finite coproducts and
endowed with a simplicial descent structure. It will be denoted by (C,W , s, µ, λ), (C,W , s)
or even by (C,W) for shortness.

3.6. Compatibility between µ and λ. Given a simplicial object X, we have that
sscII(X) = s(n→ sc(Xn)) and sscI(X) = scs(X). The compositions

s(X)
µ
cI(X) // scs(X)

λs(X) // s(X) s(X)
µ
cII(X)// ssc(X)

s(λX) // s(X) (3)

give rise to relative isomorphisms of s. Then, λ is said to be compatible with µ if these
isomorphisms are the identity in RelCat.
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3.7. Remark. We use here a slight variant of the notion given in [R], more suitable
for the setting of relative categories. More concretely, the only difference is that the
transformations µ and λ of (S3) and (S4) are now assumed to be relative isomorphisms
instead of zigzags of natural weak equivalences as in loc. cit.

Previous axioms ensure that the simple functor has the correct homotopical meaning.

3.8. Theorem. Let (C,W , s) be a simplicial descent category. Then
i. The simple functor is a realizable homotopy colimit.
ii. (s, c) is a relative adjoint equivalence between (∆◦C,S = s−1W) and (C,W).

Proof. The proof is the same as the one of [R, Theorem 5.1].

By the next result, simplicial descent categories are closely related to ∆-closed classes.

3.9. Proposition.
i. Let (∆◦C,S) be a relative category closed under finite coproducts. Then S is ∆-

closed if and only if (∆◦C,S,D : ∆◦∆◦C → ∆◦C) is a simplicial descent category.
ii. If (C,W , s) is a simplicial descent category, the class S = s−1W of ∆◦C is ∆-closed.

If in addition W is closed under coproducts, then so is S.

Proof. The last statement of ii follows from Lemma 3.10. The remaining assertions of
the proposition are proved in [R, Theorem 4.2].

3.10. Lemma. Let (C,W , s) be a simplicial descent category closed under coproducts.
Then, the simple functor preserves all small coproducts up to weak equivalence. That is,
given a family {Xα}α∈Λ of simplicial objects, the canonical morphism below is in W∐

α

s(Xα) −→ s(
∐
α

Xα) .

Proof. Being W closed under small coproducts, these are preserved by the localization
functor C → C[W−1]. The same applies to ∆◦C[W−1]. By Theorem 3.8 and Lemma 1.9,
s : ∆◦C[W−1]→ C[W−1] is a left adjoint, so it preserves coproducts. Then,

∐
α s(X

α) −→
s(
∐

αX
α) is an isomorphism in C[W−1], and hence a weak equivalence by saturation.

Also, simplicial descent structures are inherited by diagram categories. The proof is a
formal consequence of the axioms, and is left to the reader.

3.11. Proposition. Let I be a small category and let (s, µ, λ) be a simplicial descent
structure on (C,W). Then, the triple (sI , µI , λI) defined pointwise is a simplicial descent
structure on (CI ,W).

3.12. Proof of Theorem 3.1. Let (C,W) be a relative category closed under coprod-
ucts. Assume that (C,W) has realizable homotopy colimits, which satisfy the cofinality
property, and let us show that (C,W) has a simplicial descent structure with simple func-
tor hocolim∆◦ : ∆◦C → C.

(S1): This is proved in the same way as Lemma 3.10, using that hocolim∆◦ : ∆◦C[W−1]→
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C[W−1] is a left adjoint by Lemma 1.15.

(S2): By hypothesis, hocolim∆◦ : (∆◦C,W)→ (C,W) is a relative functor.

(S3): The diagonal d : ∆◦ → ∆◦ × ∆◦ is a homotopy right cofinal functor (see [T,
Lemma 5.33]). Then, hocolim(d) : hocolim∆◦D 99K hocolim∆◦×∆◦ is a relative iso-
morphism. It follows from Proposition 1.25 that there is a unique relative isomorphism
k : hocolim∆◦×∆◦ 99K hocolim∆◦hocolim∆◦ compatible with the adjunction morphisms.
We define µ as the composition of k with hocolim(d).

(S4): Define λ : hocolim∆◦ c 99K 1C as the adjunction morphism of (hocolim∆◦ , c).
We claim that λ is a relative isomorphism. Note that the trivial functor π : ∆◦ → [0]
is homotopy right cofinal because (π/0) ≡ ∆◦ has an initial object. Then hocolim(π) :
hocolim∆◦π

∗ = hocolim∆◦c 99K hocolim[0] is a relative isomorphism. On the other hand,
the adjunction morphism u : hocolim[0] 99K 1C of (hocolim[0], 1C) is a relative isomor-
phism as well. Finally, the claim follows from the equality λ = u hocolim(π).

The compatibility between µ and λ follows from the Fubini property of hocolim (see
Proposition 1.25) together with the fact that d : ∆◦ → ∆◦ × ∆◦ composed with the
projections p1, p2 : ∆◦ ×∆◦ → ∆◦ is the identity.

(S5): Denote by i[1] : ∗ → ∆◦ the inclusion of the object [1] in ∆◦. Then (i[1])!(A)
exists and agrees with A ⊗ ∆[1], for each A ∈ C. Since it is a relative functor, we have
that (−⊗∆[1], i∗[1]) is a relative adjunction, hence hocolim∆◦(−⊗∆[1]) is isomorphic in
RelCat to the identity because it is relative left adjoint to i∗[1]c = 1C.

Conversely, if ii holds then sqI is a realizable homotopy colimit by Proposition 3.14 below
applied to the trivial functor f : I → [0]. And sqI = s hocolimV

I c satisfies the cofinality
property because, by Corollary 2.23, hocolimV

I does. �

3.13. Definition. Let I be a small category and (C,W , s) be a simplicial descent category
such that (C,W) is closed under coproducts (or drop this assumption if I is finite). Define
hocolimI : CI → C as the composition

CI
∐I

// ∆◦C s // C

of the simple functor with the simplicial replacement. Note that hocolimI : (CI ,W) →
(C,W) is a relative functor by (S2). More generally, given f : I → J , the relative functor
f! : (CI ,W)→ (CJ ,W) is defined as

(f!X)(j) = hocolim(f/j)u
∗
jX

where uj : (f/j)→ I maps {f(i)→ j} to i.

3.14. Proposition. Under the previous assumptions, (f!, f
∗) is a relative adjunction.

Proof. By Proposition 3.9, the class S = s−1W is ∆-closed and it is closed under
coproducts if W is. Given f : I → J , consider the following diagram of relative functors

(CI ,W)
c // (∆◦CI ,S)
sI

oo
fV! // (∆◦CJ ,S)
f∗

oo
sJ // (CJ ,W)
c

oo
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By Theorem 2.14, (fV
! , f

∗) is a relative adjunction. By Proposition 3.11, (CI ,W) and
(CJ ,W) are simplicial descent categories with simple functor defined pointwise. Note that
(sI)−1W agrees with the class of ∆◦CI defined pointwise by S, and analogously for J . We
conclude by Theorem 3.8 that the pairs (c, sI) and (sJ , c) are relative adjoint equivalences
of categories, and in particular relative adjunctions. It turns out that sJ fV

! c = f! and
sI f ∗ c form a relative adjunction as well. But sIf ∗c = sIcf ∗ is isomorphic in RelCat to
f ∗ by (S4). Hence, (f!, f

∗) is a relative adjunction.

3.15. Grothendieck derivators. We study here the link between simplicial descent
categories and Grothendieck derivators ([G]). Recall that a prederivator is a strict 2-
functor D : cat◦ → Cat, and that a right derivator (see [M, Definition 4.28]) is a pred-
erivator D such that:

Der 1. Given A,B in cat, the functor (i∗, j∗) : D(AqB)→ D(A)×D(B) induced by the
canonical inclusions i : A→ AqB, j : B → AqB is an equivalence of categories.

Der 2. Given A in cat and a ∈ A, denote also by a : [0] → A the functor 0 7→ a. Then,
a morphism F of D(A) such that a∗F is an isomorphism in D([0]) for each a ∈ A is
an isomorphism in D(A).

Der 3d. Given w : A → B in cat, w∗ : D(B) → D(A) has a left adjoint w! : D(A) →
D(B).

Der 4d. Given w : A→ B in cat and b ∈ B, consider the diagram

(b/w)

ub
��

π //

α

⇐

[0]

b
��

A w
// B

where ατ :b→w(a) = τ . It gives rise by adjunction to the morphism π!u
∗
b → b∗w! of

D([0]), which is assumed to be an isomorphism.

The following additional condition must be also satisfied. Given D in cat, denote by
pD : D → [0] the trivial functor. Consider a commutative triangle in cat

A

v ��

u // B

w��
C

such that for each c ∈ C, the induced morphism p
(v/c)
! p(v/c)∗ → p

(w/c)
! p(v/c)∗ is an isomor-

phism. Then, the induced morphism pA!v
∗ → pB !w

∗ is required to be an isomorphism.

In this notion cat may be more generally a suitable sub-2-category dia of cat. We will
only use the cases dia = cat and dia = catf , the 2-category of finite categories.

3.16. Theorem. If (C,W) is a simplicial descent category, the 2-functor D : cat◦f → Cat,
A 7→ CA◦ [W−1] is a right derivator. If moreover (C,W) is closed under coproducts, then
D : cat◦ → Cat, I 7→ CA◦ [W−1] is a right derivator
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Proof. Der 1 is clear from the definition of D. To see Der 2, consider a morphism F of
D(I) = CI [W−1]. By Lemma 3.17, F = τF ′τ ′, where F ′ is a morphism in CI and τ , τ ′ are
isomorphisms in CI [W−1]. If i∗F = Fi = τiF

′
iτ
′
i is an isomorphism for each i ∈ I, then

F ′i is an isomorphism as well. Since W is saturated, F ′i ∈ W for each i. Hence, F ′ is an
isomorphism in CI [W−1] and consequently so is F = τF ′τ ′. To see the remaining axioms,
consider f : I → J in cat. By Proposition 3.14, f! : (CJ ,W) � (CI ,W) : f ∗ is a relative
adjunction where f! is defined pointwise. By Lemma 1.15, f! : CI [W−1]� CJ [W−1] : f ∗ is
an adjunction, so Der 3 and Der 4 hold. To finish, the last axiom follows from Theorem
2.19 and the fact that pA! = hocolimA◦ agrees with s hocolimV

A◦ c.

3.17. Lemma. Let (C,W) be a simplicial descent category. If I is a small category and F
is a morphism in CI [W−1], there exist isomorphisms τ and τ ′ of CI [W−1] and a morphism
F ′ of CI such that F = τF ′τ ′.

Proof. Given a small category I, Proposition 3.11 implies that (CI ,W) is again a simpli-
cial descent category. Therefore we may assume that I = [0], and that F is a morphism
of C[W−1]. If s : ∆◦C → C is a simple functor on (C,W), then (∆◦C,S = s−1W) is
a Brown category of cofibrant objects by Propositions 3.9 and 2.9. In particular each
morphism T of ∆◦C[S−1] is represented by a length-two zigzag (see [Br, Theorem 1]).
Consequently, c(F ) = w−1T ′ in ∆◦C[S−1] where T ′, w are morphisms of ∆◦C and w is in
S. Hence, sc(F ) = (s(w))−1s(T ′). Using the relative isomorphism λ of (S4) we obtain
the equality λB sc(F ) = F λA in C[W−1]. We conclude that F = λB(s(w))−1s(T ′)λ−1

A and
the statement holds for τ = λB(s(w))−1, F ′ = s(T ′) and τ ′ = λ−1

A .

3.18. Remark. The above lemma says that the functor CI×[1][W−1] → (CI [W−1])[1] is
essentially surjective. Using a similar argument it may be proved that this functor is also
full. The combination of these two properties is sometimes included as axiom Der 5 in
the notion of Grothendieck derivator.

3.19. Remark. One could consider a notion of ‘realizable’ right derivator, i.e. a strict
2-functor D : cat◦ → RelCat (instead of cat◦ → Cat) satisfying the corresponding axioms.
Then, in this context previous results come to say that for prederivators induced by
relative categories closed under coproducts, to be a realizable right derivator is exactly
the same thing than to be a simplicial descent category.

Recall that a morphism of right derivators is called right exact if it preserves homotopy
left Kan extensions.

3.20. Corollary. Let F : (C,W) → (D,W) be a relative functor between relative cat-
egories satisfying the hypothesis of the previous theorem. If F commutes with homotopy
coproducts and ∆◦-homotopy colimits, the functors FA◦ : CA◦ [W−1]→ DA◦ [W−1] produce
a right exact morphism of right derivators.

Proof. By [C, Proposition 2.6] it suffices to see that F preserves homotopy colimits,
which holds by Corollary 3.2.
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4. Examples.

In this last section we describe in some specific examples what the homotopy (co)limits
obtained look like. We already deduced in Section 2 the formula hocolimI = DqI for
relative categories (∆◦C,S) where S is ∆-closed. For (∆◦C,S) = (∆◦Set,W), this re-
covers the original Bousfield-Kan formula for homotopy colimits given in [BK, XII.5.2].
Hirschhorn’s generalization of Bousfield-Kan formula for model categories also fits in our
setting.

4.1. Bousfield-Kan homotopy colimits for model categories. The fact that a
model category (M,W) has all realizable homotopy limits and colimits is not surprising
and may be proved, for instance, by adapting the arguments in [C], [DHKS] or [CS] to
the setting of relative categories.

It holds moreover that these realizable homotopy colimits are given by the Bousfield-
Kan construction. Recall from [H, Chapter 19] that the (corrected) Bousfield-Kan homo-
topy colimit chocolim

BK
I :MI →M is given by the formula

chocolim
BK
I X =

∫ i

Q̃X(i)⊗ N(i/I)◦ (4)

where ˜ : M → ∆M is a functorial cosimplicial frame, QX is a functorial cofibrant
replacement of X and ⊗ : ∆M×∆◦Set→M is given by X ⊗K = colim∆K π

∗
KX.

4.2. Theorem. Realizable homotopy colimits exist in any model category, and may be
computed by the Bousfield-Kan formula (4).

Proof. We sketch here a proof based on Theorem 3.1 and the results of [H]. If Mc

denotes the full subcategory ofM of cofibrant objects, then the restriction of chocolim
BK
I

to ∆◦Mc gives a functor s = hocolimBK∆◦ : ∆◦Mc → Mc. Using the results of [H], it
may be proved that s is indeed a simple functor for (Mc,W). Since weak equivalences
between cofibrant objects are closed under coproducts, Theorem 3.1 applies and tells
us that realizable homotopy colimits exist in (Mc,W), and are given by the formula
hocolimBK∆◦ qI . But it is easily seen that there is a relative isomorphism hocolimBKI '
hocolimBK∆◦ qI : (MI

c ,W)→ (Mc,W). Consequently, the former is a realizable homotopy
colimit for (Mc,W) as well. To finish, one uses that the inclusion (Mc,W) → (M,W)
and a functorial cofibrant replacement Q : (M,W) → (Mc,W) are inverse equivalences
of relative categories to conclude that chocolim

BK
I is a realizable homotopy colimit.

4.3. Remark. A direct consequence of previous theorem is the known fact that the
Bousfield-Kan homotopy colimit (4) is a left derived functor of the colimit.

4.4. Remark. In analogy with the closed-under-coproducts case, in this case the follow-
ing equation holds

hocolimI ' hocolim∆◦ qI Q
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4.5. Remark. Combining Theorems 4.2, 3.1 and 3.16 (and their duals) one gets another
proof of the well-known fact that a model category produces a Grothendieck derivator
(cf. [C]).

4.6. Further examples. Despite the abstract way in which simple functors are defined,
in the examples they turn out to be familiar constructions which have already been used
in a variety of applications, inside or outside homotopy theory.

Chain complexes. Positive (or uniformly bounded below) chain complexes on an abelian
category A together with the quasi-isomorphisms as weak equivalences form a simplicial
descent category where the simple functor s : ∆◦C+(A)→ C+(A) is just the total complex
associated with a double complex. Hence, if A is an (AB4) abelian category then I 7→
D+(AI◦) defines a right derivator with domain cat, for which hocolimI = TotqI . Dually,
if A is (AB4∗) then TotΠI computes holimI in C+(A) for any small category I. A similar
result is proved in [Ne, Lemma A.3.2] and states that limn : AI → A exists for any
(AB4∗) abelian category and may be computed as limnF = Hn(ΠIF ).

(Filtered) commutative differential graded algebras. If k is a field of charac-
teristic 0, the relative category (Cdgak,W) of (positively graded) commutative differential
graded k-algebras and quasi-isomorphisms is a cosimplicial descent category (recall that it
is indeed a model category). A formula for the simple functor is Navarro’s Thom-Whitney
simple ([N, (2.3)]), given by the end

sTW (A) =

∫
n

Ln ⊗ An

where Ln is the dg-algebra of polynomial differential forms on the n-simplex. This yields
that sTWΠI is a formula for the homotopy limit, for any small category I.

An advantage of this approach is that adding filtrations to the picture does not take
one outside the cosimplicial descent setting. If FA(k) denotes the category of filtered
commutative differential graded k-algebras, recall from [N, (6.6)] that a decreasing multi-
plicative filtration λ of L induces (sTW , λ) : ∆FA(k)→ FA(k), (A,F ) 7→ (sTW (A), λ ∗F )
where (λ ∗ F )ksTW (A) is defined over Ln ⊗ Am by

∑
i+j=k λ

iLn ⊗ F jAm.

For the trivial filtration ε and the bête filtration σ, one can prove using the results
in loc. cit. that (sTW , ε) and (sTW , σ) are again simple functors for (FA(k),E1) and
(FA(k),E2), respectively. Here Ei denotes the class of morphisms that induce an iso-
morphism between the ith-steps of the corresponding spectral sequences associated with
the filtrations (in particular E1 = { graded quasi-isomorphisms}). Hence these relative
categories induce left derivators, where the homotopy limits over a small category I are
given by (sTW , ε)Π

I and (sTW , σ)ΠI , respectively.

Mixed Hodge complexes. This constitutes an interesting example in which finite ho-
motopy limits exist, but usual finite limits do not exist. Recall that a mixed Hodge complex
is a triple K = ((KQ,W), (KC,W,F), α) where
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1. (KQ,W) is a biregularly filtered positive cochain complex of Q-vector spaces such
that Hk(KQ) is finite dimensional for all k ≥ 0.

2. (KC,W,F) is a biregularly bifiltered positive cochain complex of C-vector spaces,
where W (resp. F) is an increasing (resp. decreasing) filtration, called the weight
(resp. Hodge) filtration.

3. α = (α0, α1, (K̃, W̃)) is a zigzag

(KC,W) (K̃, W̃)
α0oo α1 // (KQ,W)⊗ C

where αi is a filtered quasi-isomorphism for i = 0, 1.

In addition, for each n ≥ 0 the boundary map of the graded complex WGrnKC must
be compatible with filtration F, and the induced filtration F on WGrnH

kKC is a Hodge
structure of weight n+ k. That is,

FGrpFGrqWGrnH
kKC = 0 for p+ q 6= n+ k .

A morphism f = (fQ, fC, f̃) : K → K ′ of mixed Hodge complexes consists of mor-

phisms fQ : (KQ,W) → (K ′Q,W
′), fC : (KC,W,F) → (K ′C,W

′,F′) and f̃ : (K̃, W̃) →
(K̃ ′, W̃′) of (bi)filtered complexes, such that the two squares built up using α, α′, fC,

f̃ and fQ ⊗ C commute. The resulting category Hdg together with the class of weak
equivalences

EHdg = {f = (fQ, fC, f̃) | fQ is a quasi-isomorphism of cochain complexes}

is by [R, Theorem 2.10] a cosimplicial descent category. Note that Hdg is closed only
under finite products because of the finite-dimensional assumption in (1).

The simple functor is Deligne’s cosimplicial construction sHdg : ∆Hdg → Hdg ([De,
(8.I.I5)]). It is defined on K = ((KQ,W), (KC,W,F), α) by

sHdg(K) = ((s(KQ), δW), (s(KC), δW, s(F))) , where

s(K∗)
n =

⊕
p+q=n

Kp,q
∗ ; (δW)k(s(K∗))

n =
⊕
i+j=n

Wk+iK
i,j
∗ , if ∗ is Q or C

(s(F))k(s(KC))n =
⊕
p+q=n

FkKp,q
C .

Therefore, for a finite category I, we conclude by the previous results that sHdgΠ
I

computes holimI , and that DHdg : catf → CAT , DHdg(I) = HdgI◦ [E−1
Hdg] is a left

Grothendieck derivator.
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[R] B. Rodŕıguez González, Simplicial descent categories, J. Pure and Appl. Algebra 216 no.
4 (2012), p. 775-788.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl
Susan Niefield, Union College: niefiels@union.edu
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